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AmsTracT

A problem of ic tasks 00 & which is subject
to breakdowns is considered. It is assumed that the processing times of
tasks and the time for which the processor operates continuously follow
cxponential distributions. We show that when the objective is to
minimise the expected weighted sum of task completion times, the optimal
schedule is not effected by breakdowns.

1. Introduction

It is generally assumed in the literature on scheduling theory that the
pr operate i ly without interruptions. But, in practice,
plocmlng is interrupted occasionally duc to breakdowns or maintenance

p pecially when the pr g times of tasks are quite large.
Interruptions in processsing have been considered by Smith [5] and
Glazebrook 2] for scheduling the stochastic tasks,

A arar

In his paper, Glazebrook (2] has a general problem of
scheduling stochastic tasks on a single processor subject to breakdowns

and task preced i The pr ing strategy can effect the
breakdown process in this problem. He has dealt with the problem in
discrete as well as i case, idering general di: d cost

structure which includes the cost of repairing the processor.

We consider a continuous case-in which task pre-emptions are allowed
only at repair completion times and the objective is to minimise the
expected weighted sum of task completion times. We assume that the
processing times of tasks and continuous opcrating time of the processor
follow exponcnunl distributions. Though the above objective has not been

idered by Glazebrook, it is possible to get the optimal
pulxcy from his results by appropriately modifying his objective function
and letting the discount factor tend to zero, Howsver, we give a simple
and direct approach for this problem (see [3]).
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2. Description of the Problem
We define the problem through the following assumptions :
(1) There are ntasks 1,2, ... n to be processed on a single processor.
(2) Only one task can be processed at a time.
(3) (a) The processor is subject to breakdowns and repairs.
(b) Initially at time + = 0 the processor is in operating condition.

(c) The length Y of i-th period over which the processor operates

i fy follows exp ial distribution with parameter,

p for ip 1 (ie, all Y's are identically distributed
exponential random variables).

(d) The length Z; of i-th repair period. i 3 1, is a r.v. with expec-
tation B (< oo) and all Z's are identically distributed.

(4) The amount of processing time X, that ajobj, | € n,
requires is an exponential random variable with mean 1/3,.

(5) Set-up times are assumed to be zero.

(6) All the random variables described above are mutually
independent.

(T) Pre-emptions are allowed only at the time of completion of
repair.

(8) Cost ¢ is incurred on task j (1 € j & n) per unit time until the
task j is completed.

The objective of the problem is to minimise the total expected cost.

3. Formulation as a Semi-Markov Decision Process

We formulate the problem as a semi-Markov decision process as
follows: The state of the system at time ¢ is the set U of uncompleted
tasks at that time. At time 7 — O the state is N = {1,2,...n). The
decision moments are time 1 = 0 and task and repair completion times.
The set of actions J(U) associated with state U = {i\iy. ...ir} is {Ouiydy .00
An action k € J(U), k 3 0, is an assignment of task & to the processor.
The action k = 0 is no assignment of tasks to the processor. Cost Ixu ais

«

incurred per unit time during the sojourn time in state U and the discount
factor is zero.

For a semi-Markov decision process. it is enough to couosider the
stationary policies in order to minimise the total expected cost. For
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reference, sec [4], Chapter 7. So, we restrict our attention to the et (Ci)
of stationary policies. It is obvious that a stationary policy gives infinite
total expected cost if it takes action 0 in a state U 3% §. Therefore we
consider only the stationary policies which do not take the action 0 in any

state U 3 ¢. Let C; represent the set of such stationary policies. The

policies in C; can be divided into two classes: (1) permutation policies and

(2) non-permutation policies. A permutation policy f is a stationary

policy to which there corresponds a per ion w = (m,m;.....m) of the

clemeats of N such that when the elements w,, 7y, ..,wa are renumbered as

1,2,....n, respectively, the policy / takes action k = Ti\(‘l} Jjin any state
0

U# $. A permutation policy can be represented by the corresponding
permutation. The policies other than the permutation policies in C; are

called non-permutation policies. Under a policy of C: , the system moves

from a set U of cardinalty n(31) to a set U of cardinality (r-1) uniquely. So,
for any non-permutation policy £, we can find a corresponding permutation
policy /' such that the processes under fand f” are identical. Therefore,
we consider only the permutation policies in order to minimise the total
expected cost.

Let Gx(U) represent the total expected cost under a permutation
(permutation policy) » from a decision moment at which the system enters
the state U.  We simiply represent Ge(N) by Gyx. In the theorem given
below, we obtain an optimal per ion that minimises Gy over the set
(8) of all permutations of 1,2,...,n.

LemMa |. Let Tj be the time at which task j is completed when the 1ask j is
processed from time t = O until its completion without pre-emption. Then
ET) = (1 + pb)/r.

Proof. Since x; follows exponential distribution and ¥/s and Z’s are ii.d.
random variables, we can write, using rencwal concepts,

ET) = EX1 K YDA K Y) + [EN+Z, | X > 1)
+ E(TylP(X; > Y)) = E(min (X, Y))HE(Z)
+ E(T)] P(X; > YY),
e, PG Y E(Ty) = Elmin (X, YOI+ E(Z) P(X) > 1),

Myt E(T) = (4 ) + 8py + B
E(T) = (1 + po)/y.

THBOREM |. Gy is minimum when the tasks are processed withoul pre-
emption in the non-increasing order of co\.
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Proof. Consider an arbitrary fixed permutation w = (mym,,...,7). Without

loss of generality we assume that w = (1,2,....1). We can writc Gr

= [}’Zvn]E[T.] + Ga{N—{1}) since the stalc of the system at completion
it

time 7, of task 1 is V—{1}. Applying this argument recursively and using
Lemma |, we get

- L) LY L
Gx —(l+|10)[)—;+ CQ(T+ )‘l)+ - + r_( N +

Therefore, for any permutation s = (5.5, .., s»), we have

no !
Gem () £ c.l( P +T)'

Iy £ 7]
Now. the required result follows from Smith [6).

From the earlier arguments and the above theorem, we conclude thal
the total expected cost will be minimised if the tasks are processed without
pre-emptions in the non-increasing order of ¢/

Remark. The optimal policy that minimises the total expected cost is
independent of the nature of repair time and the values of parametersp
and p. If the tasks are processed without pre-emptions in the non-
increasing order of wy Ay where wy, | € j € n, is the weight associated
with job j, then the expected weighted sum of pletion times would b
minimised.
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