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This is a survey of some aspects of large-sample inference for stochastic processes. A unified
framework is used to study the asymptotic properties of tests and estimators ol parameters in
discrete-time, i time jump-type, and diffusion pr Two broad families of proces-
ses, viz, ergodic and non-ergodic type are introduced and the qualitative diffcrences in the
asymplotic results for the two families are discussed and illustrated with several cxamples. Some
results on estimation and testing via Bayesian, nonparametric, and sequential methods are also
surveyed briefly.
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1. Introduction

This paper is concerned with a survey of results on the asymptotic theory and
methods of inference as applied to stochastic processes. Likelihood based methods
for discrete-time, and continuous-time processes including diffusion processes will
be reviewed in a unified framework. We shall also study old and new asymptotic
optimality criteria for estimators and tests. Some aspects of nonparametric, sequen-
tial, and Bayesian methods for dependent observations will be briefly discussed.

Details covering most of the topics in this paper will be available in a forthcoming
monograph, Basawa and Prakasa Rao (1980). The selection and coverage of topics in
the present article reflect our own interest and familiarity with the work in this area.
For this reason we do not claim to present a comprehensive treatment of all the main
results in asymptotics for stochastic processes; on the contrary, it will be easy for the
readers to notice several important omissions. We may cite two such ommissions,
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viz., identification and selection procedures for processes (see Bechhofer, Kiefer and
Sobel (1968)), and work on simulation analysis (e.g. Crane and Lemoine (1977))
which is especially suited to stochastic processes. We have placed greater emphasis
on parametric likelihood methods than on other types of approaches. An attempt i
made to unify various results concerning asymptotic likelihood methods as applied to
(i) independent and identically distributed (i.i.d.) observations,
(ii) Markov processes,

(iii) arbitrary discrete-time processes and

(iv) continuous-time processes including diffusion.

Also, two broad classes of processes viz., ergodic type and non-ergodic type are
discussed in a unified setup and the important qualitative differences of results for the
two classes are highlighted and explained through several examples.

We begin with some historical remarks in Section 2, and Section 3 contains a brief
discussion of some statistical concepts and criteria for the benefit of those who are not
familiar with statistical terms. In Section 4 the results for classical i.i.d. models and
their extension to Markov processes are surveyed briefly. A general model for
discrete-time processes which includes both the ergodic and non-ergodic type
processes is formulated in Section 5 where several examples are also discussed.
Section 6 is concerned with asymptotic optimality of estimators and tests for ergodic
type processes. Recent results on optimality of estimators and tests for non-ergodic
type processes are summarized in Section 7. In Section 8 continuous-time processes
including diffusion are discussed along with some examples. The last three sections
(Sections 9 to 11) summarize some aspects of Bayesian inference, nonparametric
inference and sequential methods for dependent observations.

Research in the general area of stochastic processes up to this stage is dominated
by work on modelling and probabilistic analysis of the models. When one contem-
plates using these models to explain observed phenomena, various questions of a
statistical nature arise — in particular, problems of estimation and testing hypotheses
are encountered. Research on the statistical aspects of stochastic processes is of
recent origin and seems to be lagging behind the theoretical probabilistic develop-
ments in the area. It is hoped that this article (and the monograph by the authors)
will help in directing the interest of research workers towards the statistical
methods.

2. Some remarks on historical developments

The purpose of this section is to give a broad outline of the landmarks in the
developments of main ideas and methods of likelihood asymptotic inference dis-
cussed in this paper in Sections 4 to 8. Specific references on the topics covered in
Sections 9 to 11 are mentioned in those respective sections. For a more detailed
bibliography see the monograph, Basawa and Prakasa Rao (1980).
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Many of the basic ideas and techniques of estimation originated in the fundamen-
tal papers of Fisher (1922, 1925) who was concerned with the classical model of
independent and identically distributed observations. In these papers Fisher
developed the method of maximum likelihood and introduced the important concept
of sufficiency; large-sample properties including the efficiency of the maximum
likelihood estimator (MLE) were also discussed in Fisher (1925). The formulation of
the modern hypotheses testing problem is due to Neyman and Pearson (1928). See
Lehmann (1959) for a comprehensive treatment of testing problems. A general
decision-theoretic formulation of statistical problems which includes estimation and
hypotheses testing was developed by Wald (1939, 1950). Cramér (1946), Wilks
11944), Rao (1961, 1962, 1963), Bahadur (1964); and Wald (a series of papers, see
the collection (1958)), among others, laid a rigorous foundation to the large-sample
theory of inference by providing proofs and refinements of the properties of the MLE
discussed previously by Fisher and by deriving limit distributions and efficiency
results concerning likelihood-ratio and related tests. The works mentioned so far
were concerned with the classical model of i.i.d. observations. Billingsley (1961),
among others, extended the classical large-sample theory results to Markov
processes.

Le Cam (1953, 1960, also see 1974) gave a very general treatment of the
large-sample theory and introduced the locally asymptotically normal (L.A.N.)
family of models; the L.A.N. family in particular includes the classical i.i.d. model
and ergodic type process {see Section 5).

Grenander (1950) extended the basic concepts of estimation and testing to general
stochastic processes, and Bartlett (1955) discussed some applications of statistical
methods to models in classical stochastic processes. Wald (1948), Bar-Shalom
11971), Prasad (1973), Prakasa Rao (1974), Bhat (1974), Crowder (1976), Basawa,
Feigin and Heyde (1976), among others, established, under various regularity
conditions, the large sample properties of the MLE for the ergodic type processes.
Also, see M.M. Rao (1963, 1966) for a rigorous treatment of inference problems for
general stochastic processes.

Weiss (1971, 1973, 1975) and Weiss and Wolfowitz (1974, and the references
therein) developed some general large-sample techniques and discussed asymptotic
optimality criteria for both estimation and testing. The conditions assumed by Weiss
and Wolfowitz include the classical i.i.d. model and the ergodic type processes in
addition to some non-standard examples. Also, the asymptotic optimality criteria
developed by Weiss and Wolfowitz (1974) can be applied to non-ergodic type
processes as shown by Heyde (1978), Basawa and Scott (1978) and Basawa and Koul
(1979, 1980).

The work on large-sample inference for non-ergodic type processes (see Section
5) evolved through the papers of Heyde and Feigin (1975), Feigin (1975, 1976,
1978), Heyde (1978), Basawa and Scott (1977, 1979) Basawa (1977), Davies (1978),
Basawa and Koul (1979, 1980).
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3. Some statistical concepts and criteria

In this section we collect definitions and explanations of some common statistical
terms and criteria for the benefit of those not familiar with statistics. For further
details a text book such as Bickel and Doksum (1977) may be consulted.

Let X(n)=(X1, Xz,...,X,) be a vector of random variables having a (joint}
density p,(x(n); 8), 8 € 8 c R (real line), with respect to a o -finite positive product
measure u,. X{(n) may be viewed as a sample (or realization) of n successive
observations from a stochastic process {X,, » = 1}. Suppose the functional form of
this density p,(-; 8) is known while the value of 6 is unknown. By an inference
problem we mean a problem of drawing conclusions regarding the value of 6 on the
basis of the information in X(n) In particular, an estimator 6.(X (n)) of 6 based on
X (n) isa measurable function 8. :%(n)-> ©,where Z(n) is the sample-space (i.e.the
set of all possible values of X (n)) and @ is the parameter-space. Suppose we wish to
test a hypothesis H: @ € v, w = ©@ against the alternative hypothesis K: 0€ 6 -w.
Typically, a test (non-randomized) of H against K based on X(n) is an indicator
function

if T.(X(n))eC,C<R,
otherwise,

1,
“’"‘X"'”={o

where T, is any measurable function T,:&(n)->R. We identify the value ‘1’
with the rejection of H and the value ‘0’ with the acceptance of H. The set {x(n):
T.(x(n))e C}is called the critical region and the function T, a test-statistic. ¢,(-)isa
test function or simply a fest.

It is often required to choose a ‘good’ estimator (or test-statistic) from among a
class of possible estimators (or tests). Several optimality criteria for estimation and
tests are available in the literature. Most of these criteria are such that an ‘optimum’
estimator (or a test) must be a function of a sufficient statistic $,(X (n)) when one
exists. The concept of sufficiency was introduced by Fisher. The density function
Pa(z(n); 8) of X(n) viewed as a function in 6, say L,(8; =(n)), is also known as a
likelihood function of @ based on x(n). A statistic S, is said to be sufficient for 8 if (and
only if) the conditional density of X (n) given S, is free from 6. When $,, is a sufficient
statistic the likelihood function L,(8; x(n)) admits the following factorization

La(6; x(n))=H(x(n))G(8; S.(x(n)))

where the function H depends only on x(n) and G depends only on 8 and §,..
The theory of asymptotic inference is typically concerned with a study of the
limiting properties (i.e. the properties of the limiting distributions) of estimators (or
tests) as the sample-size n -» c0. Several asymptotic criteria of optimality are available
which help one to choose a ‘good’ estimator (or a test) from a class of possible
estimators (tests). We define below some of these criteria which will be used in the
sequel A sequence of estimators {0 }, n=1, of 8 is said to be consistent for 8 lf
0,.(X(n))-» 8, in probability, as n »00. Let ¢ be a class of consistent estimators ba
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such that, as n -» oo, for some 0 <k,(#)}0, k,(8) non-random,
ka(8)(6a(X (1))~ 8) = N(0, #3(6)), 0<o}(8)<wo,

uniformly in @, where = denotes distribution convergence.

Asympflotic variance criterion. An estimator §f €e is said to be asymptotically
efficient (with respect to the class ¢) if, when 4, is any other estimator in ¢, we have
od(8)<c}(@ forall6e@.

Weiss and Wolfowitz (1974) have developed the following more general criterion
of estimation efficiency:
Let ew denote the class of consistent estimators 6, such that, as n -

k., (8)(6,(X (n))—60)=> Ls(0)

uniformly in 8, where L4(8) is a random variable having a distribution function
Filu: 6) (not necessarily normal). Assume that F; is a continuous distribution
function,

Weiss—~Wolfowitz criterion (simplified version). An estimator 6% € ew is said to be
asymptotically efficient if when 5,. is any other estimator in ew, we have

lim P, o{|K.(6)(d7(X (1))~ &) < a}> lim Prollka(8)6.(X (1)) - 6) < a}

for any fixed a >0, and all 6 e ©.

In general, §° will depend on a. However, in standard applications of the type
considered in this paper §5 will be free from the choice of a.

if the limiting variable L j(#) has a normal distribution the class ew for the standard
applications reduces to the class e and it can be shown then that the Weiss-Wolfowitz
criterion reduces to the asymptotic variance criterion. The Weiss-Wolfowitz cri-
terion is especially useful when dealing with estimators having non-normal limiting
distributions (see Section 7).

We now turn to the optimality (large-sample) criteria for tests. Let ¢,(7T,.) be a test
function based on a test-statistic T,. For a suitably chosen sequence of positive
constants K,(8)too suppose K.{()(T,(X(n))— @) has a limiting distribution. The
power function of the test ¢,(T,) is defined as

B7,(6) = Es[n(T0)).

Suppose now that we are interested in testing the hypothesis H: 6 = 8, against
K: 89>8, Atest,(T,)is said to be size-a if 8r,(6p)=a, (0<a <1).

Local power criterion. A size-a test ¢,(T5) is said to be asymptotically efficient if

im K7 005 854r2) |2 im {2 005 80m) ]

n~o dé n-co
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where ¢,(T,) is any size-a test based on a statistic T,. (Both T, and T are such that
K.(8)(T, —6) and K,,(8)(T? - 8) have limiting distributions.) See Rao (1961), and
Basawa and Scott (1977) for details.

Pitman power criterion. Consider a sequence of alternative values 8,, such that
8, 6o, as n 0. More specifically, let 8, = o+ k ;" (6o)5, where h > 0. A size-a test
®(T3) is said to be asymptotically efficient (at 4) if

lil‘: Bo,2y(6a) = lim By (7., (64),

where ¢,(T,) is any size-« test based on a statistic T,, and both T, and T are such
that k,(0)(T,, — 6) and k,(8)(T2 — 0) possess limiting distributions. (See Rao (1963)
and Feigin (1978) for details.)

The local and Pitman power criteria are related as follows: Let
. d - .
Acl60)= lim (- Boura(8)] Ki'(@0) and  Bu(fo, )= im Ba.ry(@) h>0
n-=c 23 -

be the local and the Pitman powers of a size-a test ¢,(7,). Then, under mild
regularity conditions one can show that

A.(80) = lim B. (80, h)— Ba (6o, 0)}.
o h

See Rao (1963) for details.
Maximum likelihood (ML) estimator. A measurable function é. :&(n) - @ such that
Ly(fa3 x(n) = sup L (6; x(n))
is known asa ML estimator of 8. Under regularity conditions it is often possible to
compute @, as an appropriate root of the likelihood equation
dlog L.(6; x(n))/d6 =0.

It can be shown that under regularity conditions a ML estimator is asymptotically
efficient both in the sense of asymptotic variance and Weiss-Wolfowitz criteria
(see Sections 6 and 7).

4. Classical model and extensions to Markov processes

4.1. The classical model

First, consider the classical model of i.i.d. observations. Let X\, X3, ... be i.i.d.
random variables with common density f(x; #), 8 € @ < R. The likelihood function is

La(8; X(n)) =,lj. £X; 6)
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so that
n
dlog L./d8= ¥ g(Xi: 6),
i=1

where g(X,; 8) =d log f(X,; 8)/d8, assuming differentiability of f. Much of the early
work on asymptotics in this context is devoted to showing that, under regularity
conditions, there exists a consistent estimator §, (X (n)) which satisfies the likelihood
equation d log L,/d@ = 0 with probability tending to 1 as n - 0 and further verifying
that such a §, is a local maximum of L,(6; X (n)) with probability tending to 1 as
n - o0 and is essentially unique. One then studies the limit distribution of a consistent
root 6, of the likelihood equation. The key results needed for this are

(a) the law of large numbers and

(b) the central limit theorem for the sum Z;'_, g(X;; 8).

Consider the following regularity conditions:

(RC.1) The set of x for which f{x; 8)>0 does not depend on 6. f(x: ) is thrice
differentiable with respect to 6 and the derivatives f*, ", f* are continuous in 8 for
any x. Furthermore, f is differentiable with respect to 8 twice under the integral sign.

(RC.2) Ealg{X:6)) =i(6), say, where 0 <i(6)<c0,

(RC.3) Let G(x) = supocn (d*/d6°)(log f(x: 8)) where N is a neighborhood of 6,.
Then, Es{G(X)}<c0. (8, denotes the true value of 6.)

Under the above regularity conditions it is not difficult to show that, as n » oo,

(i) {d log L./d8)/n -0, in probability;

(ii) (d log L,./do)/\/;=>N(0, i(8o)), where N{a, b) denotes a normal random
variable with mean a and variance b,

{iii) {d log L./d8)/Vn—il8)Wn(6, - 65)}~0,
in probability, where b, is any consistent root (whose existence is assured by the
above regularity conditions) of the likelihood equation.

The results (ii) and (iii} above imply that

(iv) V(6. - 65) = N(0, i (8o)).

These are the well known classical results first stated heuristically by Fisher (1925)
and later made more precise by other authors.

4.2. Markou processes

The extension of this model to Markov processes is straight-forward. Let {Xi,
k =1} be a Markov process on a general state-space & with time-homogeneous
transition measures

p(x, A; 8)=PolXss1€A|Xi=x), xe& Ac @,

where ¥ is the o-field associated with &. Assume that p(x, A; 8) admits a unique
stationary distribution 7(-; 8) on ¥ determined by

m(A; 8)= Lw(dx; f)p(x,A;8) forallAe .
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Further, suppose p(x, A; 8) admits a transition density f(x, y; ) with respect to a
measure u. Thus,

plx, A; 6)= Lf(xy y;8)du(y), Ae#.
The likelihood function based on the sample (X, ..., X,) is given by
=1
L.(8; X(n))=folx\; 8) knl flxe, xe413 0),

where fo(-; 8) is the density corresponding to the initial observation X;. Assuming
that f is differentiable we have

dlog L, "2!dlog f(xe, xka1; 8) "t
= = 3 Xiet: ), y
a8 L a0 2, 8xu xieii O, say

since the first term can be neglected under the regularity conditions. We may now
impose the following regularity conditions:

(RC.1), (RC.2), (RC.3)

same as (RC.1), (RC.2) and (RC.3) respectively with f(x; 8) replaced by f(x, y; 8)
and E, being taken as the expectation corresponding the stationary distribution. In
addition to these assumptions we need (RC.4). Foreach xe & and Ae %,

m(A; 8)=0=>p(x, A;0)=0.

The last condition precludes transient states and is needed for the validity of the law
of large numbers.

Using the above conditions Billingsley (1961) has shown that the limit properties
(i) to (iv) mentioned earlier for the classical model also hold for the Markov pro-
cesses under consideration. The proofs of Billingsley (1961) also hold for the
classical model by taking f(x, y; 8)= f(x; 8), the condition (RC.4) being satisfied
trivially.

The basic technique for establishing the asymptotic properties of the ML estima-
tors for both the classical model and Markov processes involves an expansion of
dlog L,/d@ in 6 by the mean value theorem and an application of the law of large
numbers (LLN) and the central limit theorem (CLT) on the summands occurring in
the expansion. Such a technique can of course be applied to any other dependent
sequence of random variables provided an appropriate LLN and CLT can be proved
for the process involved. Since under mild regularity conditions d'log L./d@ is in
general a zero-mean Martingale and since the LLN and CLT are well known for
Martingales (under appropriate regularity conditions) it is clear that the properties of
the ML estimator continue to remain valid for more general processes (ergodic type.
see Section 5). See, for instance, Basawa, Feigin, and Heyde (1976) for further
details,
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S. A general model for discrete-time processes

5.1. The model

Let { Xk, k = 1} be a discrete-time process defined on a probability space (Z, &, P,),
#¢ 6, an open subset of the k-dimensional Euclidean space. Suppose the vector
X(n)=1(X1, Xa, ..., X,)takes values in the measure space (2", ") and possesses a
density p(x(n); ) with respect to a o-finite product measure p". The density
plx(n); 8) viewed as a function of 8 is a likelihood function as remarked ezrlier. For
simplicity we retain the same notation p(- ; ) to denote the likelihood function.

Denote the log-likelihood ratio by A,, where

An(6,, 8) =log{p(X(n); 6,)/p(X(n); 8)} (5.1

with 8, = @ +17'/2()h, h being a (k x 1) vector of finite real numbers hi, ks, . . ., hs,
and I,(6), a diagonal, non-random matrix with diagonal elements a,(8), i=
1.2,..., k, such that foreach i=1,2,...,k,0<a,/(8)<, a,,(8)tco as nfoo, and
for all € @. Thus, {6, } is a sequence of values such that 6, - 6 as n - c0. It is assumed
that for all n =1, 6, € @. The elements a,,{8) of I,,(8) will be chosen such that A, will
have a certain asymptotic behavior. A large number of problems in the general area
of asymptotic parametric inference can be reduced essentially to the problem of
studying the limiting behavior of A, in (5.1).

Let us suppose that p(X(n}; 8} is differentiable in ¢ at least twice. Let S,.(#) be the
(k x 1) score vector with elements 3 log p/a6,,i =1, 2, . . ., k, and denote the matrix of
second partial derivatives (with a minus sign) by B, (). Thus

B.(68)=—(3"log p/36,38), i,j=1,2,...,k

We may then formalize our assumptions regarding the limiting behavior of A, as
follows:

For a suitable choice of I,(8), assume that (A)—(C) below hold:

(A) An(Bn, 8)= HTA.(8)—hTG(B)h +0,(1), where A.(8)=1;">(6)S.(9),
G.(8)=1,"7(8)B.(6);'(8),0,(1) denotes terms which converge to zero
in probability as n -+, under P, 4 probability, and T the transpose.

(B) £(4.16), G,(8))» £(4(8), G(8)) as n >0, under P,, probability, where
2(X,)»£(X) denotes convergence in distribution, G(8) is a possibly random
{k x k) non-negative definite matrix and 4(#) is a random vector.

(C) 4(8) has the same distribution as G'/*(6)Z, where Z is a (k X 1) vector of
independent and identically distributed (i.i.d.) N(O, 1) variables, and Z is indepen-
dent of G(8).

Assumption (A) above states that in the Taylor expansion of log p(X ", 6,) around
8the third and higher order terms may be ignored for large n. If differentiation under
the integral sign of log p is permitted it is easily verified that {S,(6),n =1,2,.. .} isa
2ro-mean Martingale. The Cramér-Wold device and Martingale limit theorems are
often useful in verifying conditions (B) and (C). Various sufficient conditions which
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essentially ensure (A) to (C) are available in the literature. See for example, Wald
(1948), Silvey (1961), Bhat (1974), Basawa et al. (1976) and Weiss (1971, 1973,
1975). If {X;,j=1,2, ...} are i.i.d. random variables, and a,,(8)=n,{i=1,... k)
are the diagonal elements of 7,(8) the above assumptions specify the ‘locally
asymptotically normal” (L.A.N.) model of Le Cam (see Hajek (1971)); in this special
case the matrix G(6) will be non-random. If {X;} form a Markov process on a general
state space & the assumptions in Billingsley (1961) would imply (A) to (C) with
a,(8)=n and G(0) non-random. The differentiability condition on log p may be
relaxed and replaced by a weaker condition of differentiability in quadratic mean:
this, for instance, is done in Roussas (1972) for Markov processes. The works
mentioned so far require G(6) to be non-random. Feigin (1975), Heyde (1978).
Basawa and Scott (1977) and Basawa and Koul (1979) discuss specifically the case
where G(6) is a non-degenerate random variable; Basawa and Koul {1979) study the
vector parameter model as formulated above. The distinction between the two cases:
viz.

(a) G(8), non-random and

(b) G(6) non-degenerate random is rather important and for future reference let
us call them ergodic and non-ergodic families respectively.

It turns out that the standard Fisher—-Cramér-Wald—Rao type results (valid for the
i.i.d. model) can be extended to the ergodic general model. In particular, for the
ergodic model, with k = 1, the maximum likelithood estimator (M.L.E.) is typically
asymptotically normal and is efficient in the sense of having a smallest asymptotie
variance in the class of consistent asymptotically (uniformly) normal estimators. For
the non-ergodic model, however the M.L.E. does nor have a limiting normal
distribution; instead its limiting distribution is weighted normal.

5.2. Some examples

Example 1 (A simple branching process). Let {Yo=1, Y|, Y2,..., Y,} denote
successive generation sizes in a Galton—Watson branching process. Suppose Y, has
the density

py(y;0)=0""(1-87Y"", y=1,2,..., (1<f<)
Thus, the mean and the variance of the ‘offspring’ distribution are

E(Y))=6 and o%(6)=Var(Y,)=6(6—1).
Here 6 is an unknown parameter. Since 1 < 8 <o the process is super-critical. and
also with probability 1, Y,, » 00 as n - 0. Using the notation of Section 5.1 we readily
find that

Sa(8)=0"%8) kZl (Yi—8Yi-4),

and

a8 d a
B.(8)=0c 2(o)>l: Yk-l—(ﬁa ’(o)))l:(y,,—oy,(_.).
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Suppose we choose
L(8)=c2(6X8" - 1)/(8 - 1).

It is not difficult to verify, via the Toeplitz lemma, and using the fact that 3| (Y; —
§Y,-,) is a zero-mean Martingale that

G.(8) = B.(6)/1.(8) > G,

where G is the limit in probability of (Y,/8"). It is well known for the present case
that G is a positive non-degenerate random variable and has the exponential
distribution with unit mean. Conditions (A) to (C) can now be easily verified (see e.g.
Basawa and Scott (1976)) with 4(8) having the distribution of G'’*Z, i.e. double
exponential distribution with density e'“""'/\/z, —wo<y <. The M.L.E. of 6 is
seen to be

é,=$n/>:: Yior.

One can also verify that I/ (8)(6. — 8) is asymptotically distributed as the Student’s ¢
distribution with 2 degrees of freedom.

Example 2 (A regression model with autocorrelated errors). Let {Y; 1<j=<n}
satisfy the regression equation

Y, =ax,+2Z,
where the errors Z; in turn satisfy the autoregressive equation
Z,=pZ;.1+e, 1Bl>1

with {¢, 1 <j<n} iid. N(O, 1) variables, and & =x,=0 for j<0. The ‘design’
variables x; are assumed fixed and satisfy the regularity conditions

(i) {tmax, <jen x? (] x{ )} 0 and

(i) {Z] xixi-1 /2] xT 1= b, b] < 0.
Here " = (a, B) is an unknown parameter.

A generalization of this model is discussed by Basawa and Koul {1979} who show
that the model belongs to the non-ergodic family and satisfies conditions (A) to (C).
The matrix G(8) is seen to be

1 0
G= (o w)’
where W is a chi-square random variable with 1 degree of freedom. The normalizing

matrix [,{8) used is

1,(0)=(“"6(0) a:(o))'
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where
a.l(o)=>l:(x.—ax,_.)’ and a,2(0)=(B*"-1)/(8-1).

The limit distributions of the likelihood ratio statistic and the score-statistic for
testing the composite hypothesis H: g = 8o with a as a nuisance parameter are
derived in Basawa and Koul (1979).

Note that if the autoregressive parameter 8 is such that |8| <1 (stationary case),
the above choice of a.1(8) and a,;(8) =n gives

(5 1)

and then the model belongs to the ergodic family.
Example 3 (A moving average process). Let {Y, 1=<;=<n} satisfy the moving
average equation

Y, =g —asg-y,

where {s;, 0=<i{=<n} are i.i.d. N(6, 1) variables.

Assume that |a|< 1 and a known. 8 is an unknown parameter. It can be verified
(cf. Prasad (1973)) that this example belongs to the ergodic family with the choice
I.(8)=2n and G(8)=1. The usual properties of the M.L.E. of & and of the
likelihood-ratio statistic follow readily.

Example 4 (Markov processes on a general state space). Let{Yi, k=1,2,.. }bea
Markov process on a state space & with time-homogeneous transition measures
P(A|x;68)=Po(Yrs1€A|Yr=x), x€&, AcH,

where ¥ is the o-field of subsets of &.

p(A]x; ) for each fixed x € & and for each 8 € @ is a probability measure on .
6 is an open subset of the k-dimensional Euclidean space. Assume that there is a
unique stationary probability measure po(A; ) on F satisfying

PolA; o>=Lp(Alx; O)poldx; ), AcF

Let u be a o-finite measure on ¥ and assume that the transition densities f(x, y; 6
corresponding to the transition measures p(A |x; 6) exists w.r.t. x satisfying

pAlxi0)= [ fixyiOm@y), Acs

The jointdensityof Y" =(Y7, ..., Y,) withrespect u." assuming that the initial state
Yo = yo is fixed is then given by

P(y"; )= [T f(ye-s, 2 0).
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Under standard assumptions (see Section 4.2} it is seen that this model belongs to the
ergodic family with
-0

"
Le=|: Jamom#mmm
0--'n

where

alog f(Yi-1, Yi; 8) dlog f(Yi-1, Yi; 0)
a6, 26,

ou0) = En } wi=r. 0,

E,, denoting the expectation computed under the stationary distribution po. Note
that G(8) is the usual Fisher information matrix.
Properties of the M.L.E. and of the likelihood ratio tests for § are discussed by

Billingstey (1961).

Example 5 (A stationary ¢-mixing process). Suppose {Yi, k=1,2,...} is a ¢-
mixing process, i.e it satisfies

IP(B|B..)-P(B)|< ¢n

with probability 1, for all events B € B, n.x0p, foreachre(1,2,...)andne(1,2,...)

where 8,, denotes the o-field generated by (Y,,,..., Y,), a-1<ij<i<---<

ik<b+1.{d.} is a sequence of positive numbers converging to zero as n - 0.
Prasad (1973) discusses the following example: Let Y " be a N, (u, ) vector where

u7=(6,6,...,6) and ¥=((oy)) Ghj=1,...,n),

where ay=p" ", with fp|<1, p known. It can be verified that the process
{Y), Ya, ...} is stationary ¢-mixing with ¢, =p". In this example 8 is the only
unknown parameter. It is seen that the example belongs to the ergodic family with
1,(8)=n and G(8)=(1-p)/(1+p).

Example 6 (A classical mixture experiment). Conditionally on V =v, suppose
Y, Y, ..., Y, are i.i.d. N(8, ») variables. Unconditionally (Y3, Y3,...) form an
exchangeable process and Y's are no longer independent. Let us assume, for
instance, that V™' is an exponential random variable with mean unity. It can be
verified that the unconditional density of ¥" =(Y), ..., Y,) belongs to the non-
ergodic family with the choice ,(6) = n and G(6)= V™' Itis interesting to note that
the limit distributions of the M.L.E. of 6 and of the likelihood-ratio statistic for this
example are formally the same as those for Example 1.
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6. Optimality results for ergodic models

6.1. Efficient estimation

For simplicity of pr ion we 6 to be one-dimensional. Assume the
conditions (A) to (C) of Section 5 are satisfied with

B.(6)=—d’logp/d8® and I,(6)=E(B,(8)).

Itis then seen that G,(6) - 1 by the ergodic theorem. Thus, in this section we can take
the limiting G(8) = 1. Our ergodic model is then characterized by the conditions:
(A") An(B,, 6) = hA,(6)—3h*+0,(1), where h is a real number (non-zero), and

(B') 4,(8)=>N(0, 1).
Let TY be a consistent estimator satisfying

A, (8)—1Y*(ONTS —8)~0, in probability, 6.1)
when 8 is the true parameter. (6.1) implies that
1 (6(T2 - 9) =N, 1). 6.2
Suppose T, is any other consistent estimator such that
L2 eNT, -0)=> L, (6.3)

where L has a continuous distribution F which is symmetric about zero (not
necessarily normal). Following Weiss and Wolfowitz (1966 it is easily seen, under
regularity conditions that any estimator T’ satisfying (6.1) is efficient twith respect o
the class of estimators satisfying (6.3) according to the Weiss-Wolfowitz criterion
given in Section 3. In particular, if L is N{0, o 7(8)) the Weiss—Wolfowitz criterion
reduces to the result

o3 B)=1 (6.4)

which establishes the classical asymptotic variance optimality for T (see Section 3).

Proceeding as in Rao (1973) it is not difficult to verify that the ML estimator é,
satisfies (6.1) and hence one can conclude that 6, is optimal according to both the
asymptotic variance and the more general Weiss—Wolfowitz criteria.

It would be of interest to obtain results regarding the rate of convergence of
I (90X 6, —8) 1o N(0, 1) where &, is an ML estimator. For the special case when
{X., k = 1} is a stationary markov process and for the case when {X, } is a sequence of
independent, not necessarily identically distributed random variables, Prakasa Rao
(1973, 1975) has shown that for every compact set K < @, there exists a constant Cx
such that foralln=1andre R,

sup |Pao(IX2(6)(6, —6) < 1)~ DP(1)| < Cn ™', (6.5}
teX

where I,(8) = na(@), and &(¢) is the distribution function of N(0, 1).
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6.2. Efficient tests

Consider the model satisfying (A) to (C) of Section 5 with I,(8) having diagonal
elements all equal to n and G(8) a non-random matrix with rank / < k. It is assumed
that @ is k-dimensional. Consider the problem of testing the hypothesis H: 8 = 6.
Let {6} be a sequence of alternative values of 8, where 6, = 6o+ I Vg, 8n being a
tk x 1) vector of real numbers such that §, -+ 8 as n =+ . It follows from assumption
(C) that

£(1,.(60)) » N (0, G(80)), under P, 4, probability, (6.6)

where (Y, )= £(Y) denotes the distribution convergence of Y, and N, (A, B) is
the k-variate normal distribution with mean vector A and covariance matrix B.
Under assumptions (A) to (C) it can be verified that the sequences of probability
measures {P, g,} and {P.o,} are mutually contiguous (via condition (1) of Roussas
(1972), p. 11). This fact enables us to compute the limiting distribution of 4.(8)
under the alternative {P, ¢,} probability (see e.g. Roussas (1972), p. 54, Theorem 4.6
for the special case of Markov processes). Thus,

P(A,(60)) > N (G(60)8, G(60)), under P,q, probability. (6.7)
One may consider the test statistic
Q, = 47(60)G " (60)44(60), (6.8)

where G (8,) is any generalized inverse of the matrix G{8o). It follows from (6.6) and
(6.7) that
PR chi-square (/) u.nder P, ¢, probability, - 6.9)
Non-central chi-square (/, A) under P, probability,
where [ = degrees of freedom = rank of G(68p) and A = non-centrality parameter =
57G80)G "(80) G (60)8 = 5T G (80)5.

Eq. (6.9) gives us the necessary limit distributions to derive the size and the power
of the test based on Q,. Note that the statistic Q. requires the knowledge of the
limiting matrix G(8,) which in the present case turns out to be the Fisher information
matrix per observation and is usually easy to compute.

Alternatively, one may consider the likelihood-ratio statistic, —2 log A,,, where

Aa=p(Y";680)/p(Y"; 6,), (6.11)
6, being the M.L.E. of 8. It can be shown that
(-2logA,~Q.) 50 (6.12)

both under P, g, and P, o, probabilities. Thus, the likelihood ratio statistic —2 log A,
isasymptotically equivalent to the score statistic Q,. If G(8o) is not known or not easy
tocompute one may use — 2 log A, rather than Q, since the former statistic does not
require the knowledge of G(6,) (but requires computation of 4,).
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It is not difficult to show, using standard techniques that both the statistics
discussed above are optimal in the sense of maximizing Pitman power (i.e. the limit of
the power function at 8,), among all tests of the same size. (See Section 3 for
definitions.) The limit distribution of —2logA, and Q, for testing a composite
hypothesis involving some nuisance parameters can easily be obtained. See
Dzhaparidge (1977) for details.

Large-sample tests based on the log-likelihood were also studied by Prakasa Rao
(1974) and optimal asymptotic tests in a certain sense were discussed by Bhat and
Kulkarni (1972) for the ergodic type models.

7. Optimality results for non-ergodic models

7.1. Estimation

Consider the model of Section 5 (satisfying assumptions (A) to (C) therein) and for
simplicity let § be one-dimensional. Assume G(6) to be a non-degenerate positive
random variable. In particular, we have

£(4.(6))~ L(G*(6)2), (1.1

where Z is a N(0, 1) random variable independent of G(8). The limiting distribution
of 4,(0) is thus a weighted normal distribution and is not normal.
Let T be any consistent estimator satisfying

I*(ONTS - 6)-G'(8)4,(6) >0, in probability (1.2
when @ is the true parameter. It then follows that
LY (OXTH — 8> LGV (9)2), 1.3

when @ is the true parameter. The limiting distribution of T3 is thus non-normal. Let
T, be any other consistent estimator such that

2 (9T, —0)» £(T), (7.4)

where T has some continuous distribution symmetric at the origin. Following the
arguments of Weiss and Wolfowitz (1966) it is easily seen that T is optimad
according to the Weiss—Wolfowitz criterion in Section 3 with respect to the class of
estimators satisfying (7.4). This fact was verified rigorously by Heyde (1978) for the
ML estimator 6,. Basawa and Scott (1977) have shown that the ML estimator 4,
satisfies (7.2).

Since the limit distribution of the ML estimator 4, is not normal the asymptolic
variance criterion of Section 3 is not relevant here. In fact, for the branching proc.ss
example discussed in Example 1 it is known that I)/2(8)(6, ~6) converges tv a
random variable whose variance is infinite.

See Heyde (1975), and Basawa and Scott (1979) for a detailed discussion of a
criterion related to (7.2).
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7.2. Asymptotic tests

Consider the problem of testing H: 8 =6, against the one sided alternative
K:6>0, where ¢ is one-dimensional. Basawa and Scott (1977) show that the
statistic 4,(8,) is optimal according to the local power criterion (see Section 3).
However, Sweeting (1978) and Feigin (1978) showed, in particular non-ergodic
models (branching process, and conditional exponential family respectively), that
4,18,) is not optimal according to the Pitman criterion (see Section 3). In fact, it is
possible to show that a modified version of the score-statistic AX(6) is optimal
according to the Pitman criterion, where

A%(80) = A,(80) ~3hG.(60) (1.5)
with
G.(60)=1"(66)B.(6c) and B.(8o)=(—d’logp/dB?),,.

The statistic A%(68,) defined in (7.5) is seen to satisfy the Pitman criterion at 4
corresponding to the sequence of alternatives 8, = 8o+ 1,/ (60)h, h > 0.

Basawa and Koul (1980) consider the vector parameter case and the problem of
testing a composite hypothesis involving nuisance parameters and show that a
modified score-statistic analogous to the one defined in (7.5) is asymptotically
minimax in the sense of Weiss and Wolfowitz (1969).

Basawa and Koul (1979) study the asymptotic properties of the likelihood-ratio
test for testing a composite hypothesis involving several parameters and obtain
non-standard results. For the special case of a single parameter and testing a simple
hypothesis it turns out that the likelihood-ration statistic is asymptotically equivalent
to

T, ={B.(6. )6, ~ 0)1",

where 5,, is the ML estimator. Under H : 8 = 8,, the limit distribution T, is chi-square
with one degree of freedom. The statistic T, is therefore simpler to use. However, T,
is not optimal according to either the local or the Pitman criterion. This fact is to be
contrasted with the corresponding result for the ergodic model of Section 6 for which
T, and A%(8,) are asymptotically equivalent and both statistics are optimal according
to both the local and the Pitman criterion. Since in the ergodic model G,(8)
converges to a constant, the second term in 4% (8,) defined by (7.5) can be ignored.

8. Continuous time processes

A basic and fundamental work in the area of inference for continuous time
processes is due to Grenander (1950). Billingsley (1961) and Ranneby (1975)
considered continuous-time Markov chains. Akritas (1978) studied estimation
problems for Markov processes, semi-Markov processes and related jump-type
processes in continuous time. Feigin (1976) surveyed estimation problems for
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non-ergodic type continuous-time processes including diffusion processes. Athreya
and Keiding (1977) studied estimation in continuous-time branching processes.
Taraskin (1974), Brown and Hewitt (1975) Le Breton (1975) and Kutoyans (1977)
among others investigated various inference problems for diffusion processes. The
monograph by Cox and Lewis (1966) gives a survey of early work on point processes.
See Basawa and Prakasa Rao (1980) for further references.

8.1. Jump-type processes

8.1.1. The likelihood function

Let{Y., u =0} be a continuous-time process with the state space < R. Denote by
F,=0{Y,0<su=<t} the o-field generated by the family of random variables
{Y., 0= u=<1}. Ps denotes the probability measure defined on &, where 6 @ cR*
(k-dimensional Euclidean space). It is assumed that for every pair 6,, 8;€ @ the
probability measures Pj, and Pj, are mutually absolutely continuous. Define the
density (or the likelihood function) corresponding to the family of random variables
{Y.. 0=<u =<} as a Radon-Nikodym derivative of P§ with respect to P}, where 8y is
some fixed value of 6. Thus,

3
Py O<us<t; 8)=¥::(y..,0$usl).

The calculation of a Radon—-Nikodym derivative for continuous-time processes is
not always easy. If the process is of a purely jump-type, however in a majority of
cases, the density for the continuous observation over the interval (0, t) can be
deduced (at least heuristically) simply by concentrating on the jump-size distribution
and the distribution for between-jump intervals, provided that only a finite number
of jumps occur with probability one in any finite interval. In this section we shall
adopt this heuristic derivation of the density and confine ourselves, from now on, 10
the purely discontinuous process. Diffusion processes will be discussed later on.

At this stage one may formulate the ergodic and non-ergodic models for p(y,, 0 s
u <t; 8)on the same lines as for the discrete-time case ((A) to {C) in Section 5.1} the
limits being for ¢+ o0 rather than as n + 0. Similar discussion as in the previous
sections, will apply for the continuous-time models. We now turn to examples.

8.1.2. Some Examples

Example 7 (Stable process). Let {Y,, u =0} be an additive process with non-
decreasing sample paths. In particular, suppose the increments in any disjoint
time-intervals are independent and have a positive stable distribution. Let Y,, forany
t>0, have a distribution with Laplace transform

Efexp{~AY,}]=exp{—taA®/I"(1-8)} (a>0,0<8<1).

Such a process was used by Brockwell and Chung (1975) as an input to a dam model.
0" =(a, B) is the parameter of interest. It is well known, that, for the stable process
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under consideration, an infinite number of jumps occur in any finite interval. We,
therefore, consider instead a related process where only jumps of size=¢ are
recorded, where ¢ >0 is a predetermined small number. Let N(¢, ¢) denote the
number of jumps in (0, t) whose size = ¢, {Ui(e), k = 1, 2, .. .} the sequence of jumps
of size =¢, and {Zi; k =1, 2,...} the sequence of time points at which such jumps
oceur. {(Zy, Ui(e)), k =1, 2,...} will then determine a compound Poisson process.
We can now construct the likelihood function based on the realization

{(Zw Uele)) k=1,2,....N(s, &)},

and this is given by
N
Lia,B)=¢" [IIA(U:).
im

where ¢ = 1§ aBu """ du, A(u)=aBu'"®, U; and N are abbreviations for Uj(e)
and N (1, ) respectively. It is clear from the work in Basawa and Brockwell (1978)
that this model belongs to the ergodic family with the diagonal elements of /,(8)
being equal to ¢ and G(8) being the Fisher information matrix with elements

Gu(0)=[B2+{loge + (1 -B)/ T (1-B)Fl,  Gunl6)=y/a?,
and
G13(6) = G,y(0) ={log e + I"(1 - B)/I"(1 - B)}¢.

Standard asymptotic results (cf. Section 6.1 and 6.2) regarding the M.L.E. and
likelihood ratio tests apply as ¢ -0, for any fixed £. Basawa and Brockwelt (1978,
1980) discuss the limiting behavior of the M.L.E.’sof @ and g for fixed r and as ¢ = 0,
which may be of independent interest. See Basawa (1980) for the properties of a
conditional test of 8.

Example 8 (Markov processes on continuous time). Let {Y,, u =0} be a Markov
process on the state space &, a Borel subset of a Euclidean space, and transition
measures

Py A;0)=P{Y..,€A|Y.=y;8), AeS,

where 8 € © < E*. It is assumed that the sample functions of the process are right
continuous step-functions. Furthermore, suppose

limp(t, y,{y};8)=1 forally andé.
=0

Consider the discrete-time imbedded process {(Xu Zi), k=0, 1,2,...} where X;
are the successive distinct states of the process and Z, are the times for which the
process stays in the states X,. The imbedded process is a Markov process (on discrete
lime) on the state space £ x R, R = (0, o).
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Suitable assumptions on the transition densities of the discrete-time Markov
process {(Xi, Zi), k =0, 1, 2, ...} (see Billingsley (1961)) ensure that results analo-
gous to Example 4 apply. See Billingsley (1961) for details, and for specific
applications. (Also, see Example 9 below.)

Example 9 (A queueing process). This is an application of Example 8. Let A, and u;
denote the arrival rate and the service rate given that the queue-size is j. Assume that
the inter-arrival times and the service times are exponential random variables. Set
ro=0, suppose A, for j=1 are known functions of an unknown parameter §¢
@ c E*. Also, u; for j =0 are assumed to be known functions of 8. The evolution of
this queueing process follows that of a birth and death process which is a continuous
time Markov process on the state space £ ={0, 1, 2,...}. The likelihood function
corresponding to the realization of the process over (0, r) can easily be deduced using
the imbedded process, and is given by (assuming a fixed initial state)

(Iﬁu Af‘(ﬂ))(iﬁl #7’(0)) (/ﬁo exp(—(A,(8)+ “,(9)))‘,')_

where
u; =frequency of transitions j—»j+1in (0, ¢),
d; = frequency of transitions j-»j—1in (0, ),
y; = total time spent, during (0, ¢}, in the state j.

Assuming that the stationary distribution for the queue-size process {Y., u =0}
exists it can be verified that this model belongs to the ergodic family. See Wolff
(1965) for the properties of the M.L.E. of ¢ and of likelihood ratio tests.

Example 10 (A semi-Markov process). Let {Y,, u >0} be a jump-type process
having an imbedded process {(Xx, Zi), k =0, 1, 2, .. .}, where, as in Example 8, {X,}
are the successive distinct states the process passes through, and Z, are the times
spent in the states X;. Assume that {(X, Zi), k =0, 1, 2, . ..} is a Markov process on
ZxR,R=(0,). In particular, suppose {X.} is a Markov chain on &=
{1,2,..., m}, and conditional on {Xi}, Z are independent gamma variates with
index x, and mean x,0. The process {Y,, u =0} is then not Markovian, but it is a
semi-Markov process. (For { Y., « = 0} to be Markovian one must assume that Z, are
independent exponential (given X, ) random variables.) Suppose, for simplicity, that
the transition probabilities of the Markov chain {Xi} do not depend on 4. The
problem is that of drawing inferences about @ from a realization {Y,, 0 sus=r}.
Although {Y,, u =0} is not Markovian, we can easily construct the likelihood
function using the imbedded process {(Xi, Zi), kK =1, 2, ...} which is Markovian on
discrete time. The problem then reduces to that of Example 4. See Basawa (1974),
and Feigin (1976) for details on the present example. This example is seen to belong
to the ergodic family with the choice I,(6)=1.
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Example 11 (Pure birth process). Let {Y,, u > 0} be a linear birth process with birth
rate 6. This is a Markov process on #£={1,2,...}, with the imbedded process
X Zi) k=0,1,2,...,where X, = k (assuming Yo = 1) with probability 1, and Z;
are independent exponential random variables with rates 8(k +1). The likelihood
function of {Y,, 0= u =<1} using the imbedded process, is easily constructed and is
given by (ignoring terms free from 6)

e"s- 93.'

where S, =g Y. du, and B, is the number of births in (0, ¢). The limit distribution of
the M.L.E. of 8 was derived by Keiding (1974). It is apparent from Keiding's work
that this model belongs to the non-ergodic family with I,(6)= (e”—1)/6% and
G(6) 4 V, where V is an exponential random variable with mean unity. If we observe
{Y.} at discrete equidistant points, say k=1,2,..., the resulting discrete-time
process will be a super-critical branching process with a geometric offspring dis-
tribution discussed in Example 1. Thus, Example 11 is a continuous time analogue of
Example 1.

8.2. Diffusion processes

8.2.1. The likelihood function

A diffusion process {Y., 4 =0} is a process on continuous time with continuous
sample paths, and satisfying certain further conditions. We may view the process
{Y.} as a solution of the stochastic differential equation

dY.=u(Y)du+o(Y.)dW,, u=0,

where u(-) and o(-)=0 are continuous functions and {W,, u >0} is a standard
Wiener process. (See Gikhman and Skorokhod (1972).) Suppose that the function
u(Y,) is a known function of an unknown parameter 6, and wirte x(Y,; ). From
aow on we consider the equation

dY,=u(Y,; 0)du+dW,, uz=0,

where we have assumed, for simplicity, that o(-) = 1.

The problem is that of drawing inferences about ¢ from a continuous observation
{Y.;0=u=t}. Let PY(8) and P}y denote the measures induced by {Y,, 0<u =</}
and {W,, 0< u = t} respectively. Assume that

P.{L',.’(y..; 0) du <oo] =1, Voe®.

Then, P%(8) is absolutely continuous with respect to Piy and it can be shown (see
Kailath and Zakai (1971), or Lipcer and Sirjaev (1972)) that the Radon-Nikodym
derivative of P'y(8) with respect to Pl is given by

dpP,(8)

2 (Y 0<usn)= exp” 1(ya; 8)dYa— _['u’(y..;a)du}.
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Since
\ oy [SPY(8) dP'y(ﬂu)}
dp,(o)/dpy(oo)-{ ] ap) Gofined,

it follows that the likelihood function ignoring terms free from & is given by
t L}
exp{ [ w(¥u:0)aY. =4[ wiYaiorau).
(] 0

where the first integral in the exponent is a stochastic integral. We now consider
below a special case.

Example 12 (Ornstein—Uhlenbeck process). Let {Y,, u =0} be a solution of
dY,=8Y,du+dW,, u=0, Y,=0.

Here u(Y;6)=6Y,and o(-)=1.
The likelihood function is seen to be

t 1
exp[OI Y. dYu—%a’J' Y2 du].
('] 0

For the explosive case, #>>0, it can be shown that this model belongs to the

non-ergodic family with 1,(0)=e"'/20 and G(o); V where V is a Xf random
variable. For the stationary case, § <0, the example belongs to the ergodic family
with the choice I,(6)=r and G(8)=-1/26.

See Feigin (1976) and Brown and Hewitt (1975) for details on the limit dis-
tribution of the M.L.E. of 8 for the cases > 0 and < 0 respectively. See Dorogovcev
(1974), Prakasa Rao (1979), and Prakasa Rao and Rubin (1979) for work on
least-square estimation for diffusion processes.

9. Bayesian methods

9.1. The Bernstein—Von Mises theorem

A key result in the asymptotic theory of Bayesian inference is the so-called
Bernstein-Von Mises theorem which states that the posterior distribution
approaches the normal distribution in the mean as the sample size increases.

Suppose that {Y,, n =1} is an arbitrary discrete parameter stochastic process
defined on a probability space (£2, %, P,), 8 € @ an open interval of R. Let € @ be
the true parameter. Let A be a prior measure on (0, B), B the o-algebra of Bore
subsets of @. Suppose A has density A(-) with respect to Lebesque measure and
further suppose that A (-) is continuous and positive in an open neighborhood of ¢ ..
Let p,(8|y(n))=p.(@|y., ..., y.) be the posterior density of & given the obser
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vations yi, . . . , y» corresponding to the prior probability density A(-). (p.(8)y(n))is
a conditional density of 8 given y(n).)

If Y, is a discrete time stationary Markov process, it was shown that posterior
density converges to normal in the mean by Borwanker, Kallianpur and Prakasa Rao
(1971) using the methods of Bickel and Yahav (1969). Prasad (1973) (cf. Prasad and
Prakasa Rao (1976) and Moore (1977)) proves this result for some special classes
of processes. Let

XUy ) =008l Y1y yah
where t = n*/%(6 — 6,), 6, being the ML estimator. Under some regularity conditions
(cf. Basawa and Prakasa Rao (1980), Chapter 10, or Prakasa Rao (1974)), it can be
shown that
o

. 172
px (4!("))"'(2’—:’) e /[ dr=0 almost surely,
—00

lim
neco

where ip is the limiting Fisher information. This result is known as the Bernstein-Von
Mises theorem. As an application of the Bernstein-Von Mises theorem, one can
obtain asymptotic properties of Bayes estimators T, for a suitable class of loss
functions (see Section 9.2) and show that the maximum likelihood estimators and
Bayes estimators are asymptotically equivalent for smooth priors (cf. Prakasa Rao
(1974)) extending a similar result of Borwanker, Kallianpur and Prakasa Rao (1971)
in the Markov case.

9.2. Bayes estimation

As an application of the Bernstein—Von Mises theorem, one can obtain asymptotic
properties of Bayes estimators. We define a Bayes estimator T, = T,(y(n))=
T.(y1, ..., y») as an estimator which minimizes

B,(6)= [ W6, $)pa(6ly(n) do,

where W (6, ¢)is a loss function on @ x @. Note that B, (¢) is the posterior risk under
the loss function W(-, -) and prior density A (- ). Suppose such an estimator exists and
is measurable. Further suppose that the loss function is of the type

W6, &)= W(l6 -9,
where
Wix,))=W(x;) ifx;=x,20.
Let 4, be a MLE. It can be shown that
n"¥T,-6,)+0 as. asn-oo,

under some further regularity conditions, (Prakasa Rao (1974)) extending earlier
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results of Borwanker, Kallianpur, Prakas Rao (1971). In particular, it follows that

n(T,~0)=>N(0, 1/1(6)) if n*/*(§,—)=>N(0, 1/1(0)).

It can also be shown that the asymptotic Bayes risk corresponding to the loss
function W is the same as that of the maximum likelihood estimator. Recently (cf.
Prakasa Rao (1977)), we have been able to show that

| T = 6] < Cpen ™"

uniformly over compact sets K of the parameter space giving an improved bound for
discrete time stationary Markov processes generalizing similar resuits of Strasser
(1977) in the i.i.d. case.

Generalized Bayes estimates for discrete time Markov chains including the
transient Markov chains have been studied in Levit (1974) by using methods of
Ibragimov and Khasminskii (1972). The peculiarity of the problem here consists in
the fact that weighted probability laws arise as limit distributions of the estimator §,.

We mention that Doob (1949) obtained a fundamental result regarding consis-
tency of Bayes estimators. He showed that Bayes estimators corresponding to a prior
A are consistent except possibly on a set of A-measure zero under reasonable
conditions. Schwartz (1965) proved consistency of Bayes estimators in the i.i.d. case
under conditions weaker than those given in Le Cam (1953) or Wald (1949) for
consistency of Bayes estimators and MLE's respectively. These results can be
extended to arbitrary discrete time stochastic processes. Foutz (1974} discussed
degenerate convergence of posterior distributions in the independent not necessarily
identically distributed case. Similar results were obtained by Yamada (1976).

9.3. Bayesian testing

Let A be a prior measure on (6, ) which assigns positive probability to every
non-empty open subset of . Let the decision space D consist of two actions do and
d; such that for every @ at least one of L(8, dp) and L(, d,) equals zero and both loss
functions are non-negative and measurable in 8. Let

L(8) =max{L(6, d1), L(8, do)}.
Suppose that
[ Loaen<w
e

and define
AYNB)= I L{#)A(d8), BeR.
B

Let H={6:L(8,d,)=L(#)}and H'=6 —H.
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A Bayes procedure for testing Ff versus H' is

do, if | ply(n); 0)A*(d6)= . 9)A*(d9),
slynn=1 'L”"’ JA%(@0) L,p(,(,.) )A*(d6)
di, otherwise

and the Bayes posterior risk is

L. = min|1HP(n): 0)A*(d8) [i ply(n); 6)A*(d6)
" fep(y(n); 0)AWd6)’ Joply(n); 9)A(de) |’

It can be shown that the posterior risk L, goes to zero exponentially under some
regularity conditions.

10. Nonparametric inference

10.1. Nonparametrric estimati

In the previous sections, we studied statistical inference for stochastic processes
under the assumption that the measures generated by the processes are completely
known except for certain parameters which have to be estimated from the observed
sample paths of the process. As in the classical situation, this might not always be
possible and we may be forced to use nonparametric techniques for inference.

Suppose {X., n = 1} is a strictly stationary stochastic process with a continuous
one-dimensional marginal probability density f(y). If the process consists of i.i.d.
observations, then it was shown by Rosenblatt (1956) and Bickel and Lehmann
(1969) in a more general case that there does not exist a function h,(y: xi,.., xa)
measurable in (xi, ..., x,) for each y such that

Eha(y: X1, ..., X0)=f(y)

for all y and for all continuous £, In other words, one can not obtain unbiased
estimators of density under reasonable conditions. Borwanker (1967) showed that
this negative result still holds when the observations are from a stationary process. It
is natural to consider whether one can obtain estimators which are asymptotically
unbiased, for instance. There are several methods of density estimation in the i.i.d.
case. Most of these methods give estimators which, under comparable conditions,
have similar properties as far as asymptotic behaviour, such as rates of mean square
error, are concerned. The main methods which have been used in the dependent case
are the kernel method of density estimation, the method using orthogonal expan-
sions and the method of delta sequences. The kernel method has been used by
Rosenblatt (1970) and Roussas (1968, 1969a,b) to obtain estimators of one-
dimensional marginal and transition densities and the method of delta sequences by
Prakasa Rao (1979) to obtain estimators of marginal densities for discrete time
stationary Markov Processes. Delecroix (1975) used the method of orthogonal
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expansions for studying estimators of densities when the process is stationary and
@-mixing.

Banon (1978) discussed a nonparametric estimator for the marginal density of
continuous time Markov processes. This estimator is a sequential analogue of the
fixed sample density estimator using the Kernel method. Furthermore, it is recursive
in nature, asymptotically unbiased and meansquare consistent at each x. A similar
method can be adopted for estimation of the derivative of a density p{x), when it
exists. Banon (1978) has used these results for estimation of the drift coefficient m(x)
in a stochastic differential equation

de, =m(e,)dt+o(e)dW(), (@) =g, =0
by using the fact that m(x), o(x) and p(x) are related by equation
m(x)=Ho"(x)+o*(x)p'(x)/p(x)}

for all x for which p(x) # 0. Recently we have obtained estimators of p(-) by using the
method of delta families in Prakasa Rao (1979).

Ibragimov and Khasminskii (1977) studied the problem of estimating the value
F(S) of a given functional based on the observation of the solution {X(/),0s < T}
of the stochastic differential equation of the type

dX (=8N +edW(r), O0st=<T.

We have discussed above one aspect of nonparametric estimation viz. estimation
of the density when the observations are dependent and form either a continuous or
discrete time process. Another aspect of the problem is to study the robustness
properties of nonparametric estimators of location and scale for dependent data.
Gastwirth and Rubin (1975b) investigated the effect of serial dependence in the data
on the efficiency of robust estimators. They showed that if the observations are from
a stationary process satisfying certain mixing condition then linear combinations of
order statistics and the Hodges-Lehmann estimators are asymptotically normal.
Related work on these problems is in Gastworth and Rubin (1971, 1975a) and
Gastwirth, Rubin and Wolff (1967). Koul (1977) proved the asymptotic normality of
the regression estimators when the errors in the regression model are stationary and
strong mixing. A Chernoff-Savage representation for a general class of rank order
statistics for stationary ¢-mixing processes has been studied by Sen and Ghosh
(1973). Sen (1977) has also discussed almost sure representation of linear combina-
tions of order statistics with smooth weight functions from stationary ¢-mixing
processes. Portnoy (1977) obtained estimators of location parameters which are
approximately asymptotically optimal in the sense of Huber (1961, 1972) for models
which are similar to moving average models.

10.2. Nonparametric tests

Not many results are available as regards nonparametric tests for stochastic
processes. The main work in this area is due to Bell, Woodroofe and Avadhani



1.V. Basawa, B.L.S. Prakasa Rao / Asymplolic infe for siochastic p 247

(1970) where they obtain distribution-free tests for processes with ‘independent
structure’, i.e., the processes which are either mixtures of i.i.d. processes or from
which one can generate i.i.d. random variables.

Another aspect of the problem is to study the performance of the usual non-
parametric tests under dependence. Serfling (1968) studied the Wilcoxon test when
the dependence is of ¢ -mixing type. We shall describe these results briefly.

Suppose Xi,....Xm and Y,,..., Y, are independent sample paths of a sta-
tionary &-mixing process observed up to times ‘m' and ‘n’ respectively with
marginals F and G. The problem is to test the hypothesis H: F = G. The Wilcoxon
statistic

1 m n
U= i :>-:| P (Y, - X)),
where e(u) = —1, 0, 1 according as u <0, =0, >0 is used when the observations are
i.i.d. One of the useful properties of the Wilcoxon two-sample statistic in the i.i.d.
case is its asymptotic normality. Serfling (1968) proved that this property still holds
even under dependence of ¢-mixing type. It would be interesting to study the
performance of other nonparametric tests under dependence. Albers (1977) has
studied one-sample linear rank tests when the observations are from an autoregres-
sive process. He showed that these tests applied to certain transformed observations
have asymptotically the same properties as under independence both under the null
hypothesis and under contiguous alternatives. Similar work has also been discussed
in Modestino (1969).

11. Sequential inference

The main characteristic feature of sequential procedures is that the number of
observations required or the time required for observation of the process is not
determined in advance. The decision to terminate the observation on the process
depends at each stage on the result of the observations made up to that stage. A merit
of the sequential method is that test procedures and estimation procedures can be
derived which require on the average a substantially smaller time period of obser-
vation or a smaller number of observations than equally reliable procedures based on
a predetermined time of observation (or number of observations).

11.1. Sequential estimation

Consider a discrete time process as in Section 5. Let 6. be a MLE of 6. It can be
shown that the method of maximum likelihood can be used with a suitable stopping
rule to obtain estimators of @ with generalized variance, i.e., the determinant of the
covariance matrix of §, (when 8 is a vector) smaller than any preassigned number.
This makes use of the random central limit theorem for martingales. For details see
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Basawa and Prakasa Rao (1980). One can obtain asymptotic confidence ellipsoids of
given volume and given confidence coefficient by using sequential estimators of the
above type. Results of this type were obtained by Anscombe (1952, 1953) for i.i.d.
observations, and by Sarma (1976) for discrete time stationary Markov processes.

Sequential estimation problems for continuous time parameter stochastic proces-
ses with stationary independent increments were first studied by Dvoretsky, Kiefer
and Wolfowitz (1953a, b).

Let{X (1, 8); t =0}, 8 € © be a family of stochastic processes. Let ¢(r) be the cost of
observing the process up to time ¢ and W(4, ¢) the loss functionon & x . Let T bea
stopping time (cf. Doob (1953)) corresponding to the process and § a decision rule
depending on X (¢) only through its values for 0 = ¢ < T. The rule correspondingto 7
and & is as follows: observe the process up to time T and then adopt the estimate 8.
Such a procedure is called a sequential plan. One can study properties of minimax
rules and Bayes rules among such sequential plans. Kiefer (1975) discussed invari-
ant, minimax sequential plans when the invariance is with respect to either the
decision problem or the time parameter.

In order to study optimality properties of a class of unbiased sequential plans, one
can obtain an analogue of the Cramér-Rao inequality. An important lemma due to
Sudakov (1969) is basic to the study of sequential problems for continuous
parameter processes.

The significance of Sudakov’s result is that it gives conditions under which stopped
processes preserve absolute continuity and it provides a way of calculating their
Radon-Nikodym derivative. Using this result, Magiera (1974) has derived an ana-
logue of the Cramér~Rao inequality (see Rao (1973)) under some regularity
conditions. For results of similar nature, see Trybula (1968), Franz and Winkler
(1976) and Kagan, Linnik and Rao (1973). A short survey of the results is given in
Winkler (1977).

11.2. Sequential tests

Suppose {Z(¢), 1 =0} is a stationary process with independent increments with
Z(0)=0 defined on a probability space. Let %, be the o-algebra generated by
{Z(s): 0=s=1}. Suppose T is a stopping time with respect to the family {%, 1 =0}.
Let

M({) = E[e-lZ(T)]

and I ={r: M(t)=1}. If I is non-degenerate or if E T <00 and E{Z(1)]=0, then it is
known that (cf. Hall (1970))

E[Z(T)]=E(Z(1))E[T].

This is an extension of Wald’s equation for continuous time processes. Similar results
of this nature, based on higher order moments, can be found in Hall (1969, 1970).
The above relation can also be derived using the theory of martingales (cf. Doob
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(1953), p. 380). Also, one can obtain a continuous time version of Wald's funda-
mental identity viz.

E[e_'Z(T’M(l)_T]= 1.

Shepp (1969) derived the above identity for Wiener processes.

Sequential probability ratio tests (SPRT) for continuous time processes with
independent increments were first studied by Dvoretsky, Kiefer and Wolfowitz
(1953a). Andrieu (1975) and Schmitz (1968, 1970) discussed SPRT tests for
continuous and discrete time Markov processes. SPRT tests for discrete time
stochastic processes were investigated by Eisenberg, Ghosh, Simmons {1976).
Flavigny {1975) considered ¢ -mixing processes.

Sequential Bayes tests for the sign of the drift of Wiener process were studied by
Chernoff (1961) in a series of papers. Bickel and Yahav (1972) are concerned with
the problem of testing Ho: p < 0 versus H,: u >0 by sequential sampling from a one
parameter exponential family of densities f(x, u) with cost ¢ per observation and
zero one loss structure. These results are extensions of those of Chernoff (1961).

Sequential procedures for detecting parameter changes in time series models and
for detection of increase in drift for Wiener process were discussed by Bagshaw and
Johnson (1975a, b).
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