FASC. 1

## COMPLEMENTATION IN THE LATTICE OF BOREL STRUCTURES

BY

H. SARBADHIKARI (CALCUTTA), K. P. S. BHASKARA RAO (CALCUTTA)
AND E. GRZEGOREK (WROCLAW)

- 1. Preliminaries. Let A and C be substructures (i.e., sub- $\sigma$ -algebras) of the Borel  $\sigma$ -algebra B on  $I = \{0, 1\}$ . Denote by  $A \vee C$  the  $\sigma$ -algebra on I generated by  $A \cup C$  and put  $A \wedge C = A \cap C$ . We say that C is a complement of A relative to B if  $A \vee C = B$  and  $A \wedge C = \{\emptyset, I\}$ . A relative complement C of A is said to be minimal if no proper substructure of C is a complement of A relative to B.
  - In [6], B. V. Rao raised the following question:

What are those countably generated substructures of B on I which have complements relative to B? (P 741).

- In this note we prove that every countably generated substructure of B has, in fact, a minimal complement relative to B (theorem 2). For this purpose, we need the following results:
- (a) If A and C are substructures of B such that  $A \vee C = B$ , and  $A \vee C_1 \neq B$  for any proper substructure  $C_1$  of C, then  $A \wedge C = \{\emptyset, I\}$ , and whence C is a minimal complement of A relative to B (see [5], p. 100-101, or [6], theorem 2).
- (b) If A is a substructure of B, then, for any substructure C of B with  $A \vee C = B$ , there exists a countably generated substructure  $C_1$  of B such that  $C_1 \subseteq C$  and  $A \vee C_1 = B$  (see [5], p. 103).
- (c) Let X be a Borel subset of a complete separable metric space and let  $B_X$  be the Borel  $\sigma$ -algebra on X. If  $A_1$  and  $A_2$  are countably generated substructures of  $B_X$  which have the same atoms, then  $A_1 = A_2$  (see [1], or [5], p. 69).

## 2. Main results.

THEOREM 1. Let A and C be countably generated substructures of B on I. Then C is a minimal complement of A relative to B if and only if

(i) every atom of C is a partial selector for A (i.e., it is a Borel set containing at most one point from each atom of A), and

(ii)  $O_1 \cup O_2$  is not a partial selector for A for any distinct atoms  $O_1$  and  $O_2$  of C.

To prove this theorem, we need the following

Remark 1. If A and C are countably generated substructures of B on I, then  $A \lor C = B$  if and only if (i) holds.

Proof. As  $A \vee C$  is countably generated, it separates points if and only if (i) holds. Hence, by (c), (i) is equivalent to  $A \vee C = B$ .

Proof of theorem 1. Let A and C satisfy (i) and (ii). We infer from remark 1 that  $A \vee C = B$ . By (a) and (b), it is enough to prove that, for any countably generated substructure  $C_1$  of C with  $A \vee C_1 = B$ , we have  $C_1 = C$ . Suppose C and D are distinct atoms of C. It follows from (ii), and remark 1 applied to A and  $C_1$ , that  $C \cup D$  is contained in no atom of  $C_1$ . Thus  $C_1$  and C have the same atoms, so that by (c),  $C_1 = C$ .

To prove the converse, suppose that C is a minimal complement of A relative to B. Then, by remark 1, (i) holds. Suppose (ii) does not hold. Let C and D be distinct atoms of C such that  $C \cup D$  is a partial selector for A. Denote by  $C_1$  the  $\sigma$ -algebra on I generated by  $C \cap (I - (C \cup D))$ . Then  $C_1$  is a proper substructure of C which is countably generated. Also, every atom of  $C_1$  is a partial selector for A. Remark 1 now yields  $A \vee C_1 = B$ , so that C is not a minimal complement of A relative to  $B_1$  a contradiction.

THEOREM 2. Every countably generated substructure A of B on I has a minimal complement relative to B.

Proof. There are three cases to be considered.

Case 1. A has a cocountable atom A.

In this case A has only countably many atoms and all of them, except for A, are countable. Then we can define a countable family  $\{G_n: n > 1\}$  of disjoint Borel sets such that

$$\bigcup G_n = I - A$$

and each  $G_n$  is a partial selector for A. Let  $\{a_n\colon n>1\}$  be a sequence of distinct points in A. Put  $H_n=G_n\cup\{a_n\}$ . Denote by C the  $\sigma$ -algebra generated by  $\{H_n\colon n>1\}$  and  $B\cap [A-\bigcup_n\{a_n]\}$ . Clearly, C is countably generated and the atoms of C are  $\{H_n\colon n>1\}$  and  $\{\{x\}\colon x\in A-\bigcup_n\{a_n\}\}$ . By theorem 1, C is a minimal complement of A relative to B.

Case 2. All the atoms of A are countable.

Then there exists a countable family  $\{G_n: n > 1\}$  of disjoint Borel sets such that

$$\bigcup G_n = I$$

and each  $G_n$  is a non-empty partial selector for A. This is a reformulation, with help of the characteristic function of a sequence of sets, of a theorem of Lusin (see [2], p. 335). It is easy to choose the  $G_n$ 's in such a way that, for distinct  $G_n$  and  $G_m$ ,  $G_n \cup G_m$  is not a partial selector for A. Denote by C the  $\sigma$ -algebra generated by  $\{G_n: n > 1\}$ . The atoms of C are  $\{G_n: n > 1\}$ , whence, by theorem 1, C is a minimal complement of A relative to B.

Case 3. A has an atom A which is neither countable nor cocountable. Then A and I - A are uncountable Borel sets. Hence there is a Borel isomorphism  $g: A \rightarrow I - A$  (see [3], § 37, II). Let  $f: I \rightarrow I$  be defined by

$$f(x) = \begin{cases} g(x) & \text{if } x \in A, \\ x & \text{if } x \in I - A. \end{cases}$$

Then f is Borel measurable. Put  $C = f^{-1}(B)$ . Clearly, C is countably generated and all the atoms of C are of the form  $\{x, y(x)\}$ , where  $x \in A$ . By theorem 1, C is a minimal complement of A relative to B.

Remark 2. As a matter of fact, any substructure A of B, which has an atom A being neither countable nor cocountable, has a minimal complement relative to B even if A is not countably generated (see also [6], theorem 3, for a special case). To see this, define C as in case 3 of the proof of theorem 2. Let **D** be the  $\sigma$ -algebra generated by  $C \cup \{A\}$ . Then  $D \subseteq B$  is countably generated and separates points. Hence, by (c), D = B. But  $D \subseteq A \lor C \subseteq B$ . Hence  $A \lor C = B$ . To get a contradiction, suppose that there exists a proper substructure  $C_1$  of C with  $A \vee C_1 = B$ . By (b), we can suppose  $C_1$  to be countably generated. As  $C_1 \subseteq C_1$ , there exist atoms  $\{x_1, g(x_1)\}$  and  $\{x_2, g(x_2)\}$  of C, where  $x_1, x_2 \in A$  and  $x_1 \neq x_2$ , such that  $\{x_1, x_2, g(x_1), g(x_2)\}$  is contained in an atom of  $C_1$ . But this implies that  $A \vee C$ , does not separate  $x_1$  and  $x_2$ , so that  $A \vee C_1 \neq B$ . Hence, by (a), C is a minimal complement of A relative to B. Thus the converse of theorem 2 is not true. For example, if A is generated by [0, 1/2) and  $\{\{x\}: 1/2 \le x \le 1\}$ , then A is not countably generated but has a minimal relative complement. We can even construct an A which is not atomic and vet has a minimal complement relative to B.

Remark 3. If we wished to prove theorem 2 merely for complements, instead of for minimal complements, the proofs of cases 1 and 2 could be simplified by observing that in these cases there exists a Borel set D such that  $D \cap A$  is a singleton for every atom A of A. (In case 2, the existence of D also follows from a theorem of Novikoff [4], p. 14.) Then

$$C = \{B \in B : B \supseteq D \text{ or } B \cap D = \emptyset\}$$

is a relative complement of A. However, such a D does not exist for all countably generated  $A \subseteq B$ . To see this, take an analytic set  $A \subset I$  which is not Borel. Let  $f \colon I \to I$  be Borel measurable and f(I) = A. Then  $A = f^{-1}(B)$  is a countably generated substructure of B for which no such D exists (see [3], § 39, V, theorem 1).

Remark 4. In [6], p. 214, B. V. Rao proved that the countable-cocountable structure on I has no complement relative to B. We exhibit muother class of structures which have no complements relative to B. Let  $A \subseteq I$  be any non-Borel set. Write

$$B^A = \{B \in B: B \cap A = \emptyset \text{ or } B \supset A\}.$$

To get a contradiction, suppose that  $B^A$  has a relative complement C. We can suppose C to be countably generated. Then, by (b), there exists a countably generated substructure D of  $B^A$  which is a complement of C relative to B. As  $D \subseteq B^A$ , it follows that D has an atom  $D \supseteq A$ . As D is a Borel set,  $D \neq A$ . Fix  $x \in D - A$ . Since  $\{x\}$  is an atom of  $B = D \vee C$ , we have  $\{x\} = D \cap C$  for some atom C of C. Hence  $C \cap A = \emptyset$ , so that  $C \in B^A$ . Thus  $B^A \wedge C \neq \{\emptyset, I\}$  which is a contradiction. Therefore,  $B^A$  has no complement relative to B.

Remark 5. The problem of characterizing the atomic substructures of B which have complements relative to B seems interesting. (P 899)

Another interesting question is the following: Does the existence of a relative complement imply the existence of a minimal relative complement! (P 900)

Acknowledgement. We are grateful to Professor Ashok Maitra for his encouragement and suggestions and for remarks 3 and 4.

## RRFERRNCES

- D. Blackwell, On a class of probability spaces, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 2 (1950), p. 1-6.
- [2] F. Hauedorff, Set theory, Now York 1957.
- [3] K. Kuratowski, Topology I, New York Loudon 1966.
- [4] P. Novikoff, Sur les fonctions implicites mesurables B, Fundamenta Mathematicae 17 (1931), p. 8-25.
- [5] B. V. Rao, Studies in Borel structures, Thesis, Indian Statistical Institute, 1969.
- [6] Lattice of Borel structures, Colloquium Mathematicum 23 (1971), p. 213-216.

INDIAN STATISTICAL INSTITUTE CALCUTTA, INDIA INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES WROCLAW

> Reçu par la Rédaction le 3. 3. 1973; en version modifiée le 26. 10. 1973