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L INTRODUCTION

T is well known (sec. c.g. Birkhofl and von
Neumann,! Yang® Muckey,? Michel') that the
fattice of closed linear manifolds of o quaternionic
Hilbert space is a possible candidate for the logic of
propositions (see Varadarajan®) of 3 quantum me-
chanical system, and that there is nothing canonical
about the (classical) choice of the complex number
sysiem (or the development of quantum mechanics.
But. in spile of the wide-spread knowledge of this
fact, very little work has been done 1oward seiting

identify the reals with the sc of all quaiernions ¢
with ¢, = ¢, = ¢, = 0 and the complex numbers with
the set of all quaternions g with gy = ¢, = 0. Every
¢ € Q may be written in the form  + §j, where 2
and § arc complex. We denole by g® the conjugate
of the qualernion g.
1, Vector Spaces

By a vector space over Q (to be called a Q-space)
we always mean a lefl-vector space over Q. A Q-
Banach space is a complete normed Q-space. If X
isa ical space, we denote by C‘,(X) the @

up a theory of q ic quantum mechanics apart
from the (undamental work®-® of Finkelstein, Jouch,
Speistr, and Schiminoviich. We hope that our
present work s of some help in this conlexl, as the
theory of group representations is indispensable for
ihe exposition of quanium mechanics and compact
metric groups ere aa important special case.

L. PRELIMINARY (DEAS
We present this seclion in some detail a5 our
arientation differs from that of Finkelsicin e/ of.
Let O denote the division ring of real quaternions.
We denote an arbitrary clement g of @ by g =g, +
9+ quj + gk where g5, 9, g, g, are read. We
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Banach’ space of all bounded quaternion-valued

conlinuous functions on X with the supremum norm,
An inner product on a @-space V is a quaternion-

valued function on V x V, denoted by (...), with

the properties:

(@) (. g} = (. 0%

(i) (px + p'x's ) = ple y) + P, )

(iii) {x,x) > 0,=0 ifandonlyif x=0,

where x, X', y €V, and p, p" € Q. From (i) and (ii) we

have

(opy + ) = () + (Y.

It is easy to gmvv that, on an inner product Q-space,
2xl = (x, x)} defines a norm.” A Q-space V is called
a Q-Hilbert space if there exists an inner produci on
¥ such that the induced norm makes ¥ 3 complete
normed (-space. The corcepts of orthogonahiy,
basis, etc., for Q-Hilbert spaces arc defined in the
usual way. In what follows H denotes a Q-Hilben
space.

An operator on H is a bounded lincar transforma-
tion of H into itsell. An automorphism of H is a
bijective operator on H. For every avtomorphism 4,
there exists an unique automorphism A4~ such that
AA™ = A& = 1. The set of all automorphisms js
a group in & netural way.
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COMPACT METRIC GROUPS

The clementary theory of Q-Rilbert spaces can now
be developed as in the complex case. We note in
particular that, for every operator 4 on H, there
exists & unique operator A® on H such that (4x, y) =
(x, A®y) for all x, y € H. A* is called the adjoint of A.
An operator 4 on H is called Hermitian if 4 = 4*
and unitary if AA® = A4 =

The spectral theory of Hermitien operators in Q-
Hilbert spaces parallels the theory in the complex
case.t!

Let now V be a finite-dimensional (-space. (Note
that V may be endowed with a Q-Hilbert space
structure.) Given 8 basis (¢,,---,e,) of V, every
linear transformation 4 on ¥ has a matrix representa-
tion (a,,), defined by

Ae,= Tane,.

If 4 and 8 are \wo linear transformations with
malrices (g} and (b,)), respectively, then the matrix
of AB is given by (c,,), where

€ =2 bua,,.
"

Qbserve that our rule for matrix multiplication differs
from the usual rule for matrices over a field.

If A has the mairix {a,,) with respect to an ortho-
pormal basis (¢,), then a,, = (de,. ¢,). The matrix of
A* with respect 1o the same basis is then (8,,), where
b,, = (A%,.¢) = a,. Il Ais Hermitian, then 4 = 4°
and hence g, = af,. II’A is unitary, A°A = AA® =1
and hence

Tala, =94, =Saa.
: :

We note here that, if 4 has the matrix {g,,) wilh
respect Lo a basis {e,), then

Re(ir A) = Re (3 a,)
is defined independently of the basis (¢,).

2. The Symplectic Pichare

Tt is convenient for our purposcs to restale the
usual definition' in gcometric language.

If V is a Q-space, then the additive group of ¥ can
be considered as a C-space (i.e., a vector spacc over
the complex numbers). This we denote by V€ and
call the symplectic picture of V. If (e, -, ) isa
basis for V, then (g, * -, e, fe,, " -+, je.) is 2 basis
for ¥€. Henee VC is of dimension 27. A linear trans-
formation 4 on V is also a lincar transformation on
V€. This we denote by A°. If the matrix of A with
respect to the basis (e, -, e,) is A, + A/, where

. Chevality, Theery of Li Groupr | {Princeton University
Press, Princeton, New Jeney, 1946), 9.
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Ay and A, arc complex matrices, then the matrix of
AY with respect to the basis (e, * -+ . ey, jey, -, Je)
is

A Ay
-4 A
where & denotes the complex conjugate of the com-

plex pumber « and B =(b,) il B is the complex
malrix (5,,).

3, lategratlon Tdeory
Let (X.Z,p) be a measure space. We always
identify functions which differ only on p-null sets.
A quaternion-valued measurable function

S = S+ 00+ [l + Sk

on X, where f, [r =0, 1, 2, 3, are real-valued {meas-
urable) functions on X) is said to be integrable with
respect 10 if and only if £y, £, /y. f, 8re integrable
with respect to p. Il £ is integrable, the integral of f
wilh respect to p is defined as

Jram=[na+ [1ou)s
+ (j/ )i+ U/ .

The following propertics of the integral are easily
verified (g € Q is arbitrary):

@ f(/+ Bk = [ +f;dp.
6@ [t = p{ [1db)o.

o [-Jre

@ | fraa s i1

The only nontrivial refation is (iv). This may be
proved by a slight modification of Cramér’s proof!!
for the complex case.

We define L(X) as the set of all quaternion-valued
measurable functions f such that | f}! is integrable
with respect to . It follows thet fe€ LX) implies
that f¢ & L}(X). If we define for f and g in Li(X)
(f.8) =§/g* du then LY(X) becomes a Q-Hilbert
space with (., ) as ianer product.

If f. g € LY(X) and { f*¢ dp = 0, we say thal f and
£ are let onthogonal. If £ and g are also orthogonal,
we say that f and g are bothways orthogonal.

Y H. Cramir, Marhemaiical Methods o[ Sraristics {Pnceton
University Press, Princeton, New lersey, 1946), 9. 63.
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We note thatiff€ L(X)and p € Q. then fp € LYX).
If £ and g are lefi orthogonal then fp and gg are feft
orthogonal for any p, g € 0.

L Q-REPRESENTATIONS

In what follows, we deoole by G a compact metric
group and by 4 the unique normalized Haar measure
on I, the class of Borel sets of G.

Let H be a separable Q-Hilbert space end A(H)
the group of phisms of H. By a Q-
tion® 4 of G in H we mean & homomorphism g — 4,
from G 1o A{H) such that g — A% from G to H is
continuous for every fixed x & H. The Q-representa-
tion 4 is called wpitary if A, is unitary for every
g€G. An cxample of 8 Q-representation of G in
LY(G) is the right regular representation. This s, in
fact, unitary.

When H is finite-dimensionsl, we may, oa occasion,
regard the 4, as matrices with respect to some fixed
dasis of H.

The potions of equivalence, irreducibility, etc., of
Q-representations are defined in the usual way,4

We aow state some basic theorems. The departure
from the complex case is only slight and so we omit
the proofs.

Theorem 1: Any Q-representation A of G in H is
cquivalent (o 8 unitary (-representation.

Theorem 2: Every unitary Q- repm:nuuon of G
is a direct sum of i ible unitary O-

Theorem 3: In any decomposition of H into irre-
ducible subspaces the same typss occur with the
same multiplicities.

Sehur’s Lemma®: 1t H, and H, be two finfle-
dimensional Q-spaces. Let (4,) and (5,) be irreducible
collections of linear transformations on H, aod H,,
respectively. I M is any linear transformatioa from
H, 10 H, such that (8,M) = (M4,), then M is eitber
0 or an isomorphism.

Corallary 1: If U and ¥ be two inequivalent irre-
ducible unitary Q-representations of G in Q-Hilbert
spaces H, ead H,, respectively, then

J(V,Alu;'x, ydg=0, xeH, yeM,
for eny linear transformation Af from H, to H;.

Corollary 2: Let U be an imeducible unitasy Q-
representation of G in a Q-Hilbert space H of di-
measion ». Then for any Hermitian opecator M of H
into itself’

j (UMU7x, y) dg =

Re(ur
( M)(x_ 9.
n

Remark: Note that with our geometric approach
Corollary 2 may be proved directly without invoking
the ersarz determinant used by Finkelstein ef ol

IV. ORTHOGONALITY RELATIONS AND THE

PETER-WEYL THEOREM

We aow begin an amlysls of the irreducible (and

of G. Ewery irreducible Q-representation of G is
finite-dimensional.

The irreducible unitary Q-representations of G
split up into equivalence classes in s natural way. We
shall index these equivaience classes by a. (It follows
from our analysis that the set of all a's is countable.)
Let n, be the dimension of any irreducible Q-repre-
sentation of Lype o

Consider now & uaitary Q-representalion of G in
H. Let

H= ?S.
be & direct sum decomposition of H into irreducible
subspaces and ict the irreducible subspaces 5, of type
2 be indexed by a set of cardinality ¢,. We call ¢,
the multiplicity of type a in the decomposition

H-@S,.

Nun.muﬂvuﬂ:yd&!np(m;g).v-) e

hence finite-di of a com-
pact metric group G.

Let A be an irreducible Q-representation of G in H
of dimension n and Jet [a.{g)] be the matrix of 4,
wilh respect 10 an orthonormal basis (e,). The func-
tion ,(g) = (4,¢,,¢) is a continvous function on G
for every 7, 3, i.c., the matrix entries [a,,(.)] of A with
respect 1o an orthonormal basis are continvous. It
follows that the matrix entrics of A with respeet to
any basis of H arc continuous, i.c., are elements of
Co(G) and hence of LY(G).

We know that (see Theorem 24 in Ref. 13) in the
complex case the mateix enlries of Iwo moqnnval:nt
L ible unitary ions arc
A similar result holds in the quaternionic case. Toser
this, let U and ¥ be incquivalent irreducible unitary Q-
represenlations acting on @-Hilbert spaces H and K,
respectively, and let i,(g) (respectively u,(g)) be the
matrix entries of U(V,) with respect to the ortho-
normal basis (e){(f)}- If M:H <K is the linear

Gronps (Princeton Unlversity Prom,

P

WL Pontrjegin, T
Pricceion, Now Jangy, 19



COMPACT METRIC GROUPS

transformation defined by Me, = f,, Me, =0 il
5 v {, then by Corollary | to Schur's Lemma

0= _|' (MU', [3dg

= [ustemater .
and also by the invariance of the integral,

- J' (V' MUy, f) dg

-J.u..(x)v:.(s) dg.

Tn words, cvery malrix eaury of U is bothways orthog-
onal to every malrix eatry of ¥,

To siudy the orthogonal relations between the
matrix eotries of a single representation U, let
M:H— H b the linear transformation defined by
Me, = ¢, and Me, = 0 if s 7 1. Then we have, as
above,

j (UM, e)dg =j

=ju..(e)u1.<z) FA)

In case r=5 and r=w, M is Hermitiza with
Re(tr M) =1 and so, from Corollary 2 to Schur’s
Lemma, it follows that

i Bunlp) d3

ﬁu.(x)l' dg=" foratim,s.
n

Furthes, Eq. (A) shows that the o' matrix calries are
mutually orthogonal if and only if they are mutually
Jet orthogonal. However, in contrast to the complex
case, il is not necessary that they be orthogonal, as
the following example shows.

Example 1: Let G be the symmetric group of degree
3. The clements of G are

012 01 2 012
"‘(o 1 2)' “_(0 1)' g'=(1 0 z)'

01 2 01 2 012
"=(1 2 o)' “=(2 1)' "=(2 1 o)'

0 01
= and define
1 0

o - N

-1
Up=1, U= 16+ N,

Ua= (63 - V2 - (V3 + vy,

U= (1 + V30021, Yo = (=1 — V3R,

Uy = (=3 + Di12d2 + (3 - y2v2y.
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Thes the represcolation g,— U, is unitary snd,
moreover, irreducible, because the only vector semt
into & multiple of itsell by all the U, is the null vector.
Since in each matrix the two clements in the priacipal
diagonal arc equal, Wwo of the matrix enlrics arc
identical.

Let 4, = [a,[g)] be any irreducible Q-representa-
tion of G of type a. Define

F, = Spanfa (glg:1 £7, 88,960
It is easy to check that F, depends only on the type «
of the representation and not on the particular repre.
scotation chosen. We call F, the space of matrix
entrics of Lype a. Since every element of the generating
set of F, is & (real) linear combination of the dn?
clements of the type
aa(g). 0, (@) 2,8} angIk, [ S s <,y

F, is a closed linear manifold of LYG) of dimension
at most 4n! (see also Theorem [1, this paper).

The following theorem generalizes the Peter-Weyl
theorem to the quaternionic case.

Theorem 4: The subspaces F, and F, are bothways
orthogonal if @ # . If 3F, denotes the set of finite
sums of elemeats of ULF,, where a ranges over all
types and 3, the uniform closure of 3F,, then

T, = Col) and @F, = Li{G)

Proof: Let [u,(g)]. [v,(g)] be unilary representations
of types a and § respectively. For any p, g€ 0

f W Agpllvwdglal” dg
- W'J-l(pq')"u,.(x)pq'lv.'.(z) dg=0,

by the orthogonality relations proved eaclier, siace,
for any quaternion g, the represeatation {g'u,.(glg)
is equivalent 10 (). Since the clements of F, and
F, are lincar combinations of elements of the form
(. (8)p) and [2,.{g}gl. respectively, we have shown
that £, and ¥, are orthogonal. To prove that F, and F,
are left orthogonal, it is enough to show that, for
2. 9€ Q. pu.(g) and qu(g) are kefl orthogonal. But

[treterianionag
=jul(x)b'qvA3Kp'q)"] dg(p*q) = 0.
For the second part, let us denote by A the set of

8ll real functlons arising from all possible real repre-
sentations of G, Then (Ref. 13, p. 119) the finite real
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Tinear combinations of elements of A& are dense in

Cx{G). the Banach space of real-valued continuous

functions on G. It follows that finite quateraion lincar

combinations of elements of & are dease ln Cy{G).
Therefore, to prove that

.ZF. = ColG)

il 5 enough to show that every function in A is »
lincar combination (and hence a finite sum) of
functions in U,F,. But since every real representalion
A is equivalent 10 & direct sum of irreducible Q-
representations and since the matrix entries of
imeducible Q-represcntations belong to UF,. it
follows that every matrix entry of A and hence every
clement of A is a lincar combination of elements of
UF,.
Since Cy{G) is dense in LYG) and uniform con-
vergence implies Liconvergence and since the F, are
mutually orthogonal subspaces of L}(G), we have

Ly(6) = &F,

Comllm) There exists ul most a countable number
of G.

of inequi Q-rep

FProof: LY(G) is scparable.
The following theorem (cf. Ref. 13, p. 120) may

now be proved exactly as in the complex case,

nmm 5: We stle:l one representative from each
lence class of ible {-rep of
G and devte them by

g g

Then for every element g € G distinct from the identity,
there exists an  such that U™ is not the identity
transformation.

V. Q-CHARACTERS

Let 4, = [a,{g)] be a Q-representation of G of
degree n, Define

X(4) =Re(3 a, ()

Then.it is easy lo see that if 4 and B are equivalent
Q-reptesentalions, then X(4,) = X(B,). In this way
we may associate with every equivalence class of
Q-representations a real-valued function X(g) which
we call (sec also Finkelsicin, Jauch. and Speiscr?) its
Q-character (1o distinguish it from the usual defini-
tion of the character of a complex represcalation

which we call the C-character). We denote by X{g)
the Q-charecter of any rreducible Q-represcutation
of type a. Note that if 4, is of lype a, then

Xfp) = 1 3 lopdg) + lo dg)i® + ju,(5)°
+ka, (g)k*] €F,.
Thus we have the following (heorem.
Theorem 6: Two immeducible Q-represcntations ace
equivalent if and only if they have the same Q-

character. Morcover, Q-characters of incquivalent
N PO ions are orth 1

L-rep

V1. CLASSIFICATION OF IRREDUCIBLE
Q-REPRESENTATIONS

We now pvoc«d {0 study the inler-relations bu\\wn
the i ions and the irred:
Creprcunuuons of G. Let B be an irreducible (o}

P ion of G and B its ient."* Recall
that (if y denotes the complex character) 1 8,) = 7(3,).
B satisfies exacly onc of the following Lhree con-
ditions'1e:

(a) B is not equivalent 10 B.

(b) There cxists a matrix M such that M = M7
(the transpose of M)and MB,M~" = B, foralig € G.

(c) There exists a matrix M such that A = — A7
and MB,M-* = B, for all g € G. We sy (cf. Ref. 16)
that 8 is nonreal, potentially real or pseudoreal
according as it satisfics (a), (b), or (c).

Note that every C-matrix representation 8 may be
considered to be a Q-matrix representation since we
have identificd the complex ficld with a fixed subficld
of the quaternions. However, even if 8 is irreducible
s a C-representation, it noed not be irreducible as a
Q-representation. The following theorem® gives a
neoessary and sufficient condition.

Theorem 7: An irreducible C-representation B is
an irreducible Q-representation if and only if B is
not p IfBisp [, then 8 p
over ( into the direct sum of two equivakent ifre-
ducible Q-represcntations.

Consider now an irreducible Q-representation 4
of G. We say that 4 is (i) of class R if it is equiv-
alent to a real representation, (ii) of class C if it is
equivalenl lo a C-representation but not equivaient

1 W, Wepl, The Thewsy of Gronps and Quanum Mechasits \Dover
Pubcsiont. T New Yerk, 5317, 123,
G Frobenirs Schar, Sitzber, Akad. Wiss. Berkin KL
P, Ma. 18 300
Theory and 11y Application to the Quenram
llnhda u-« Specira (Acadenic Press Inc., New York,
WS p uSer
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to any real representation, snd (iif) of class Q if it is
neither of class R nor of class C. The following three
theorems  establish mrmpond:n«s bclween the
various classes of i Q and

187

Proof: Let the Q-representation of class Q of
dimension n act on the (-space V. We may assume
that A is ubitary. Then g—» AS js  unitary C-
jon of G in V€,

p
Crepresentations.

Theorem 8: A Q-represcntation is of class R if and
on[y if it is equi toap real rep

tion. Two potentially real representations are Q-
inequivalent if and only if they are C-inequivalent.

Proof: Since a C-represeplation is potentially real
iland only if it is equivalent to a real representation, !
the first part follows. For the second part, we have
only to nole that the C-character of a potentially real
representation is real and heace equal to its Q-
character.

Theorem 9: A Q-representation is of class C xfand

We first prove that g — A7 is irreducible. If it is
not, let ey, -, ) bea bms in V€ of some invariant
subspace § for AC. Since AC is unitary, by replacing
Sby S* if necessary, we may assume that 7 < n. The
Q-subspace spanned by (&< .¢) in ¥ is then
invariant under A. Since A is irveducible, we can
conclude that r = a. But then the matrix of 4, with
respect 10 (¢y,°* -, £,) is the matrix of Af restricted
to § with respect (o (¢, -+, &,) which is complex—
a contradiction since A is of class Q. Hence A€ is
irreducible.

We show next that A is pseudoreal. If A, has the
matrix A} + A} (where A} and A3 are complex) with
respect 10 some basis in V, then with respect to the

only if it is equj to a nonreal rep.

Two nonreal representations 8 and C are Q-inequiv-
alent if and only if B is C-inequivalent to both C
and C.

Proof: 1f A be a Q-representation of class C, Q-
equivalent to a C-representation B, then it is clear
that B cannot be potentially real. Also, since 8 is
Q-irreducible, B cannot be pscudoreal by Theorem 7.
Hence 8 must be ronreal. To prove the converse, we
have only to show that a nonreal representation B
cannot be Q-cquivalent 10 a polentially real repre-
seotation D. But this is cvident, since X(8,) =
4[2(8,) + x(8,)] is orthoponal to X(D,) = x(D,),
using the classical orthogonality relations.

If B and C are Q-inequivalent, then X(8,) is not
equal to X(C,) and hence #(8,) is not equal (o cither
2(C,) or fC,), ie., Bis C-inequivalent to both € and
C. Conversely, if 8 is C-inequivalent to both C and
€, then X(8,) = }[x(8,) + x(B,)) is orthogonal to
X(C,) = 1lC) + I(C,)] and hence B and C are
Q-incquivalent.

We now turn our attention to pseudoreal represen-
tations. If B is one such, then by Theorem 7, B =
B' © 8 where B' and B are equivalent irreducible
Q-representations. Since y(8) is real, X(8]) = §x(8,)
and hence the equivalence class of B! is uniquely
determined by 8. We call any member of this equiv-
alence class a Q-represeatation induced by 8.

Theorem 10: A Q-representation A is of class Q if

basis in V¢, A% has the matrix

,A: 4
A4
Since A is unitary, AT has the matrix
|1.' H
A A
The matrix
[
M=
I o

hes the properties M = —MT and MAM™ = AT,
Le., A is pseudoreal.

Since e equality X(4,) = §x(AS) is evident by
looking at the matrices of A, and A%, we conclude
that A is induced by A,

Conversely, if 8 is a pseudoreal representation
inducing the Q-representation A, then 4 has to be of
class Q. For, if not, we may assume, by what has been
proved $o far, that A is cither a potentially real
or a nonreal representation. In either case x(A) is
orthagonal to y(B) = 2X(4) = 2 Re [x{4)}—=a con-
tradiction.

The second part is proved by a comparison of
characters.

To sum up, the situation is as follows: There is a
d between the
seal (respecii

cor q

classes of p

and only if it is induccd by a p
tion. Two pseudoreal reprtsenuumns are Cmcqmv
aleot if and only if their induced Q-

and the equi :Iasses of Q-
represenuuons of class R (class Q). There is a one-to-

are Q-inequivalent, "

onc between pairs of equivalence
classes of aoareal representations, each pair consisting
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of the cquivalence classes of a rcpresentation ond its
contragredient, aod the equivalence classes of Q-
representations of class C.

This leads us 1o the following rule for the computa-
tion of irreducible Q-choructers. Recall that an
irreducible C-representation with character y is non-
real, potentially real or pscudoreal according as

jxrwdc =0 I0)
-4l 2)

=-1 [©

Rule: Every real irreducible C-character x(g) deter-
mines an irreducible Q-character X(g) = x(g) or
e according as y salisfies (2) or (3). Every nonecal

ible Ccharacter x(g) an
Q-chacacter X(g) = Re [x(g)). ANl the irreducible
Q-characters arc obtuined in this way.

In the complex case, o C-character y is irreducible
if and only if its (L*-) norm is unity. For the quatec-
nionic case, we may show that the square of the norm
of an irreducible Q-character is 1, §, or } according
as the corresponding representation is of class R, C,
or Q. This does not in general give us a criterion fos
deciding the irreducibility of an arbitrary finite-
dimensional Q«representation, but if the square of the
nomm of its Q-character is ], we can conclude
that the representation is irreducible and is of class

Every Q-characier X(g)} is an invariant function,
ic.. X(g) = X(hgh™) for all h € G. In contrast to the
complex case, it is not in general teue that the itreduc-
ible Q-characiers form a basis for the subspace of
invariant functions 7 in LG). In Examplc 2 of Sec.
VII, for iostance, there are only five irreducible Q-
characters, whereas L3(GY s of Qimension 8. However,
since, as is easily checked, the irreducible C-characters
form a basis for /, we may conclude (rom our analysis
that the irreducible Q-characters form a basis for /
if and only »f every icreducible C-character is real.
This happens, for instance, when G = SO(3).

1n passing we note that SO(3) dots not admit of any
irreducible Q-representation of ¢lass Q, since it does
not admit of any irceducible C-representation of even
degree.

We conclude this section with the following result.

Theorem 11: [ Aisan i

Proof: I( 4 is of class R, we may assume that 4 is
rea] und orthogonal. Since the (real-valued) matrix
entries of 4 ace then orthogonal and the reals com.
mute with all the quaternions, F, is of dimension
.

1f A is of class C, then again we may take 4 1o be
complex and unitary, I 4, has the matrix [a.{g)], its
contragredient has the malrix [3,{g)] By definilion,
every clement of F, is a lincar combination of ek~
meats of the form a,(gXf + i) = Bo, g} + 74, 4gh
where ff and y are complex. Again using the dassical
orthogona! relations, we may conclude thal F, is of
dimension 20",

Now, let 4 be in class Q. Consider A€ By
Thcorems 7 and 10, there exists 2 malrix Af such that

0
0 C

where 8 and.C ore equivalent to A. Therefore, F, is
spanned by the right Q-multiples of the matrix
entries of MA“M~ and hence of A%, But the set
of matrix entries of A€ is closed (except possibly for
sign) with respect to complex conjugation and by the
same method used carlier in the proof. we can con.
clude that F, is spanaed by the matrix entries of A%
But, by Theorem 10 again, A is an irreducible C-
representation. Invoking the clussical orthogoaal
selations once more, we conclude that F, is of
dimension 4n?,

MASM =

VII. ABELIAN GROUPS

Let now G denole a compact metric Abelian group.
Since every irreducible C-representation of G is ooe
dimensional, it follows from Theorem 10 that G docs
not admit of any irreducible Q-representations of
class Q, i.¢., every irreducible Q-representation of G
is equivalent 10 2 C-representation. It follows im-
medialely that every irreducible (-representation of
G is one dimensionsl. However, in contrast to the
complex case, it is not true thal if every irreducible
Q-representation of a compact metric group G is
one dimensional, then G is Abetian, as the following
example shows. We denote by G the group opposite
1o G {i.¢., the elements of G° are thase of G and the
group operation in G is given by g - h = hg).

Examplz 2: Let G be the quaternion group, ic.,
=[x\ %4 t].i-_kl Consndey G°. We show that

of type x and degree a, then the subspﬂ(e f, has
dimension %, 2a%, or 4n® according as A is of clm
R,C,0rQ

“"")’ i Q-rep of G° is one
dimensional.

1f g€ @, let R, denote the linear transformation of
the Q-space Q, given by Ry(p) = pg foz all p in Q.



COMPACT METRIC GROUFS

Consider the representations:

Ng—~R;

@g—~A, =R forall geC;

N g—=A, =R if g==xI, i,
=R, otherwise;

Weg—~d =8 U g==xl1j
=R,

() g—= A, =R il g= =%l £k
=R,

otherwise;

otherwise.

it is easy to venfy that the above five {one-dimen-
sional and hence ireducible) Q-representations are
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mutually incquivalent. If F, is the subspace in
LY(G) = Q"™ assaciated with the rth-representation
above, then F, has dimension four and each of the
remaming F, has dimension one. It follows that G
cannot have any irreducible Q-representation in-
cquivalent o all the five above and in particular that
G® does not have any Q-representation of degree
greater than one.
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