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I. INTRODUCTION

The limited dependent variable (LDV) mode! developed by Tobin (1958) and
commonly known as Tobit mode! bas been recognized in the literature as very
useful for representation of certain types of economic situations. Specifically,
the model can be used in situations when, in the context of 2 regression model,
we do not observe the dependent variabie over the entire range. Obviously for
those values of the dependent variable which are unobservable, the dependent
variable takes the value zero. The relationship between houschold expenditures
on automobiles and household incomes, studied by Tobin himself, is an example
of this kind of a situation. In this case the valuc of the dependent variable
i.c., expenditure on automobiles is zero for all households not having any car.
Obviously, ordinary least squarcs method of estimation will give biased and
i i of the p of such a model. Tobin (1958) had in
his original paper suggested using maximum likelihood method of estimation
for obtaining consistent estimates. In fact, models of this type require different

*This paper has been culled from & chapter of the outhor’s unpublished Ph.D. thesis
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Prof. Robin Mukherjee, Prof. Nikhilesh Bhatacharya and Dr. Dipankar Coondoo for their
comments and helplul suggestions in preparing this paper. Thanks are also due to an anony-
mous referec whose suggestions have helped in improving the presentalion of the paper. The
responsibility for any remaining errors, of course. lics with the author.
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estimation procedures depending upon whether the sample data is censored or
truncated.!

Tobit model has been extensively used by economists even though the for-
mulation of the problem is quite often somewhat more complicated than the
one considered by Tobin. Thus in the context of labour market, for instance, a
person is in the labour force if the reservation wage is less than or equal to the
market wage, otherwise he is not in the labour force. Some other recent
examples of the use of LDV model in economics can be found in the works of
Ashenfelter and Ham (1979), Reece (1979) and Adams (1980). Ashenfelter and
Ham (1979) have, for example, used LDV model to explain the ratio of unem-
ployed hours to employed hours in terms of years of schooling and working
experience. Among others are Reece (1979) who has estimated charitable
contributions as being dependent on price of contribution and income, and
Adams (1980) who was interested in the relationship between inheritance on
the onc hand and income, marital status and number of children on the other.

In all these applications as well as in the theoretical studies by Cragg (1971),
Amemiya (1973), Olsen (1978) etc., the disturbances in the regression equation
have always becn dto beh dastic. Obviously, this assumption
restricts the scope of application of the mode, particularly when one is work-
ing with cross-section data on microeconomic units or data in the form of
grouped averages. In such cases, one has to tackle the problem of heterosced-
asticity in the data. In the context of LDV models this is all the more import-
ant since it has been shown by Maddala and Nelson (1975) and later more
explicitly by Hurd (1979) and Arabmazar and Schmidt (1981) that the maximum
likelihood estimator (MLE)" which assumes homoscedasticity, produces incon-
sistent estimates when the disturbances are in fact heteroscedastic. Further-
more, Hurd (1979) and Arabmazar and Schmidt (198[) have shown, on the
basis of a simple constant—term—only model and for two distinct variances,
and under the assumption of normality, that the severity of the inconsistency
would depend upon the degree of heteroscedasticity as also on whether the
sample is truncated or censored and the degree of censoring, if the sample is
censored.d And obviously, the usual test satisfies will in that case become
invalid. For a good summary of these works one may see Amemiya (1934).

1. By a consored sample we mean a sample in which some observations on the dependent
variable corresponding to some known values of the independent variables are not observ-
able. A truncated sample, on Ihe other hand, is one in which independent variables corres-
ponding to unobservable values of the dependent variable arc also not observed. Tobin really
considered the case of Iruncated samples only.

2. By MLE we mean a root of the normal cquations defined as a solution (of the normal

i ding 1o a local maxi of ghe log-likelihood function.

3. Hurd (1979) has arrived at the same conclusion for anottier model where instead of

only one constant 1erm he considered one independent varjable and a constany temt,
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In the light of thesc findings, it seems important to generelize the standard
LDV model by explicitly incorporating heteroscedasticity in the disturbances
and consider the problems of cstimation and statistical inference in the gene-
ralized model. This paper aims at doing that. In other words, we have here
considered a generalization of LDV model by explicitly introducing a quite
general form of heteroscedasticity (in the disturbances) and then proved the
strong consistency and asymptotic normality of the MLE of the parameters of
this gencralized model (to be henceforth referred 10 as heteroscedastic limited
dependent variable (HLDV) model). This result is similar, though not obvious,
to those of Amemiya (1973). As will be seen subsequently, the likelihood
function for this model assumes a somewhat peculiar form and the standard
theorems on the consistency and asymptotic normality of the MLE are not, in
general, applicable. This paper provides a formal proof of the strong consist-
ency and asymplotic normality of the MLE of the parameters of this generalized
model. This will obviously enhance the usefulness of LDV models by its effective
applicability to situations with heteroscedastic disturbances.

1t may lastly be stated that although we have in this paper proved the results
for a specific but very general assumption about the nature of heteroscedasti-
city (cf. section II), we have checked that these hold for some other standard
forms of heteroscedasticity as well. We have, in fact, shown this for one such
form towards the end of Section I11.

So far as the actual estimation of HLDV model is concerned, one can use
the standard methods of obtaining solutions to nonlinear cquations. Alter-
natively, one can extend Amemiya's method of obtaining an initial consistent
estimator of the parameter vector and then use this in Newton-Raphson method
which has the property that the second-round estimator will have the same
asymptotic distribution as a consistent root of the normal equations under
general conditions.

1l. THE HETEROSCEDASTIC LIMITED DEPENDENT VARIABLE
(HLDV) MODEL AND THE ASSUMPTIONS
We define the HLDV model* as

=P +e¢ IfRHS. >0
=0 otherwisc m

4. Wecan as well assume a more general model
yio=fx +s ifRHS. > a
=0 otherwise

where as arc known constants. Boi as Amemiya (1973) tas noted, such & model can easily
be analysed with slight modification wiere instead of y;, x; and B’ we now have

5y mye- ax) = (e and BV = (g, ~ 1)
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where x¢is a (k X 1) column vector of the ith observation on k fixed regres-
sors, By is the (1 X k) row vector of associated regression coefficients and ¢('s
are independent disturbances following normal distributions with zero mean
and variance of; (i = 1. 2, . .., n). We make a very general assumption about
the structure of o}, :

ob = ok (EQ)'s = olugt, i=12,...,n

where sy = E(p) = Byx, and of and &, arc unknown parameters.®

Let 8, = (B, of. 3,)" denote the entire set of parameter_vector, s the set of
observations for which y; = 0i.e., s = {i : jv = 0} and s the complemeat set
of s We can then write, like Tobin and Amenmiya, the log-likelibood function
L as

— 1 1 {ye— B'x P
L_con“'+-§'ln(l_p')_Zzl""%_iz 0?' @

Bxe 1
where Fo= F (@x o) = | =

Yo

e-Haiot gy

We make the following assumptions :

Assumption 1. The parameter space ¥ of 8 = (B’ o*, 8)" is compact. It does
not contain the region ot < 0, but contains an open neighbourhood of 0.
Assumption 2. x; is bounded and the empirical distribution function, say Hs,
defined as Ha(x) = jln where j is the number of points Xy, Xy . . ., Xxa less
than or equal to x, converges to a distribution function, say .

n
Assumption 3. lim — z XXy is positive definite.
Hro ’l‘_ P

Assumption 4. e('s are positive and bounded away from zero.

Now, under these assumptions, we make use of the lemmas stated and proved
in Jenarich (1969) and Amemiya {1973) and the expressions for the first two
raw moments of truncated distributions to show, following Amemiya, that
(1/n)L converges a.e. uniformly for all 8 in ¥ to Q defined as

S. One can obviously consider simpler forms for a;,; say, for instance, cgl = ugm,‘“

where s's ate exogenously given [ef. Kmenta (1971)].
6. Weare here considering the censored!sample case only. The truncated sample casc
can be similarly tackled with minor changes in the algebra,
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= lim "LZ[U"“ — R} (1 — o) — } (o) Fy

-3 vf {((Bo — BYx0 Fog + 25, (Bo — B xifs
+ ofi (Fos — Boxtfs M))J- (3)

11I. STRONG CONSISTENCY AND ASYMPTOTIC NORMALITY

We now prove the strong consistency and asymptotic normality of the maximum
likelihood estimator under our assumption about the variance i.e.,
of =opf wherepi=Pfx,i=12...,n

We make use of Assumptions I, 2 and 4 and lemma | [Amemiya (1973),
p. 1002] and evaluate the first-order derivatives of Q as

20 _ [~ A=t (- 8) BiFu
» — — Fi il 8
n-)- z e 2 2

+ 20. 7 {2080 — BY' xFurx; + 208.x1for)

+ '2?‘ wy F40x, {((By — BY ¥ Fuor

+ 2 G B+ 30 (P — B f) | @

aQ ) I 1 I: Fn( » F,
au' 2 ul-l;n- n 1 Fxfi~

+ ',]T wur® (B — BY <)Y Fos + 208 (B — BY xS0

o s Bl | ®

and——-— m — Z[l_ﬂ‘ LI Bx«f"—'(lnm)l"u

iy | 1-F
+ lﬂ 4 {((By — B)'x)? Foi + 295 (Bo — 8) x(fs

+h =t ©
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From (4), (5) and (6) it easily follows that

306 _
0= 0.
Now, defining i as

Boxs _ pot

LN oW

w=

and writing the standard normal density and distribution fuactions evaluated

at w, as $i (== % fy) and O; (= Fy) respectively, we can show that the matrix
of second-order derivatives is

A

n ) n n
2;' axx; Ldxi  Zex
1 ]

210000 X 1] 2 n n
Y L lm —
T Jm | Bkt ZTh Tk
" o n
Sex; Ik Zea
1 1 1
def
= — 4,5y,
where

5, \1 *

o= =g (3] (- 550)
b 8o e }
_(_Wl— + o+ 2Wi 4wy )

b=~ ey (W“ﬁ + i — “’N( - 201)

|
~(M)(‘"’“+”"'—;—‘g-z¢i) T ™
|

= 3
3 m¢ 30,
=g - -0 o) 22)
(S
Gl wi
]
and & = (l—“"‘% £ 20, — w— ww.)-
i
We next show that 3Q(8,)/20 20’ is negative definite. For this purpose we

prove that A is positive definite (p.d.).
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Now, for any k-component vector p and scalars ¢ and r, P’ AP can be reduced
to

LJ
N -
PaP= lim Zl:s. BS, ®

where P' = (p', 9, 1), S = (p'x1, ¢, r) and
a d e
Bi=| di b Kk
& ki o
Now, in order (o show A to be p.d., let us first study 5.
LemMA 1. Under Assumptions 1, 2 and 4, B is positive semidefinite for all i.

Proof. We write a, by, ¢y, di, ey and ki gs

m=—1 b.-=—£— r=—(ln“"')’_
dfv' 4‘76" 2 i

©

_ d . _ (ne)d __ (np) b
D= o 8= 20y k= 4o}

where a1, bg and d: are accordingly defincd. Now, from (7) and (9)

— 8\ : 3 0 8
q‘=(|_ _') (,,.m_%‘_)_(ﬂJroH_s_u_L")

2 w Wt dw
3 \* 33
= (l - T") {¢((|V( - If—'%)} - iwL,? (204 — widy)
(4 a)
wi

Now, ¢; /I — ®; > wi (if w is bounded and this is easured by Assumptions 2
dnd 4)7 and (20; — wid;) > 0.8

It is obvious that (3,¢i/ws + i) is positive for 8, > 0 since by Assumption
4, wi > 0. For 3, < 0 also, it can be scen that (§yé¢/wi + ;) > 0.° It thus

7. See Feller (1972), p. 175 or, Amemiya (1973), p. 1007.

8. 20, — wid(=0as w;> —m and its derivative with respect to w; i-e, d; + wiggis
always positive. Hence 20, — widq is positive.

9. Bybyfwi + ®s~» 0 as w, - — = for all finile values of 3, and its derivative with respect
1o wyie., — 84,01 + lIW,z) + $¢ is positive for 8, < 0. Hence 3,8¢/ws + © is positive for
all3, < 0.
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follows that a, is negative and hence g is positive.
Again, since {wi$s — 2®7) < 0 (cf. footnote 8), we have

b= {w.’#«(w: ~ 1'.{‘0, ) + (i ~ 20()} <0

and therefore from (9), both b, and ¢ are positive.

It
Let us now look at the second-order principal minors. ‘ can, after

substituting the values for a1, b, and d; from (7), be reduced to

e 5100+ 2001 ) + s 0]~ gt - we®)  (10)

4 &

where Dy = ¢« ( - w,) > 0, (cf. footnote 7).

[ 7]
]~
Since (w3®; 4 20¢ + wids) is obviously positive and (202 — ¢2 — w,$,0;)

is also positive?, > 0.

di by

One can similarly check that all other second-order principal minors are either
greatewthan or equal to zero. [t is also clear that | Bi| = 0. Hence By is posi-
tive semidehnite for all i. Q.E.D.

LemMa 2. Under Assumptions I through 4, 920(9 )/38 38’ is negative definite.®

Proof. We have from (8),

PAP = lim —ZSE«S« )

naw=
Now, S{B:Si can be written as
3
SiBSi = kz AaY%  [vide Rao (1974), page 40] (12)
=1

where My, A,y and Ay, are the three characteristic roots of B, yu’s are the ele-

10. wa - ¢’ — wi$ @085 w, 5 —=. Its derivative with respect lo wy is 3¢9
+ wdl + wzé,o,, and clearly this is positive.

*The author is grateful to the referce for nis suggestions leading to an improvement in the
prool of this lemma.
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ments of the vector T;Si, T{ is the transpose of the matrix of characteristic
vectors for P corresponding to the three roots.
Now, since ¢; > 0, by > 0 and ¢t > 0,

My + Mg + Ay = trace (8)) > 0. (13)

But cach of Ay, Ay and Ay 3 O (as B, is positive semidefinite), and hence it
follows from (13) that at least one of the characteristic roots is greater than
zero. Thus, we have from (12), $8,8 > 0 for Yo = (Ys, Yia, Yo)' £ 0, i = |,
2, ..., n But obviously because of Assumption 3, ys cannot be a null vector
foralli=1,2,...,nunless P == 0.
It therefore follows from (11) that P’AP > 0 for P 5= 0 and hence the result.
QED.
Since 3%Q/a8 89’ is continuous, Lemma 2 implies there is a closed set

GB)={0:]0 6| <), Ge ¥
such that 9°Q/90 28’ is negative definite for all 6 in G(8).

We can, therefore, following Amemiya (1973, pp. 1008-1010), state the
following theorem:

THeoREM. Under Assumptions I 10 4, the normal equations have a strongly con-
sistent root, say Oa, and

6o #96)]

vn @0 w0, (- ZHL)
One can, as a special case, consider a simpler structure of ofviz., o} = o} mf,
my’s are exogenously given {cf. Kmerta (1971)]. To prove strong consistency
and asymptotic normality of the MLE under this structure for the variance,

i in Assumption 4 is to be replaced by ms.
The expression for 3Q/38 will now be

% - im ‘Z[ = o T (00— Y i+ o focd |

o

and those for 30/3." and 3Q/3% will remain the same as given in (5) and (6)
with p;'s being replaced by my. Obviously, we then have 8 ((8,)/a6 = 0 for this
case also.

As for the second-order derivatives and hence the matrices 4 and B, ar, d;,
and es will now change to

a=- r ( Wy — LO‘—O:)

1 wip}
h= "ot (WH« + ¢r—m)
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ln m m¢f )
and e = (WN( + ¢¢— —o )

and b, ¢ and ks will remain the same as given in (7) excepting for m replacing
. Following exactly the same types of derivations and results it can easily
be checked that the theorem holds for this assumption of the structure for

variance as well.

IV. CONCLUSIONS

In this paper we have considered a generalization of the limited dependent
variable model originally due to Tobin by incorporating heteroscedasticity,
We have proved the strong consistency and asymptotic normality of the maxi-
mum likelihood estimator of this generalized model for a very general form of
heteroscedastic structure viz., of = o E(y))%. It can easily be seen that the
theorern holds tor other standard heteroscedastics structures as well. In this
paper we have, in fact, checked this for of =
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