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SECOND ORDER EFFICIENCY OF THE MLE WITH RESPECT TO
ANY BOUNDED BOWL-SHAPED LOSS FUNCTION

By J. K. GHosH', B. K. SINHA' AND H. S. WieaND
University of Pittsburgh
Let X,, X3+ -+ be a sequence of i.id. random variables, each having
density f(x, 8g) whm {Rx. 8)) |s 2 family of denslum with respect 10 &
dominating measure p. Suppose nl(O 8) and n)(T 8), where 8 is the mle
and T is any other emcnenl i have Ed th ions up 10 o(n ')

iformly in a p hbourhood of 8, Then (under certain regularity
conditions) one can choose a funcuon c{8) such that 8" = § + c(O)/n salisfies

Pu{ == < (8" - 8o)(8D < 1)

> P =5 <al(T = BB} <z} + o(n™),

for all x,, x, > 0. This result implies the second order eﬂlqcncy of the mle with
respect to any bounded loss function L,(8, a) = h(ni(a ~ 8)), which is bowl-
shaped i.c., whose minimum value is 2ero at a — 8 = 0 and which increases as
|a ~ 8] increases. This answers a question raised by C. R. Rao (Discussion on
Prolessor Efron’s paper).

1. Introduction. After the pioneering work of Fisher (1925) and Rao (1961,
1962, 1963), second order efficiency has been discussed recently by Ghosh and
Subramanyam (1974) and Efron (1975) for curved exponential families. As pointed
out by Ghosh (1975) the approach and results of these authors are different from
those of Pfanzagl (1973); resuits of Akahira (1975) seem to be similar to those of
Pfanzagl (1973). The spirit of Pfanzagl (1975) seems nearer to ours.

The main motivation for the present work came from a problem posed by Rao
(1975): Does the second order efficiency of the mle continue to hold if one has
more general loss functions than the squared error loss? Under certain assumptions
we prove the following result (Theorem 1):

There exisis a function c(8) such that §' = 6 + c(é)/ n satisfies
- 1
Po{ = x) <m0 - B5)(1(8,))* < x,)

> Po{—x, <n}(T = B)(I(8))} < x;) + o(n™")

Jor all x;, x, > O (at least one being positive) where § is the mle and T any other
efficient estimate.
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SECOND ORDER BFFICIENCY 507

This provides, as proved in the Corollary, an affirmative answer to the above
question for any bounded loss function (4, a) = h(ni(a — 8)) which is bowl-
shaped i.e., whose minimum value is zero at @ — = 0 and which increases as
|a — 8] increases.

Our technique of proof is borrowed from that of Bahadur (1964), Rao (1963) and
Weiss and Wollowitz (1966). We associate with each (efficient) estimate T a natural
test of Hy: 0 = 8, — r,/n§ vs. Hy: 0 = 6, + r,/n% and compare the performance
with that of the Bayes test under a suitably chosen prior. It turns out that a test
associated with the mle is Bayes up to o(n~'). This fact is at the root of the
inequality asserted in Theorem 1. It was pointed out in Ghosh and Subramanyam

(1974) that a similar Bayes property explains the second order efficiency with
respect to the squared error loss.

For curved expoxllemial families l“ O inated by the Leb. , a direct
calculation shows n3(T — 8) and n1(8” — @) have the same first four cumulants up
to o(n'%); this means, as pointed out by Ghosh (1975), that Theorem 6 of Pfanzagl
(1973) will fail to discriminate between these estimates. It will be shown elsewhere
that when we consider terms up to o(n~"), the second cumulant of ni(o.' —-6)is
smaller but the other three of the first four cumulants remain the same for both
estimates. This leads to a straightforward proof of Theorem 1. It is also possible to
show that §’ can be interpreted as the conditional expectation of T given § up to
o(n""). This provides a Rao-Blackwell type justification of second order efficiency.
We shall deal with these aspects elsewhere.

A major drawback of the present results is that they don't apply to the discrete
case. In particular the curved multinomials which were the main source of inspira-
tion to Fisher and Rao have to be excluded.

A proof of Theorem 1 in the vector parameter case where we replace the interval
- x,/n% tod + x,/n%) by 8 + C/n% (where C is a convex set with the origin
as an interior point) is under investigation. Pfanzagl and Wefelmeyer (1978) have
proved this result for symmetric convex sets under stronger conditions on the
estimates.

We present in Section 2 the notations, i and the of the
theorem. Section 3 contains a' sketch of the proof of the theorem, with statements

but not proofs of the necessary auxiliary results. Section 4 is devoted to these
proofs.

2. Main results. Let X, X;,- - - be a sequence of ii.d rv’s distributed as
f(x,0) € F = {f(x.0): 8 € 8), a family of densitics with respect to a dominat-
ing measure p. We shall require the following assumptions to hold throughout this
paper.

ASSUMPTION 1. © is an open interval of the real line.

ASSUMPTION 2. f{x, @) is jointly measurable in x and 4.
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AssumptioN 3. For each x, f{x, #) admits partial derivatives up to fifth order
with respect to 8 and these are continuous in 8 for § € 6.

AssuMPTION 4. The measures corresponding to { f(x, 8), € ©) are mutually
absolutely continuous.

AssumpTioN 5. For all § € 6,
Egllogf(X, 8)] < oo,

] logj(X 9)
0<I(8) = — .
0) - - g el |
AssumPTION 6. For cach 6, € 8, there exists a compact neighbourhood €, 3
8, and functions G(x), H(x) satisfying

al
Wlosf(x. )

<G(x), i=1,234

<H(x) i=5
for 8 € 8, and
Supy ca,Es[ G(X)'] < ®, SupeqE[ H(X)] < oo
ASSUMPTION 7. For cach 6, € O, there exists a compact nexghbourhood 8,3
8, such that n‘i(L,(ﬂ) + nI(O))/(y,_,(l?))l and n‘T(L,(()) — npy ()
/s, 1(0))1 under # have Edgeworth expansions up to o(n ") uniformly for § € 8,
where L,(0) =-3'/80" log I(8), i = 1,2, 3, 4 with I(8) = II" {(x,, 6), the likelihood

at 6 and np, \(0) = Ep(Ly(®)), nps o8) = Ep(Ly(8) — npy (8))%, niy o8) =
Ey{Ly(6) + nl(8)).

AssuMpTION 8. For any fixed 6, €8, m(§ 0)(1(0))1 where 4 is the mle has

an Edgeworth expansion up to o(n™ ') uniformly in a compact neighbourhood 8,
of 8, in the following form:

@0 A{r0 =010} < x}= 0(x) + 2O, 205D | iy

ni
where

() = [Z e~ dt/ ), §(x) = ¥/(x),

00 = ro{ ka0 (0 + By 4 T )

. 4(0) = ]'—ao[ Ko(0)H\(2) + KuT(”Hz(t) + Kns(ﬂ) Hy(z)

+ Xu(®) Kn( )

24 Hiz) +1 {Kﬁ(v)H;(x) + K"(o) H(2)
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+ 5O b (2) 4 KO KB + 3K (O (Vo)

+%K,.(0)K,.(9>H,(z>] ]¢(z) &,

4\
Hy(x)(x) = - 2 ) #00)
and the term o(n~") in (2.1) is uniform in # € ©,.

REMARK. Assumption 7 holds if Assumption 6 holds and Z, =
3/log f(X, 8)/3¢/, j = 2, 3 satisfy a uniform version of Cramer’s condition like ¢*
of Pfanzagl (1973, page 1012). A more general sufficient condition is given in
Bhattacharya and Ghosh (1976). Conditions under which Assumption 8 is valid are
given in Pfanzagl (1973), Chibisov (1973a, 1973b), Gusev (1976), and Bhattacharya
and Ghosh (1976). The various Ky(ﬂ)s in the E,dgewonh expansion comc from
formal expansions of the cumulants of n‘l(o - 0)(1(0))1 in powers of n~1, Specifi-
cally, we have used the following formal expansion for the rth cumulant K (8):

k= Kl®) |, Ks® oy et
n
_Hl(,.l(o) Ba®) oy, ey
K, .(o) R -
= 0(" ", r>S.

The main result of the paper is the following.

THEOREM 1. In addition 1o Assumptions 1-8, assume that T is an efficient
estimate and for any fixed 8, € 8, n'i(T - 0)(1(0))% has an Edgeworth expansion up
to o(n~") uniformly for 8 € 8y, analogous to (2.1) with the K’s denoted as K's. Then
there exists a function ¢(8) such that 8’ = § + c(8)/n satisfies

@) Pof-x <ni(l" - 8) (I8 < x)

> P‘o{ -x< "%(T - 00)(1(00))* < X) +o(n"Y)
Jorall x > 0;

(b) P.,{ -x < ni(b" - 00)(1(90))% < Xz}
> P, (—x < n¥(T - 0)(1(8))E < 1) = o(n™")

Jor all x,x,>0 (at least one of x,, x, being positive) provided llle_condilion
Ki(8) = Kyy(By) = K (8p) = Kiy(8p) = O is satisfied in case Ky (8) = Kyy(6p)-
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REMARK. It will be proved elsewhere that the condition in part (b) is satisfied
for curved exponential families if 7" is Fisher-consistent and thrice continuously
differentiable.

3. Sketch of proof of the theorem. In this section we will provide a sketch of
the proof of the theorem. In the sequel we state also the necessary auxiliary results
whose proofs will be given in the next section.

For fixed 6, € © consider the problem of finding the Bayes test § for the
two-decision problem of accepting H,: 8 = 8, — r‘/n* or Hy: 0 = 6, + r,/n% on
the basis of X = (X}, - - -, X,). Here r;, 7, > O with at least one being positive.
Assume 0 — 1 loss function and let

C, = exp(—r31(8,)/2)/ {exp(—r31(80)/2) + exp(—ril(8p)/2)}

C, = exp(—r11(85)/2)/ {exp(— r31(80)/2) + exp(—riI(6,)/2))
denote the respective prior probability of H, and H, being true. The Bayes test §
accepts H,(H,) if y(8) > (<)0 where
@) ¥(d) = log =L + L(d—’—{) - L(d+2,).

G ni ni
We now demonstrate that a test based on the mle 6 is nearly Bayes. Towards this
end, consider the class C of decision rules which may be described by
Accept H,(H,) if T(x) < (>)8,

for some measurable function T(x) of the data x = (x,,- * -, x,). The following
result will be proved in the next section.

PROPOSITION 1. For large n, with probability 1 — o(n~") under both H, and H,,

the Bayes test § belongs to C with T(x) = d*(x) (a unique solution of y{d) = 0 in A,
defined in the next section).

It will be seen that 4*(x) does not differ much from the mle . In fact, we will
show d*(x) satisfies for large n
3
(2) ld*(x) — 8] = o(ﬂ‘h"—)) forx € G,
with
Py(C,) =1~ o(n~"), i = 1,2, for a suitably chosen C,.

Now under 0 ~ 1 loss, the Bayes risk R(T) of the rule in @ based on 7(x) can be
calculated as

33) R(T) = C,Py (T(X) > 8) + C,P,(T(X) < &)

- CLI(T(x) > 8,) + C,LI(T(x) < 8;) P
C\l, + Gyl
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where |, = (@ — r,/nt), I, = {8, + ry/ni), P = C\P, + C,P, with P, = the
probability measure under H;, / = 1, 2. I(T(X) > §,) denotes the indicator of the
event that T(X) > 8, and J(T(X) < 8,) is the indi of the )
Since KT(X) > ) = 1 = I(T(X) < 8,
Ch -Gl C2'1

Cily ¥ Cyly 1(T0) > 8 dP + =" dP.

1f T*(x) is another measurable function of x, the corresponding rule has risk R(T*)
which obeys a similar formula and the difference between the two risks obeys

R(T) - R(TY) -‘I%(I(T(X) >8) = I(T*(x) > 8) dP

tary event.

R(T) = |

I -
(34) < J\H\I«m — 8(T*() - 8) < 0) dP
e _
o, eVl 4 l\ ’

where ¢ is defined in (3.1), D, is the region where T(x) and T*(x) lic on opposite
sides of 6, Using (3.2), (3.4) and some other related results, we will prove in
Section 4:

Lemma 3.

IR(d*) = R(f)| = o(n~3).

This result implies that the test in © based on the mle § is Bayes up to o{n"3).
Considering now a test in C based on an efficient estimate T(x), it follows that
R(T) — R(§) > o(n~7) for all r.ry » 0 (at least one being positive) or equiv-
alently, using the expression of R(T) as given in the first equality in (3.3),

(33 CPy— 8 < Bo) + CoPy (> 85)

> C\Pgo oy T < 80) + CoPyru ey (T > 80) + 0(n~1)

for all r,, r, > O (at least one being positive). The idea now is to evaluate the
probabilities involved in (3.5) using Assumption 8 and also the assumption in
Theorem 1 regarding Edgeworth expansions of § and T and to conclude that
certain relati garding the | of the two distributions hold in view of
(3.5). Towards this end, note that straightforward putations yield the foll

P-.—:.m(’ < 00} - °(’|(1(0o = ’1/'&))%) + °|..,u(l.))l(0u)/"{

A re
2 (1))}

+ ':?{":. G ( K (@ H (r(Ke))
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A (] s
(9 G a0 {0
7@

n - Ky (80 Hy( (10 | 6((1(6))F
3 gyt O )l( )

— 0 K ) H(2) + 3 KB ()

+ 2K B HAD)(2) de | + o(n™),
and L
Pn,n,/»l{é >8)=1- ¢(—-r2(1(0° + ’z/”s))') + ‘l’-\.,,u(nv‘,))l(oo)/""l

r? )
+ % [0—2.:,(1(0.,))“00) - { Tl Ku(oo)Hl('— ’2(1(00)),)

2 1 2 '

i) +%Kn(9o)”z(—’z(1(0o))i)+%K;.(%)H;(—r;(l(&o))’)]
1'(6p) 1
. 2 ¢( = r(1(8,))
(189)F (=rilt(@))

,
12 (KO HA(2) + 2 Ky (B Hl2)

+ 2K (00 H(2)Jo(z) de] + o(n™")
where
O .(8)= -0, _.(8) i=12
Using (3.6), (3.7) and similar expressions with K;;'s replaced by l?,/'s, which hold for
the probabilities for T, (3.5) implies
2
exp[ - %1(90)] [N, (B H\(2) + Kn(O)Ho(2),2
+ Ky,(80) Hy(2) /6)¢(2) dz
7
+ e"P[ - ?l l(go)]fu—or,(l(le))l(l(lI(oo)Hl(z) + K, (85)Hy(2)/2
+ K3,(80) Hy(2)/6)d(2) dz
2
(38) > exp[ - ’—2‘ 1(90)] ]'1‘:}"'))%(1?,,(00)11,(2) + K, (8))Hy(2)/2
+ K (B0 Hy(2)/6)#(2) dz
I = _
+ o] = 510 |12, (Rul@d () + BB (212
+ Ky (06) Hy(2)/6)e(z) dz
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which after some simplification reduces to

_ n -
(Ka(80) — K3i(80)) + (1(00))*(Krl8) — Ky(8)(r, — r)/3< 0
for all r, r; > O (at least one being positive), yiclding the relations
(3.9) Ky (60) = Kn(80),  Ky(B5) < Kyy(6p).
We shall now use these relations to prove Theorem 1. We need one more lemma.

LEMMA 5. Lel 6=16- 3(0)/ n where g(.) is a twice differentiable function. For
8 €86, P,(nl(o - 0)([(0))1 < x} is given by (2.1) with &, (6), ®, ,(8) as given in
As:umpuon 8 except that K\ \(8) and K,,(0) are to be replaced by K, ,(8) = K, (8) —
3(0)(1(0))1 and Kyy(8) = Kyy(0) — 2g'(8) respectively.

Define now ¢(8) = (K;y(0) — K,,(_ﬂ))/(l(o))‘i and 6" =4 + c()/n. Tt then
follows from Lemma 5 that K|,(8) = K,,() where we have written K's for K;’s of
Lemma 5. This implies, in view of (2.1)

n t
Po{—x, < ni(6" = 85)(1(80))" < x,)
1
(3.10) =Py { = x) < ni(T = )(1(8p))* < x,)
= (Ka(80) = K\(80))/2n% 2, Hy(2)e(2) dz + o(n™1).

We now consider two cases in the light of (3.9).

Case (i). Kj(8p) < K;,(8). This, of course, proves both parts of the theorem
since X, Hy(2)¢(z) dz < O for all x,, x, > O (at least one being positive).

CASE (n) K,,(vo) K;,(0,). In this case the Edgeworth expansxons of nz(é'
00)(1(00))1 and nx(T 0.,)([(00))! under 6, agree up to o(n~ x) This means that
the result in Lemma 3 is not adequate and one needs to strengthen it. For this
purpose, considering the case r| = r, = r (say) > 0, we prove in section 4 that, for
large n
3.11) |d* — d| = o(n~")forx € C,
with P,,,(C)= I —o(n™"), i =12 for a suitably chosen C,,, where d = §* +
V(0" /n with

(]
wol.r) = 58D -~ o).

(3.11) implies the following result whose proof is similar to that of Lemma 3 and
will be omitted.
LeMMA 4.
[R(d*) = R(d)| = o(n~").

Lemma 4 implies that (when r, = r, = r > 0) the test in @ based on 4 is Bayes
up to o(n~"). Comparing now the Bayes risks of the two tests in € corresponding
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to the estimatesdand T = T + Vo(T, )/ n, we get the following which is similar to
(3.5). Of course, here C; = C, =1.

(.12) Py z(d <8)) + Py 2(d > 8,)

> Py ,(;)‘(f< 8) + Po‘,wﬁ(f > 8) + o(n™")

for all r > 0. However, repeated use of Lemma 5 along with the conditions
Ky, (8) = Ky (8p), Ky(8p) = Kyy(8y) and K{(8y) = K,\(8,) shows that (3.12) im-
plies

(3.13) (Ks3a(6,) - Ezz(oo))(_f,”(l(a,))lﬁz(l‘)‘?(z) dz)

+ (Ku(go) - 1?41(00))(_f,?l(l,))IHA(Z)‘?(Z) dz)/12 > 0("_1)
for all » > 0, proving part (a) of the Theorem, by (2.1).
To prove part (b) of the Theorem, note that the Lh.s. of (3.10), under the
assumed condition K\;(8y) = K;5(8y) = K,5(8p) = K33(8p) = 0, is equal to

g [ K00 Hy(2)/2 - R0 H(2)/2

+ {Ku(oo) - 1?41(90)}”4(1)/24]‘#(1) dz + o(n™")

(19 =2 {Kal0) — R0} /2 {~ [SHA(2)0(2) ds - [2H(2)0(2) di)
+ {Ka(8) = Ka(60)}/24. { - [2K(2)8(2) dz
~ISH(2)(2) dz} | + o(n™")

>o(n™"),

by (3.13).
To complete the proof we have to check Proposition 1, (3.2), (3.11) and the
lemmas. This will be done in the next section.

COROLLARY. The mle is second order efficient with respect to any bounded
]
(bowl-shaped) loss function L (0, a) = h(ni(a — 8)) whose minimum value is zero at
@ — a = 0 and which increases with |a ~ 8|.

Proor. The proof follows from the fact that
Ey(L,(6, 7)) = [§[1 = Po{n}(T = 8) < y}] dh(»)

— 12 Py (R3(T = 8) <y} dh()

and that a similar expression holds for E,{L (8, 6°)}).
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4. Proofs of lemmas and other results. In this section we provide proofs of
Proposition 1, (3.2), (3.11) and Lemmas 3 and 5. Towards this end, define for some
a>0,¢>0¢e ¢, c; M), M, to be chosen later,

4 -{d é——<d<o+—]
ni n

Bn-[d:i—“osn<d<0+“°g"},
ni n'}
L0
C,,,—{X o - 0D|<clogn], Cuﬂ{x;sup"_‘“‘L)|<Ml},
L(® () c logn
C,,,-{X:supl,_,“,Li(M;}, C‘,-[X:|L7n + 1(6p)| < ‘—S—J
ni

Lyé clogn

C,,,-[X IL)_FM(%) == ]
Ili

and
@) € = Ci,N CyyN CyN Cop Cope

We shall first prove Proposition |, (3.2), and (3.11). For that we need

Levma 1. For large m, Py(X € Gy =1-o(n™"), i=1,2

Lemda 2. IfX € C~,,, W(d)1 in B, and \(d) = O has a unique solution d* in A,
(The proofs of these lemmas will be given later.)

Hence, if X € C,, then 6 € B, and so by Lemmas 1 and 2 the proof of
Proposition 1 follows.
To prove (3.2), note from (3.1) that expanding L(.) around §, we get

Hd) = log & —T’ZA%"‘)—QM i)
(-9 g
42) + "3, Lyd) - "3’! Ly(d)
-4 lw)ﬂ(o)}—"*”(d D)L,(6)
oseif o]
L) - —5——19)

where § lies between d — r,/n? and § and § between d + r;/n3 and 4. For
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X € C,, d* therefore satisfies

s (,_F)[Llw) (8)} ( _:L- )L,(o)/s'
[d.,,__*—o)L,9)/3']/"’("+”){ 2)
= 0((log n)*/n),
proving (3.2).

To prove (3.11), note that under the condition r, = r, = r (so that C, = C,) (4.2)
implies

(43)

%(d. e (d. . n_,; . 0_); L;3(!5) _ (d. _r_ 9‘)3 Ly

implying, for X € €,
o= ——[(d - L) @) - (4 L é]JLa(i)]

l2rL2(9) n ni
1 1(9). 1 -2
» e )
(4, r) 0( log n ]
n%
where
M, |(0) . 1

e, r) = SO
The second line follows since Ly(d) = Ly(f) + o(1). Ly(8) = Ly(f) + o(1) and
|d* - 6] < a/n’ by Lemma 2. This proves (3.11).
It remains now to complete the proofs of the various lemmas. Before proving the
lemmas, we first establish the following auxiliary result which is similar to the
uniform strong law of large numbers.

LemMA 0. Ler C be a compact interval and let u(x, 1) be a real-valued function
measurable in x for each t € C and continuous in ( for each x. Let H(x) and A(x)
satisfy
(4.4) |lu(x, )] < H(x) forallt € C,

Supg g,/ H*(x) dFy(x) <
and
(4.5) lu(x, ] = u(x, )| < [t = r|4(x),
$upy g, A(x) dFy(x) < o0.
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Then if the X;'s are i.id. {Fy, 6 € 8,),
P supiacln™ 'S0, ) = futx, ) dry(] <e] >1- K4 vo 6,

where e is any positive quantity and 0 < K*(e) < oo is a constant depending only on ¢
and independent of 6.

Proor. Consider a finite division of C in the form C = U\C, where K(e) will
be specified later. Let 4 be the midpoint of C;, j = 1,- - -, K(e) and put py(1) =
fu(x, 1) dFy(x). Then

Py{supecin ™ Zju(X,, 1) — fu(x, 1) dFy(x)] > e}
< SJP, (supegln ' ET(X, 1) = w(0) = nTIZHX, 1) + (o) > 5 )
+ZJOR,{In™ Z3u(X, 1) = o)l > 5 }-
The first term is
IROP 0 Blsupralu(X ) — u(X 1) ~ w(®) + w(5)] > 3 ).
Let
W/(X,) = sup,eclu(Xp 1) = u(X,, 1) — wo() + wy(2)l
and
wl) = E{ W) > 0j =1, -, K(o).
Note that by the assumption (4.5) of the lemma
W(X) < 5“P:ef.;|’ - 4l{A(X) + EyA(X))
”"J(‘/) < 3“P¢er;|’ — 12E,A(X)
< 2[5“P,ec,|‘ - ’;|][‘“Paeo.(£y‘(x:))]
= given any ¢ > 0, 2/2 > 8 > 0, we can choose C;'s suitably so that 0 < uy)(4) <
e/2 — 8, V@ € 8,, Vj. This shows that K(e) is independent of 8.

Hence using Chebyshev's inequality with the fourth moment and bounding the
moments about mean of W/(X,) by condition (4.4)

Po(n7'Z1W,(X) > 5} < Po{InT TIWIX) = wit)] >3)

< PR %) — wa))* + G B (%) = w(1))*)
n's*

< C,(8,¢) )

n)

for some 0 < Cy(8, £) < o0, which is independent of § and j= 1, « -, K(a),
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yielding

C
First term < M
n
Similarly by Chebyshev’s inequality with fourth moment and condition (4.4),

Second term = Z1 Py {In~'Eu(X, 1) = m(1)l > 3 )

—1en 4
< Ko Ea{" 'Shu(X, 1) - Ml(‘/)} < K(e)Cy(e)
(e/2)* n?
for some 0 < C,(e) < 0. []
PROOF OF LEMMA |. Let 8 = 6, + d/n*, d = — r orr, Then
1 A 1
Py{C1a) = Po{ —c(log n)(1(80))? + 0(1) < mi(d —8)(1(8))?
(4.6) < c(log n)(I(80))* + 0(1)}
>1—o(n™h),
for a suitable ¢, by assumption 8.
Let 8, be a compact neighbourhood of 8, Application of Lemma 0 shows that

Ki(¢)

Lyt
P,[supl,_,“, # = 1ty ,(2) <e'] >1- '—2 foranye’ > 0
n

for all # € 8,, by assumption 6, implying

K,
4.7) Py(Cp} > 1 - )
for a suitable M, < 0. Similarly one gets

K.
(48) P(Cy} > 1-—

n

for some M, < o and all § € 6,
Finally, by assumption 7,

P,[((hz(o))%)-ll qu.o) . l(a)i _‘.'loi] >1-o0(n)
uniformly for 8 € 8, for a suitable ¢?. Define
B, = [x : ‘L”(Io) + 1(o)| —°‘1°5"}

50 that Py(D,) > 1 — o(n™") uniformly for § € 6, If § = 6§, + d/n3, one gets by
Taylor’s expansion

(4.9) Po{Can) > Py{C, 0 Coyn D,} > 1 — o(n™Y
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for a suitable ¢,. Similarly one gets for 8 = 6, + d/ni
(4.10) Py{(Cyy) > 1= o(n™")
for a suitable ¢,. Combining the inequalities for all the P(C,,)'s one gets the lemma.
0

Proor oF Lemma 2. 1If €, occurs and if 7 is big enough and if e, M, and ¢, were
suitably chosen, L(9) is strictly concave in |§ — 8| < e. Hence for any 0 < §,
/2 i= 1,28, %8, L — 8) — L(8 + &) is increasing in |4 — 0] < e/2. And
if n is large enough B, C [, — /2, 8, + &/2] so { increases in B,.

Now consider y( = a/n1). Certainly

¥(d) = logS -L (d.,. i)('l + ’z)

1
n

1(6,) ( ﬁ) n+r
=(rr-p - Lld+—=||——=
(ri-r) 2 1 o ( )
where | 8| < max(r,, r,). But

LUAIPEATE: Cha/i

3
ni

n

for |y| < 1, which, for all n large enough, is approximately — /(fy)r, and !hus
W + 'r/m),.. 1(0,,)/7.(rI — ry + 27). So if « is sufficiently large, wé - a/nl) <
0and (4 + a/nl) >0

PROOF OF LEMMA 3. Define D,, = (X :d* <8, < ), Dy, = (X:d* > 8, >
6}, D, = D,, U D,, and note that if €, and D, both occur,

(o) = O(M)
n%

and then
[eH8D — 1]/]e¥® + 1] = 0((log n)*/n?).
But
P,,(C n D)= 0( logn) by assumption 8, = 1, 2.
i
s n

IR(a) = R0 = of LB = -4
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ProOF OF LEMMA 5.

P,{n( 4 - 6)(1(0) < x)
[ (,, —o-50) _G-0g®) (- o) s(o))(,(,»,“}

n
(where 4 € (6, 0))
- p,[n%w-a)(u - EO) G056 gy} < x 4 HOUON syt ]

1

_p.{nw-o)u(o»u(Hg(o)(z(o»%) £0)_6-0r@)y }
1

-p.[...w oo < (Hs(”)“(”)) )( (0 _(E-0g@)"
16 - 0|<“°g"]+o(n")
-p,[m(o 8)(1(8))} < x +"3(") L”)ﬂf—omm(n-')] + o(n"Y)

- i -y < 5+ EOUOR S5O oo

ni

1
- °(x L BB | xy(o)) + Qussroymeioyald)
n nt
N L LA ()|

. +o(n"Y)

which after straightforward simplification reduces to

o(x) + llr:.,{(x,.(o)—xw)(l(o>)*)ﬂ.(z>+ Ka0) 2+ K0 H,(z)}¢(z)dz
ni

sh [l {Ratorm o) + T2 ) KOy KD

H()

+H{(xu - @M A + 2D KO by + ""“’) Hy(2)

(8 ] \
+ (Kul®) - sOXION) K (D) H) + (50 )3('“’” W
+ Ky(8)K4,(0)
6

Hs(l)] ]¢(l) dz ]+ o(n™"),

thereby proving the lemma. [|
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