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Agents often have 10 make exact choices on the basis of vague preferences. Therelore analysis
of the way in which exact choices are induced by vague preferences 15 of considerable interest.
In this paper we use the model of vague preferences as furzy orderings. One objective of this
paper is concepiual in nature: we discuss several aliernative nolions of exact choice sets generated
by a fuzzy preference ordering and ing notions of rati izability of exact choices in
terms of fuzzy preference orderings. The second abjective of 1his paper is 10 explore conditions
for ralionalizability of exact choices in terms of a fuzzy preference ordering. under alternative
definitions of such rationalizability.
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1. Introduction

The problem of choice by agents who have vague or fuzzy preference has received
some attention recently.' In particular an elegant recent paper by Basu (1984) ex-
plores the problem of rationalizing exact choices (i.e. choices which have nothing
fuzzy about them) in terms of fuzzy preference orderings. The investigation is
similar to the one in the traditional literature on revealed preference which considers
rationalizability of exact choices in terms of exact orderings.? The problem thal
Basu (1984) analyzes is clearly important. Our preferences are sometimes vague,
although we may be constrained to make exact choices. Very little has been done

! See, for example, Besu (1984), Bezdek 1 al. (1978), Dubois and Prade (1980), Orlovsky (1978) and
Ovchinnikov (1981).

? Sec, among others, Arrow (1959), Herzberger (1973), Houthakker (1950, 1965), Richier (1966,
1971, 1979), Samucison {1938, 1948), Sen (1971) and Suzumura (1976, 1977).

0165-4896/86/$1.50 © 1986, Elsevier Science Publishers B.V. (Norih-Holland)



54 B. Dutta et al. / Furzy preferences

so far to model such exact choice behaviour which may be based on vague prefe-
rences. In view of this, Basu's paper, which formulates the problem of choice in
terms of fuzzy preference orderings, is indeed an important contribution.’ How-
ever, the two central propositions of Basu in this contexi are rather discouraging.
For, under one specific formulation of the concept of exact choice based on a fuzzy
preference ordering, Basu arrives at the conclusion thal exact choices are rationali-
zable in terms of a fuzzy preference ordering if and only if they arc rationalizable
in terms of an exaclt preference ordering, while under an aliernative (ormulation
Basu concludes that every conceivable pattern of exact choice behaviour is rationals.
zable in terms of a fuzzy preference ordering. The negative implications of these
conclusions are clear. If these conclusions are accepted, then the hypothesis of 3
fuzzy preference ordering would have very little appeal as an explanation of the
agent’s exact choice behaviour: either it would have no more explanatory pawer
than the hypothesis of an exact preference ordering, or alternatively, it would b
able to account for ali possible exact choice behaviour and therefore would be non-
falsifiable by any conceivable empirical evidence derived from the observation of
exact choices.

In this paper we re-examine the general conclusions of Basu under several alter-
native formulations of the problem. Thus, one objective of the paper is conceptual
in nature: we consider several different notions (including the two considered by
Basu) of rationalizability of exact choices in terms of fuzzy preference orderings
which are linked to corresponding notions of exact choice sets generated by a fuzzy
preference ordering. We argue that some of these alternative concepts of rationali-
zability are in many ways intuitively more appealing than the notions considered by
Basu. The second objective of this paper is to show that propositions of the type
proved by Basu are not valid under some of these intuitively more plausible alter-
native formulations of the problem of rationalizability of exact choices in terms of
fuzzy preference orderings.

In Section 2 we introduce the notion of fuzzy preference orderings and show thal
the transitivity concepts which Basu uses in preference 1o the more usuval transitivity
concept in the literature on fuzzy relations, is a highly restrictive one. In Section
we discuss four different ways in which one can visualize exact choices as being
mduccd by a fuzzy preference ordering, and in Section 4 we discuss four corre-

of rationalizability of exact choices in terms of fuzzy preference
ordcnngs In Section 5 we examine the two gencral conclusions of Basu in the
context of the alternative concepts of rationalizability introduced in Section 4. We
conclude in Section 6.

3 Basu (1984) also discusses the problem of ‘extent of ralionality’ of the agents. But in this paper we
mainly discuss the problem of rationalizing cxact choices in terms of fuzzy preference ordenngs.
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2. The notlon of fuzzy preference orderings

Let X be a set of alternatives (3<|X| < o) and let 'm2¥ — {8}, The elements of
.7 are what may be catled exact subsets of X as distinguished from fuzzy subsets of
X. A fuzzy subset of X is a function 4: X—[0,1).* (Clearly, an exact subset of X
can be considered to be a function A:X—[0, || such that A(X)C [0,1}.) A fuzzy
binary weak preference relation (FWPR) on X is a function R: X' 210, 1) while an
exact binary weak preference relation (EWPR) on X is an FWPR R such that
R(XH¢ {0,1}. Given an EWPR R, we write (using the more usual notation) xRy
ilf R(x, p)=1.

Definition 2.1. An FWPR is reflexive iff for all xe X, R(x, x)=1, and it is connected
ilf for all distinct x, y€ X, R(x, )+ R, x)= 1.

When one tries to define the concept of transitivity for an FWPR, a variety of
concepts seem to be available. We consider only three of them below.

Definition 2.2. An FWPR R satisfies
(a) type 1 transitivity (T,) iff for all x, y, ze X, R(x, ) 2 min [R(x, y), R(», 2)];
(b) type 2 transitivity (T,) iff there exists S€]0, 1] such that for all distinct
X, ¥, 26 X, if [R(x, ¥) >0 & R(y, 7)> 0], then R(x, z) 2 B max [R(x, ¥), R(, 2)] +
(1= B) min {R(x, ) RO, D
(c) type 3 iransitivity (Ty) iff for all distinct x, y, ze X such that R(x, y)>0 and
R0, 2)>0,R(x, 22 4[R(x )+ R, D)2
T, constitutes the most g Ity d notion of transitivity for FWPRs.
However, Basu (1984) uses the notion of Ty and in general seems to prefer T,
(which is a generalized version of T,) to T,. But we show below that T, as well as
T, (which implies T,) imposes rather severe restrictions on the FWPR under con-
sideration.
We say that an FWPR R is exact over {x, y} € X iff ([R(x, ) =1 & R(», x}=0] or
[R(x, y)=0 & R(y, x)=1) or [R(x, )=R(y,x)=1]).

Proposition 2.1, Let R be an FWPR which satisfies connectedness and Ty. Then
Jor all distinct x,y,zeX, either [R(x y)=R0,x)=R(\ 2)=R(z y)=R(zx)=
R(x, 2)] or R Is exact over at least two out of the three two-element subsels of
{xrz)

4 For  discussion of fuzzy subsets sce Basu (1984), Kaufmann (1975) and Orlovsky (1978).

$ In terms of our notation, Basu (1984) defines this property for all x, y, 26 X such that y& {x, 2},
while we formulate our definition for all distinct x, y, z& X. When x and 2 arc |dentical, R(x z)=] and
hence R(x, 7) Is necessarily at least as grea as §(R(x, y) + R(. 2)). Hence, our definition of 1his propenty,
despile the in is 10 Basu's definii
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Proof. Let R be a connected FWPR satisfying T; and let £ be the value of f (s
Definition 2.2(b)) with respect to (w.r.t.) which R satisfies T,. Let x,y.ze X be
distinct. Given T, and the definition of R, it follows that:

R(x, y)z min [R(x, 2), R(z, )]s (2.0
R(x, z) =min [R(x, y), R, D], 2.
R(y, 2)=min |[RW, x), R(x, D, 2.3
RO\ x)zmin [R(, 20, R(z x)], (24)
R(z, x) 2 min [R(z, ¥}, RO X)), [oX]]
R(z y) 2 min [R(z, x), R(x, ). (2.6)

Given this, there can be two possible cases:

either (1) for all distinct a,b€ {x, y, 2}, R(a,b)>0,
or (1) there exist distinct a, b€ {x, y, 2} such that R(a,b)=0.

We show that in Case (I) [R(x, ) =R, x)=R(, 2)=R(z, y) = R(x, 2) = R(z, )|, and
that in Case (LI) R is exact over at least two out of the three two-element subsets
of {x, y. 2}.

(I) Suppose for alt distinct a,b€ {x, y, z}, R(a, b)>0. First we show that for all
distinct o,b,c€ {x, ¥, 2},

(R(a,c)=min [R(a, b), R(b,c)))— [R(a,c) = R(a, b) = R(b, ¢)]. 2.7
Let a,b,ce{x, 2z} be distinct. By T,:
R(a,c)= f max [R(a, b), R(b. ¢)] + (1 — f)y min [R(a. b), R(b.¢)],
where f€10, 1{. 2.9

Hence, if R(a, b)+# R(b,¢), then R(a,c)>min |R(a, b), R(b,¢)]. So, given (2.8), (2.7)
follows immediately.

Now, suppose at least one of the weak inequalities (2.1)-(2.6) is a strict inequality.
Without loss of generality assume that (2.1) is a strict inequality, so that

R(x, y)>min [R(x, 2), R(z. )} 2.9

Suppose min (R(x, 2), R(z, )) =R(x, 7). (Proof for the case where min[R(x,2),
R(z, )] = R(z, y) is similar and can be checked by the reader.) Then,

R(x% 5)>R(x 2). (2.10)

Now consider (2.2). By (2.10) and (2.7), R(x, )% min [R(x, ¥}, R(, 2)). Hence, given
(2.10), by (2.2):

R(x, 2)>R(» 2). .11}
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By following similar reasoning and taking up (2.3), (2.4), (2.5) and (2.6) in that
order, we get, respectively:

R, >R, ), 2.12)
RO X)> R(z %), (2.13)
R(z.x) >R(z ), (2.14)
R(z, y)>Rix, y), (2.15)

and (2.10)-(2.15) give a contradiction. Hence, none of the weak inequalities given
by (2.1)-(2.6) can be a strict inequality and all of them must hold with strict
equality. Thus, given (2.1), we have R(x, y) =min [R(x, z), R(z, y)]). Hence, by (2.7),
R(x, ¥) = R(x. 2) = R(z, ). Applying similar reasoning also to (2.2)-(2.6), which have
all been shown to hold with strict equalities, it is clear that

R(x, ») =R, x)=R(, 2)=R(z y)= Rz ) = R(x, 2).

(11) Suppose there exist distinct a, b € {x, y, z} such that R(a,b)=0. Without loss
of generality assume that R(x, y) =0. Then from (2.1), either R(x, Z)=00r R(z y)=0.
If R(x, 2) = R(x, y)=0, then by connectedness of R, R(z. x)=R(y,x)=1. Then R is
exact over {x,y} and {x z]. On the other hand, if R(z y)=R(x, y)=0, then by
connectedness of R, R(y, )= R(». X) =1 and hence R is exact over {x, y} and {, z}.
Thus in case (II) R must be exact over at least two out of the three two-element
subsets of {x, y z}.

Remark 2.1. By Proposition 2.1, given any triple (x, y, 2) of distinct alternatives, an
agent satisfying reflexivity connectedness and T, can have genuinely fuzzy prefe-
rences over more than one two-element subset of {x, y, z} only if he satisfies the
severe constraint that the ‘degree of fuzziness’ is the same for all six ordered pairs
of distinct alternatives figuring in the triple.

From Proposition 2.1 and Remark 2.1 it is clear that both T, and T, (which
implies T,) are rather restrictive transitivity properties and the class of reflexive
and connected FWPRs which satisfy T, (or alternatively T,) does not seem to be a
very interesting class. Thus, the more usually adopted transitivity concept of T,
would seem to be considerably more interesting than either T, and Ty. Depending
upon the specific notion of transitivity for FWPRs which we choose to combine with
the concept of reflexivity and connectedness of FWPRs, we would get alternative
notions of fuzzy preference orderings. However, in view of what we have said
above, in the rest of this paper we use T, rather than T, or Ty. Hence the following
definition.

Definition 2.3, A fuzzy preference ordering (FPO) is an FWPR which satisfies T,
in addition to reflexivity and connectedness.
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If R is a reflexive and connected EWPR, then for R, T, T, and T, turn out 1o
be equivalent and coincide with the usual concept of transitivity of EWPRs {an
EWPR R is transitive iff for all x, y, z€ X, [xRy & yRz) implies xRz). A reflexive,
connected and transitive EWPR will be called an exact preference ordering (EPO).

3. Exact choice sets generated by fuzzy weak preference relations

Suppose an agent who has an FWPR R has to make exact choices. What are the
plausible senses in which R can induce exact choices? We discuss below four
different ways of inducing such exact choices given R.

For all x, ye X and for all @e|0,1), x a-dominates y iff R(x,y)=a and xis
pairwise oplimal vis-a-vis y iff R(x, )= R(y, x). In the discussion that follows, A s
assumed to be a given exact subset of X.

(1) One possible hypothesis about the way in which exact choices may be gener-
ated by R for A is that the exact choice set generated by R is the set of all xeA
which a-dominate every .y € 4, where a is some number in the interval [0, 1]. The
specific @ chosen should carry plausibility as a confidence threshold in the sense tha
given an exact feasible set {x, y}, if R(x, y)=a, then the agent would with a
‘reasonable’ degree of confidence specify x as an alternative chosen from {x, y}.
Thus, if one can agree about what the threshold a should be, one can interpret

Bpjo)(A, R)= {xe A|R(x, )z a for all ye A}

as the exact choice set generated by R given A. (Note that Basu, 1984, discussed the
special case where a=1.)

(2) Under a second interpretation, the exact choice set induced by R given A is
identified with

Bpo(A, R) = {xe A|R(x, )= R(y, x) for all ye A}.

Bpo(A, R) is clearly the set of all xe A which are pairwise optimal vis-a-vis all other
alternatives in A. The intuition underlying this approach is as follows. Given a
feasible set {x, ¥}, the agent determines his exact choice in a ‘natural’ way by com-
paring R(x, ») and R(y, x). Then for an exact set A containing more than two alter-
natives the agent specifies the exact choice set as the set of all alternatives xin 4
such that x is always chosen (following the rule described above) from every twe-
element subset of A containing x.

(3) Another route, which Basu (1984) follows in generating an exact choice set
through R, can be described as follows.

Define the R-greatest set in 4 10 be G(A, R): X—[0. 1] such that for all xe X - A,
G(A, R)(x)=0 and for xe A, G(A, R)x)=min_, , R(x, y). (This is clearly the fuzy
counterpart of the notion of the R-greatest elements in A when R is exact.) Also
define the generalized Hamming distance between any two fuzzy subsets A and D
of X as
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dA.D)= T |A0)-D).

Finally, consider the class of exact sets which are nearest to G(A, R) in terms of the
generalized Hamming distance and denote it by NE[G(A, R)). Thus,

NE[G(A, R)] = {E€ 2% |d(G(A. R), E) s d(G(A, R), E") for all E’e2*}.
It van be easily checked that if R is an FPO, then for all E€2*, E€ NE[G(A, R)] iff
{xe X|G(A, R)(x)>0.5} C EC {xe X|G(A, R)(x)=0.5}. a.0)

Then under this interpretation, the exact choice set induced by R for A can be taken
to be any non-empty exact set £ belonging to NE[G(A, R)).

{4) Under our last interpretation, we again start with the fuzzy set G(A,R).
However, now we identify the exact choice set generaled by R not with some exact
set nearest to G(A, R) but with the set of all xe A which score the highest with the
function G(A, R), i.e. the choice set is identified with

Bu(A, R)= {xe A|G(A, R)(x)= G(A, R)) for all ye A}.

We first note the following proposition (the proof is omitted).

Proposition 3.1.

(a) For every A€ 4 and every fuizy preference ordering R, By(A R)#0;
B.o(A, RY#8; and for some Ee NE[G(A, R)), E+8;

(b) for every A€y and every EWPR R, NE[G(A,R)={GlA,R)}: and
Biyo)(A, R) = Bpg(A4, R) = By(A, R)=G(A, R) for all a€)0,1].

[t is not clear that one of the four alternative approaches discussed above has
unambiguously more intuitive appeal than any the others. But it seems to us that
as candidates for the status of the exact choice set generated by R, Bpo(A, R) and
By(A, R) have some intuitive edge over a non-empty exact set arbitrarily picked
from NE(G(A4, R)}.

First, note that NE[G(A, R)] may not be a singleton and therefore the approach
which can adopt any set in NE[G(A, R)] as the choice set suffers from some ambi-
guity. Consider a case where X ={x, y, z}, R(x, ¥)=0.9, R, x)=R 2)=R(z, ¥) =
Riz.x)=0.5 and R(x, 2) =0.6. Here the nearest exact set approach will permit each
of the exact sets {x}, {x, 2}, {x ¥}, {x » 2} to qualify as the exact choice set for X
generated by R. Apart from the ambiguity as such, it seems unreasonable to include
. for example, in the exact choice set while excluding z (which would be the case
if {x. y} is taken to be the exact choice set). The example given above, of course,
violates Lhe transitivity property T; postulated by Basu (1984) (see our Proposition
2.1). but consider another case where R(a, b)=0.5 for all a,be [x, y, z}. In this case
any non-empty exact subset of X - say {x, z} - will qualify as the exact choice set
for X under R. Here again, one can ask whether it is reasonable 10 include z or x
while excluding y. It seems to us that in this second case it would be unreasonable
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to take {x, z} as the exact choice set for X generated by the FWPR R, in the sam
way as it would be unacceptable to take {x, z} as the exact choice set for X generaled
by an exact preference ordering R*® which shows ‘indifference’ over all pairs of
alternatives in {x y, z}.

One way to get rid of the ambiguity inh in the third approach outlined above
is to modify the approach by requiring that {xe A|G(A, R}(x)2 0.5} be the choke
set. It is easy to see that {xe€ A|G(A, R}x)20.5} = {xe A|R(x ¥)=0.5 for a
y€e A} and hence this modification will lead us to the first approach in terms of
Byq){A, R), where a=0.5.

There seem to be further intuitive problems involved in the nearest exact sa
approach. Suppose A = {x, y}, R(x, »)=0.9 and R(y, x)=0.6. It would seem reasws
nable to interpret this as implying that the strength of the agent’s feeling that xis
at least as good as y for him, is considerably greater than the strength of his feeling
that y is at least as good as x. Now, faced with the question of what he will choog
given the exact feasible set {x, y}, it is not clear that a rational individual shoud
indicate that either of x and y will do equally well (which is what we take to mea
when one says that given the feasible exact set {x, y}, the exact choice set generated
by his preferences (irrespective of whether it is fuzzy or not) is {x, y}). It seems more
plausible 10 us that {x} should emerge as the exact choice set in the above exampk
and this is what happens under the pairwise optimality approach in terms of
Bpo(A, R) [as well as under the highest-scoring-alternatives approach in terms of
Bu(A, R)), while under the approach in terms of the exact sets nearest to G{A,R),
{x, y} will be the exact choice set given the feasible set {x, y}.

The interpretation in terms of 8, (A, R) also suffers from the intuitive probiea
outlined in the preceding paragraph. If a is 0.7, say, then in the casc whet
R(x, y)=0.9 and R(», x)=0.7, Bpq)({x, ¥}, R)={x p}, but for reasons considered
above it seems more plausible 1o say thal {x} should be the exact choice set. Besides,
for every a>0.5, it is possible to have an FWPR R such that Bpqy(4, R) is empiy,
since given @>0.5, it is possible to have R(x, y)<a and R(y, x)<a. [f a=| (i
special case considered by Basu, 1984), this problem would arise under every nos-
exact FWPR so that when a =1, a non-exact FWPR would never induce non-empty
exact choice sets in the sense of Bpy)(A, R), for all possible exact subsets of X.

4. Al fve pts of rationallzability of exact cholce functions

Suppose the choice behaviour of an agent is given by a function C: 7= .7 such
that for all A € 7, C(A) € A. We call such a function an exact choice function (ECF).
Given an agent’s ECF one may like to know whether the agent is one whose choit
behaviour could possibly have been induced by a fuzzy prefe dering. This
is the problem of rationalizability of an ECF in terms of a fuzzy preference
ordering, which is the exact counterpart of the much discussed problem of rationali
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2ability of exact choice functions In terms of exact preference orderings.® Clearly,
depending upon one’s notion of how a fuzzy preference ordering induces exact
choice behavi (a probl idered in Section 3), we would have alternative
np(ions of rationalizability of an ECF. Given our discussion in Section 3, we can
therefare define four possible notions of rationalizability. (We formulate the
delnitions in a somewhat general fashion by considering any given FWPR R.)

Definition 4.1, Let C be an ECF. Let R be an FWPR. C is respectively
(i) Dla]-rationalizable,
(ii) PO-rationalizable,
(iii) NE-rationalizable,
(iv) H-rationalizable,
in terms of R iff for all A €y, C(A) coincides with
(i) Bp)(A, R,
(ii") Bpo(A.R).
(iii") some £ NE[G(A, R)),
{iv) Bg(A,R).
respectively.

Note that when R is an EWPR, in view of Proposition 3.1(b), all the four concepts
of rationalizability introduced in Definition 4.1 coincide (assuming that &> 0). This
provides the motivation for the following definition.

Definition 4.2. Let R be an EWPR. An ECF C is rationalizable in terms of R iff
for all A€ 7, C(A)={xe A|xRy for ail ye A}.

5. Conditions for rationalizability of exzct choice functions in terms of fuzzy
preference orderings

In this section we explore the conditions for alternative types of rationalizability
of an ECF in terms of an FPO. In doing so we consider particularly the relationship
Between rationalizability of an ECF in terms of an EWPR and different types of
rationalizability in terms of an FPO.

Proposition 5.1. For every a(0<as ), an exact choice function is D|a)-rationali-
able in terms of a fuzzy preference ordering iff il is rationalizable in terms of an
exact preference ordering.

Proof. Let a €0, 1]. Supp Cis D[a)-rationalizable in terms of an FPO R. Then,
€lA)=Bpye)(A, R) for all A€ 7. Define an EWPR R on X as follows:

® Sec footnote 2 for an account of the literature.
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for all x, ye X, xRy iff R(x, p)za.

We show that R is an EPO and that C can be rationalized in terms of £,

Reflexivity of R follows directly from the reflexivity of R. To prove connectedn
of R, consider distinct x, y € X. By assumption, By, ({x. ¥}, R) = C({x, y}); and by
definition, C({x, y})*0. Hence, R(x, y)=a or R(y.x)za, which implies xRy &
yRx. Thus, R is connected. To show transitivity of R, consider any x. y, z& X anf
assume that xRy and yRz. Then by definition of R, R(x, )= a and R(y, 2) 2 @. Sin
R satisfies T, it follows that R(x, z)=a. Therefore xRz and R is transitive.

Now consider C(A) where A€.7. Since C is Dl|a]-rationalizable, ClA):
{x|R(x. y)za for all ye A} and hence C(A)={x|xRy for all ye A}. Hence, Ce
rationalizable in terms of R.

Now suppose C is rationalizable in terms of an EPO R*. Then,

for all Ae.r, C(A)={xeA|R*(x, y)=1 for all ye A}. i1
Since for all x, ye X, R*(x, y)=1 or R*(x, y)=0 and since a€)0,1),
forall Aey, {xeA|R*x y)=1 for all ye A}
={xeA|R*(x, y)za lor all ye A}. (IX]

By (5.1) and (5.2), C is D{a]-rationalizable in terms of R*® which, being an EPO,
is also an FPO.

Remark 5.1. Basu (1984) shows that an ECF is D[1]-rationalizable in terms of :
reflexive and connected FWPR satisfying T, iff it is rationalizable in terms of &
EPO. (Since T, implies T, the necessity part of Basu's proposition follows {rom tix
necessity part of Proposition 5.1.)

Before we state our next proposilion we require the concept of quasi-iransilive
EWPRs. An EWPR R is quasi-iransitive iff or all x, y, ze X, {(xRy & ~yR\) & 'k
& ~zRy)) implies [xRz & —zRx).

Proposition 5.2. An exact choice function is PO-rationalizable in terms of a fury
preference ordering iff it is rationalizable in 1erms of a reflexive, connected and
quasi-transitive EWPR.

Proof.

1. Necessity. Suppose C is PO-rationalizable in terms of an FPO R. Then, ford
A€ .7, C(A)=Bpo(A, R). Define an EWPR R on X as follows: for all x. ye X, vk
iff R(x, y)= R(y,x). It is clear that R is reflexive and connected and that for al
A€ .1, C(A) = {x|xRy for all ye A}. So to show that C is rationalizable in terms o
a reflexive, connected and quasi-transitive EWPR, it is enough to show that £
quasi-transitive.

Suppose R violates quasi-transitivity. For all a,be X, let aBb iff aRb & ~ bk,
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Given that R violates quasi-transitivity, there exist x, y, z€ X such that xBy, yPz but
zRx. Then by definition of R, R(x, )> R(, X), R(», 2)> R(z, y) and R(z, x) = R(x, 2).
Since R is an FPO,

R(x, »)> R x)zmin [RO, 2), R(z, 0], (5.3)

R( 2> R(z, y) 2min [R(z, x), R(x, y)], (5.4)
and

R(z, x) = R(x, Z) 2min [R(x, y), RO D)}, (5.5)

Suppose min [R(y, 2 R(z, X)) =R(), 2). Then by (5.3), R(x, »)>R(»,2) and
heace by (5.4), R(n. 2)>R(zx), which contradicts our assumption that
(min [RW, 2 R(z x)] = RV, 2)).

Now suppose, min [R(y, 2), R(z, x)] £ R(», 7). Then R(y, 2)> min [RD, 2\ R(z x)] =
R(z.x), and, noting (5.3), [R(x, )> R(z x)]. Then, given [R(). 2)> R(z x)], (5.5)
cannot hold. This completes the proof of quasi-transitivity of R.

11. Sufficiency. Suppose C is rationalizable in terms of a refiexive, connected and
quasi-transitive EWPR R*. Then,

for all Ae 7, C(A)={xeA|xR"*y for all ye A)}. (5.6)
Define an FWPR R as follows. Let g h€]0,1] be such that g>A#=0.5. For all
xyeX,

if x=y, then R(x, y)=1, ()

if x=y and C({x, y})={x}, then R(x, y)=g and R(y, x)=h, (5.8)
and

if x®y and C({x, y}) = {x, y}, then R(x, p)=R(y. x)=h. (5.9)
Since C is rationalizable in terms of R® and R* is quasi-transitive, [C({x, y}) = {x}
& C({y z})={y}) implies [C({x, z})={x}]. It is then easy to check that R, as
defined by (5.7), (5.8) and (5.9), is an FPO. We show that C is PO-rationalizable
in terms of R.

From (5.6)-(5.9) it follows that
for all x, ye X, xR*y iff R(x, )2 R(y,x). (5.10)

So, by (5.6) and (5.10) it follows that C(4)= {x€ A|R(x, y)= R(), x) for all ye A}
Tor all A€ .r. Hence C is PO-rationalizable in terms of R.

Remark 5.2. It is well known that rationalizability of an exact choice function in
terms of a reflexive, d and quasi itive EWPR does not necessarily
imply its rationalizability in terms of an EPO. Hence, by Proposition 5.2 it follows
that PO-rationalizability of an exact choice function in terms of an FPO does not
necessarily imply its rationalizability in terms of an exact preference ordering
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(though it is obvious that an exact choice function which is rationalizable in terms
of an EPO must also be PO-rationalizable in terms of an FPO). It is also well knost
that not every exact choice function is rationalizable in terms of an EWPR. Heme,
by Proposition 5.2 it follows thal not every exact choice function is PO-rationa
zable in terms of a fuzzy preference ordering.

Proposition 5.3. Every exac! choice function is NE-rationalizable in terms of ¢
Juzzy preference ordering R such that R(x, y}=0.5 for all distinct x, ye X.

Proof. The proof of Proposition 5.3 is exactly the same as the proof of Bas
(1984) Theorem 2 which states that every ECF is NE-rationalizable in terms of 2
reflexive and connected FWPR satisfying T.

Remark 5.3. What is crucial in deriving Proposition 5.3 is the non-uniqueness of
the exacl set nearest (o the fuzzy greatest set G(A, R) generated by an FWPR R lot
A. When R(x, y)=0.5 for all distinct x, ye X, {xe€ X|G(A, R)(x)>0.5} =0 ant
noting (3.1), NE[G(A, R))=2". Hence, whatever C(A) may be, there will exig
EeNE[G(A, R)) such that C(4)=E.

The remaining results in this section are concerned with H-rationalizability of
ECFs. We first introduce some definitions.
For every ECF C, the base relation K¢ of C is defined as follows:

for all x, ye X, xRey ilf xe C({x y}).

Note that for every ECF C, R is reflexive and connected. For all v, ye X, ks
IxPey iff {x} = C({x, y})] and IxIcy iff {x, y} = C({x. y))). When therc is no ambi
guity about C, we write simply R, P and  instead of R¢, Pe and I, respectiveh.

The following condition, first proposed by Bordes (1976), is well known in (x
literature on ‘rational’ social choice.

Definition 5.1. An ECF C satisfies Property (8,) iff for all x, ye X, and al
A Be s, Ix,ye ACB & ye C(A) & xeC(B))~|ye C(B)].

Proposition 5.4. Ler C be an ECF which is H-rationalizable in terms of a fury
preference ordering. Then

(a) C satisfies Property (B,);

(b) R is quasi-transitive, i.e. P is transitive;

(c) for all x,y, ze X, if (xPy & yIz & xP2), then Cl{x, y, 2}) = {x}).

Proof. Let C be an ECF and let R be an FPO which H-rationalizes C.
(i) To prove Proposition 5.4(a) we first show that for all x, y€ X and for all A€ J.

if xe C(A) and ye A - C(4), then C({x, y})={x}. 6.0
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Suppose xe C(A) and ye A ~ C(A) but C({x, y})# {x}. Then ye C({x y}), which
implies R(y, x) = R(x, y). Since xe C{A) and ye A — C(4), G(A, R)}(x)> G(A, R)(y).
Lel G(A, R)(Y) = R(y, 2), where zeA. Then G(A, R)(x)>R(y, 7). Given R(y. x)=
R(x ») and G(A, R)(x)> R(», 2), and noting that R(x, y)= G(A, R)(x)s R(x, z), we
have [RO, x)> R(y, 2)<R(x, 2)]. This contradicts (R(y, z)=min [R(, x), R(x, 2)})
which follows from properties T, of R. This proves (5.11).

Now suppose C violates Property (8,) so that for some x, ye X and some
ABe s, x,yeACB, yeClA), xeQ{B), and ye B—C(B). Then G(B,R)x)>
G(8, R)(»). Then, letting G(B, R)y) = R(), 2), where z€ B,

G(B,R)x)> R0, 2). (5.12)

Hence, noting R(x, z)=G(B, R)(x), [R(x, 2)>R(y, 2)]. Given xe C(B) and ye B—
C(B), by (5.11), C({x, y})={x}. Hence, given y e C{A), by (5.11) again, xe C(4).
Since x, ye C(A), G(A, R)(y)=G(A,R)(x). Hence, noting [R(y, x)=G(A, R)»);
G(A, R)(x)= G(B, R)x); and (5.12)], [R(»,X)>R(), 7). Thus, we have R(x,2)>
R 2) <R, X). This, as in the preceding paragraph, leads to a contradiction which
completes the proof of Proposition 5.4(a).

(ii) Given [xRy iff R(x, »)=R(»,x), for all x, ye X) and that R is an FPO, the
proof of Proposition 5.4(b) is similar to the proof of the necessity part of Propo-
sition 5.2.

{iii) To prove Proposition $.4(c), suppose for some x, y, z€ X, [xPy & xPz & yI7).
Let A={x, y, z}. By Proposition 5.4(a), C satisfies Property 8,.

Without loss of generality, assume G(A,R)(x)=R(x,y). Then, noting that
R(x, )>R(y, x) (which follows from xPy), and that R(y, x) = G(A, R)(y), we have
G(A, R)(x)> G(A, R)(y). Hence yg¢ C(A). However, by Property (8,) and ylz,
CAN{y, 2}=08 or CAN{y, z}={r.z}. Given y&C(4), it follows that
ClA)={x}.

Remark 5.4. As the reader can easily check, the three necessary conditions (given
in Proposition $5.4) for C 1o be H-rationalizable in terms of an FPO are independent
of one another. Indeed, Property (8,) is a requirement of consistency when the
menu of feasible choices is expanded. It states that if y is chosen from A when x
is available, then in an expanded set B, y must always be chosen if x is. It is known
that Property (8, ) does not even imply the absence of a P-cycle. Another way of
viewing Property (8,) is that it is an /nclusion condition - consistent choice re-
quires that certain el must be included in the ded se1. In contrast, the
third of the necessary conditions in Proposition 5.4 is a very weak rejection
condition.

Remark 5.5. We do not know whether the three y conditions in Propositi
5.4, together, are also sufficient for H-rationalizability, An obvious probiem seems
lo be lhal the requlremenl ((xPy & yTz & xP2)=(C({x, y. 2}) = {x})] is a very weak

, as the g shows, even a slightly
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stronger condition ceases Lo be necessary for H-rationalizability in terms of an FPQ,

Example 5.1. Let X={x yz}. Let Cl{x y})=CUx 2})={x}: CUn =1y
and C({x. ), z})={x y}. Then C is H-rationalizable by the following FPO R.
R(x, »)=0.9; R(», x)=0.6; R(x, 2)=0.6; R(z, x)=0.4; R(», ) =0.6; and R(z, y) =04,
However, C violales the following condition: [{a € X|aPb for all be X - {a}} #)~
[C(X)={ae X|aPb for all be X - {a}}).

Proposition 5.2 showed that rationalizability in terms of a reflexive, connected
and quasi-transitive EWPR is necessary and sufficient for H-rationalizabilily in
terms of an FPO. However, rationalizability in terms of a reflexive, connected and
quasi-transitive EWPR is neither necessary nor sufficient for H-rationalizability in
terms of an FPO. Indeed, an ECF which is H-rationalizable in terms of an FPQ
must fall into one of two distinct categories. Either it is not rationalizable in terms
of any EWPR, or it is rationalizable in terms of an EPO. This is shown by Propo-
sition 5.5 below. Note that the ECF in Example 5.1 is not rationalizable in terms
of any EWPR, although it is H-rationalizable in terms of an FPO.

Proposition 5.5 Ler C be an ECF and let C be H-rationalizable in terms of an FPO.
If C is rationalizable in terms of an EWPR, then C is rationalizable in terms of an
EPO (this EPO must be the base relation of C).

Proof. Suppose an ECF C is H-rationalizable in terms of an FPO. Suppose Cis
also rationalizable in terms of an EWPR. Then by a well-known result (see Hen-
berger, 1973) this EWPR must be the base relation R of C. It is Lhen enough to show
that R is an ordering. Since R is clearly reflexive and connected, we have only (o
show that R is transitive. Suppose R is not transitive. Then, noting that R is con-
nected, (xRy & yRz & zPx) for some x, y, z€ X. Since by Proposition 5.4(b), Pis
transitive, it is easy to check that (xRy & yRz & zPx) implies (xIy & yIz & :Px). Since
C is rationalizable in terms of R, given (xIy & yIz & zPx), we have x ¢ C{x. y,2})=
{5 z}. However, given (xIy & y € C({x, y, z})), by Proposition 5.4.1, xe C({x » 2}
This contradiction completes the proof.

Remark 5.6. Although by Proposition 5.4(b) quasi-transitivity of the base relation
is necessary for H-rationalizability of an ECF in terms of a FPO, it is clear from
the proof of Proposition 5.5 that even the joint condition of quasi-transitivity of
the base refation and rationalizability in terms of the base relation is not sufficiem
for H-rationalizability in terms of an FPO.

Our results on H-rationalizability in terms of an FPO suggest that this concept
imposes fairly severe restrictions on the nature of choice over two-element sets (since
R must be quasi-transitive). H-rationalizability also implies Property (8, ), whichis
an inclusion condition. So far we have not been able to find any necessary exclusion
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condition with some ‘bite’. Hence, ECFs with rather ‘large’ choice sets can be H-
rationalized in terms of FPOs. We conclude this section with an example which
illustrates this point.

Example 5.2. Let C*® be an ECF such that R is quasi-transitive. Moreover, for all
AC X with |A|=23:

(i) if A*m={xeA|xPy for all ye A - {x}} 8, then C*(A)=A*;

{ii) C*(A)=A, otherwise.

Choose g, h with g>h=4. For all distinct x, ye X, let R(x, y)=g iff xPy and
R(x. y)=h iff yRx. That R satisfies T, has been proved in Proposition 5.2. We
show that R also H-rationalizes C*.

Choose any A € X with |[4]z 3. Suppose for some xe A, xPy for all ye A - {x}.
Then G(A, R)(x)=g and G(A, R)}(y)=h for all ye A - {x}.

Suppose that {x€ A|xPy for all ye A—{x}} =0. Then, for every x€ A, there is
yeA—{x} such that yRx. Hence, for every xe A, G(A,R)(x)=h.

Hence, R H-rationalizes C*.

6. Concluding remarks

We may now sum up the main points of our discussion in the earlier sections.

(1) As a rationality property of fuzzy preferences T, seems to be more interesting
than T,. Also, PO-rationalizability and H-rationalizability seem to be considerably
more plausible and interesting notions of rationalizability than NE-rationalizability
and D[1]-rationalizability (and possibly than D[a]-rationalizability in general).

(2) Basu’s (1984) conclusion that all exact choice functions are NE-rationalizable
need not constitute a damning verdict on the hypothesis of fuzzy preference
orderings. This conclusion seems to arise from the inherent intuitively unsatis-
factory nature of the concept of NE-rationalizability. No such conclusion can be
derived with the notions of Dla}-rationalizability, PO-rationalizability and H-
rationalizability (see Propositions 5.1, 5.2 and 5.4 and Remarks 5.2 and 5.4).

(3) Does the hypothesis of a fuzzy preference ordering offer greater mileage than
the hypothesis of an exact preference ordering so far as explanation of the observed
behaviour of an agent is concerned? We have shown (see Proposition S.1) that there
is no gain (as well as no loss) in terms of explanatory power if one adopts D|a]-
rationalizability as the rel notion; this is true not only for the extreme case of
a =1 considered by Basu (1984) but in general for every positive a not greater than
one. Given the notion of PO-rationalizability, the hypothesis of a fuzzy preference
ordering explains a wider range of choice behaviour than the hypothesis of an exact
preference ordering. However, even under the notion of PO-rationalizability, fuzzy
preference orderings do not explain any wider range of choice phenomena than
reflexive, connected and quasi-transitive EWPRs since PO-rationalizability in terms
of a fuzzy. preference ordering is equivalent 10 rationalizability in terms of a
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reflexive, connected and quasi-transitive EWPR. On the other hand, H-rationali-
zability does not seem 1o bear any direct relation to rationalizability in terms of any
particular well-known category of EWPRs. Further investigation into the conditions
(formulated in terms of properties of the exact choice functions) for H-rationali-
zability is required before one can on the expl y ial of i
concept.
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