Normal view MARC view ISBD view

Fundamentals of regression modeling / [edited by] Salvatore Babones.

Contributor(s): Babones, Salvatore [editor].
Material type: materialTypeLabelBookSeries: Sage benchmarks in social research methods.Publisher: Los Angeles : SAGE, 2013Description: 4 volumes : illustrations ; 24 cm.ISBN: 9781446208281 (hbk : 4 vol. set).Subject(s): Social sciences -- Statistical methods | Regression analysis | Social sciences -- Research -- Statistical methods | StatisticsDDC classification: 000SB:300
Contents:
Machine generated contents note: Volume I -- 1. Regression Fundamentals for the Social Sciences / Salvatore Babones -- 1. The Meaning of p-Values -- 2. The Nonutility of Significance Tests: The Significance of Tests of Significance Reconsidered / Sanford Labovitz -- 3. Mindless Statistics / Gerd Gigerenzer -- 4. Confusion over Measures of Evidence (p's) versus Errors ([alpha]'s) in Classical Statistical Testing / M.J. Bayarri -- 5. Why We Don't Really Know What Statistical Significance Means: Implications for Educators / J. Scott Armstrong -- 6. Researchers Should Make Thoughtful Assessments Instead of Null-Hypothesis Significance Tests / Fiona Fidler -- 2. Control Variables -- 7. Explaining Interstate Conflict and War: What Should Be Controlled For? / James Lee Ray -- 8. The Phantom Menace: Omitted Variable Bias in Econometric Research / Kevin A. Clarke -- 9. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium / Andrew F. Hayes. Contents note continued: 10. Equivalence of the Mediation, Confounding and Suppression Effect / Chondra M. Lockwood -- 11. Statistical Usage in Sociology: Sacred Cows and Ritual / Sanford Labovitz -- 12. Stepwise Regression in Social and Psychological Research / Daniel R. Denison -- 13. Return of the Phantom Menace: Omitted Variable Bias in Political Research / Kevin A. Clarke -- 14. Stepwise Regression: A Caution / Michael S. Lewis-Beck -- Volume II -- 3. Outliers and Influential Points -- 15. Teaching about Influence in Simple Regression / Frederick O. Lorenz -- 16. Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases / Robert W. Jackman -- 17.A Survey of Outlier Detection Methodologies / Jim Austin -- 18. Practitioners' Corner: Beware of `Good' Outliers and Overoptimistic Conclusions / Vincenzo Verardi -- 19. Some Observations on Measurement and Statistics / Sanford Labovitz -- 4. Multicolinearity and Variance Inflation. Contents note continued: 20. Issues in Multiple Regression / Robert A. Gordon -- 21.A Caution Regarding Rules of Thumb for Variance Inflation Factors / Robert M. O'Brien -- 22. What to Do (and Not Do) with Multicollinearity in State Politics Research / Gregory A. Huber -- 23. On the Misconception of Multicollinearity in Detection of Moderating Effects: Multicollinearity Is Not Always Detrimental / Gwowen Shieh -- 24. Correlated Independent Variables: The Problem of Multicollinearity / H.M. Blalock Jr -- 5. Sample Selection Biases -- 25. Modeling Selection Effects / David A. Freedman -- 26. An Introduction to Sample Selection Bias in Sociological Data / Richard A. Berk -- 27. Models for Sample Selection Bias / Robert D. Mare -- 28. Sample Selection Bias as a Specification Error / James J. Heckman -- 29. How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics / Barbara Geddes. Contents note continued: 30. When Less Is More: Selection Problems in Large-N and Small-N Cross-National Comparisons / Bernhard Ebbinghaus -- Volume III -- 6. Imputation Techniques -- 31. The Treatment of Missing Data / David C. Howell -- 32.A Primer on Maximum Likelihood Algorithms Available for Use with Missing Data / Craig K. Enders -- 33. What to Do about Missing Values in Time-Series Cross-Section Data / Gary King -- 34. Multiple Imputation for Missing Data: A Cautionary Tale / Paul D. Allison -- 35. Multiple Imputation for Missing Data: Making the Most of What You Know / Jonathon N. Cummings -- 36. Imputation of Missing Item Responses: Some Simple Techniques / Mark Huisman -- 37. Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation / Kenneth Scheve -- 38. An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values / Carl F. Pieper -- 7. Interaction Models. Contents note continued: 39. Testing for Interaction in Multiple Regression / Paul D. Allison -- 40. Understanding Interaction Models: Improving Empirical Analyses / Matt Golder -- 41. Product-Variable Models of Interaction Effects and Causal Mechanisms / Lowell L. Hargens -- 42. Limitations of Centering for Interactive Models / Richard L. Tate -- 43. Decreasing Multicollinearity: A Method for Models with Multiplicative Functions / M.S. Sasaki -- 44. Some Common Myths about Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression / Michael J. Zickar -- 8. Longitudinal Models -- 45.A General Panel Model with Random and Fixed Effects: A Structural Equations Approach / Jennie E. Brand -- 46.A Lot More to Do: The Sensitivity of Time-Series Cross-Section Analyses to Simple Alternative Specifications / Daniel M. Butler -- 47. Panel Models in Sociological Research: Theory Into Practice / Charles N. Halaby. Contents note continued: 48. Dynamic Models for Dynamic Theories: The Ins and Outs of Lagged Dependent Variables / Nathan J. Kelly -- 49. Using Panel Data to Estimate the Effects of Events / Paul D. Allison -- Volume IV -- 9. Instrumental Variable Models -- 50. Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments / Alan B. Krueger -- 51. Improving Causal Inference: Strengths and Limitations of Natural Experiments / Thad Dunning -- 52. Instrumental Variables Estimation in Political Science: A Readers' Guide / Donald P. Green -- 53. Instrumental Variables in Sociology and the Social Sciences / Kenneth A. Bollen -- 54. Problems with Instrumental Variables Estimation When the Correlation between the Instruments and the Endogenous Explanatory Variable Is Weak / Regina M. Baker -- 10. Structural Models -- 55. Practical Issues in Structural Modeling / Chih-Ping Chou -- 56. As Others See Us: A Case Study in Path Analysis / D.A. Freedman. Contents note continued: 57. Causation Issues in Structural Equation Modeling Research / Stanley A. Mulaik -- 58. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach / David W. Gerbing -- 59. Structural Equation Models in the Social and Behavioral Sciences: Model Building / James G. Anderson -- 11. Causality -- 60. Statistical Models for Causation / David A. Freedman -- 61. Structural Equations and Causal Explanations: Some Challenges for Causal SEM / Keith A. Markus -- 62. The Estimation of Causal Effects from Observational Data / Stephen L. Morgan -- 63. Statistical Models for Causation: What Inferential Leverage Do They Provide / David A. Freedman -- 64. The Foundations of Causal Inference / Judea Pearl.
Summary: This new four-volume major work presents a collection of landmark studies on the topic of regression modeling, identifying the most important, fundamental articles out of thousands of relevant contributions.
ISI Library
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
Item type Current location Call number Status Date due Barcode Item holds
Books Books ISI Library, Kolkata
 
000SB:300 B114 (Browse shelf) Checked out 23/09/2017 137768
Books Books ISI Library, Kolkata
 
000SB:300 B114 (Browse shelf) Checked out 23/09/2017 137769
Books Books ISI Library, Kolkata
 
000SB:300 B114 (Browse shelf) Checked out 23/09/2017 137770
Books Books ISI Library, Kolkata
 
000SB:300 B114 (Browse shelf) Checked out 23/09/2017 137771
Total holds: 0

Includes bibliographical references.

Machine generated contents note: Volume I --
1. Regression Fundamentals for the Social Sciences / Salvatore Babones --
1. The Meaning of p-Values --
2. The Nonutility of Significance Tests: The Significance of Tests of Significance Reconsidered / Sanford Labovitz --
3. Mindless Statistics / Gerd Gigerenzer --
4. Confusion over Measures of Evidence (p's) versus Errors ([alpha]'s) in Classical Statistical Testing / M.J. Bayarri --
5. Why We Don't Really Know What Statistical Significance Means: Implications for Educators / J. Scott Armstrong --
6. Researchers Should Make Thoughtful Assessments Instead of Null-Hypothesis Significance Tests / Fiona Fidler --
2. Control Variables --
7. Explaining Interstate Conflict and War: What Should Be Controlled For? / James Lee Ray --
8. The Phantom Menace: Omitted Variable Bias in Econometric Research / Kevin A. Clarke --
9. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium / Andrew F. Hayes. Contents note continued: 10. Equivalence of the Mediation, Confounding and Suppression Effect / Chondra M. Lockwood --
11. Statistical Usage in Sociology: Sacred Cows and Ritual / Sanford Labovitz --
12. Stepwise Regression in Social and Psychological Research / Daniel R. Denison --
13. Return of the Phantom Menace: Omitted Variable Bias in Political Research / Kevin A. Clarke --
14. Stepwise Regression: A Caution / Michael S. Lewis-Beck --
Volume II --
3. Outliers and Influential Points --
15. Teaching about Influence in Simple Regression / Frederick O. Lorenz --
16. Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases / Robert W. Jackman --
17.A Survey of Outlier Detection Methodologies / Jim Austin --
18. Practitioners' Corner: Beware of `Good' Outliers and Overoptimistic Conclusions / Vincenzo Verardi --
19. Some Observations on Measurement and Statistics / Sanford Labovitz --
4. Multicolinearity and Variance Inflation. Contents note continued: 20. Issues in Multiple Regression / Robert A. Gordon --
21.A Caution Regarding Rules of Thumb for Variance Inflation Factors / Robert M. O'Brien --
22. What to Do (and Not Do) with Multicollinearity in State Politics Research / Gregory A. Huber --
23. On the Misconception of Multicollinearity in Detection of Moderating Effects: Multicollinearity Is Not Always Detrimental / Gwowen Shieh --
24. Correlated Independent Variables: The Problem of Multicollinearity / H.M. Blalock Jr --
5. Sample Selection Biases --
25. Modeling Selection Effects / David A. Freedman --
26. An Introduction to Sample Selection Bias in Sociological Data / Richard A. Berk --
27. Models for Sample Selection Bias / Robert D. Mare --
28. Sample Selection Bias as a Specification Error / James J. Heckman --
29. How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics / Barbara Geddes. Contents note continued: 30. When Less Is More: Selection Problems in Large-N and Small-N Cross-National Comparisons / Bernhard Ebbinghaus --
Volume III --
6. Imputation Techniques --
31. The Treatment of Missing Data / David C. Howell --
32.A Primer on Maximum Likelihood Algorithms Available for Use with Missing Data / Craig K. Enders --
33. What to Do about Missing Values in Time-Series Cross-Section Data / Gary King --
34. Multiple Imputation for Missing Data: A Cautionary Tale / Paul D. Allison --
35. Multiple Imputation for Missing Data: Making the Most of What You Know / Jonathon N. Cummings --
36. Imputation of Missing Item Responses: Some Simple Techniques / Mark Huisman --
37. Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation / Kenneth Scheve --
38. An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values / Carl F. Pieper --
7. Interaction Models. Contents note continued: 39. Testing for Interaction in Multiple Regression / Paul D. Allison --
40. Understanding Interaction Models: Improving Empirical Analyses / Matt Golder --
41. Product-Variable Models of Interaction Effects and Causal Mechanisms / Lowell L. Hargens --
42. Limitations of Centering for Interactive Models / Richard L. Tate --
43. Decreasing Multicollinearity: A Method for Models with Multiplicative Functions / M.S. Sasaki --
44. Some Common Myths about Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression / Michael J. Zickar --
8. Longitudinal Models --
45.A General Panel Model with Random and Fixed Effects: A Structural Equations Approach / Jennie E. Brand --
46.A Lot More to Do: The Sensitivity of Time-Series Cross-Section Analyses to Simple Alternative Specifications / Daniel M. Butler --
47. Panel Models in Sociological Research: Theory Into Practice / Charles N. Halaby. Contents note continued: 48. Dynamic Models for Dynamic Theories: The Ins and Outs of Lagged Dependent Variables / Nathan J. Kelly --
49. Using Panel Data to Estimate the Effects of Events / Paul D. Allison --
Volume IV --
9. Instrumental Variable Models --
50. Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments / Alan B. Krueger --
51. Improving Causal Inference: Strengths and Limitations of Natural Experiments / Thad Dunning --
52. Instrumental Variables Estimation in Political Science: A Readers' Guide / Donald P. Green --
53. Instrumental Variables in Sociology and the Social Sciences / Kenneth A. Bollen --
54. Problems with Instrumental Variables Estimation When the Correlation between the Instruments and the Endogenous Explanatory Variable Is Weak / Regina M. Baker --
10. Structural Models --
55. Practical Issues in Structural Modeling / Chih-Ping Chou --
56. As Others See Us: A Case Study in Path Analysis / D.A. Freedman. Contents note continued: 57. Causation Issues in Structural Equation Modeling Research / Stanley A. Mulaik --
58. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach / David W. Gerbing --
59. Structural Equation Models in the Social and Behavioral Sciences: Model Building / James G. Anderson --
11. Causality --
60. Statistical Models for Causation / David A. Freedman --
61. Structural Equations and Causal Explanations: Some Challenges for Causal SEM / Keith A. Markus --
62. The Estimation of Causal Effects from Observational Data / Stephen L. Morgan --
63. Statistical Models for Causation: What Inferential Leverage Do They Provide / David A. Freedman --
64. The Foundations of Causal Inference / Judea Pearl.

This new four-volume major work presents a collection of landmark studies on the topic of regression modeling, identifying the most important, fundamental articles out of thousands of relevant contributions.

There are no comments for this item.

Log in to your account to post a comment.
Customized by - AVIOR TECHNOLOGIES PVT. LTD. Website : www.aviortechnologies.com , Email : mail@aviortechnologies.com