JOURNAL OF MULTIVARIATE ANALYSIS 24, 189-206 {1988)

A General Principle for Limit Theorems in
Finitely Additive Probability: The Dependent Case

RAJEEVA L. KARANDIKAR®
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Communicated by P. R Krishnolah

In this paper we formulale and prove 2 gencral principle which enables us to
deduce limit theorems {or a sequence of random vanables on a finitely additive
probability spuce. 1" 1988 Acdemc Pra. lac.

|. INTRODUCTION AND PRELIMINARIES

The main result of this paper can be summarized as “Almost all limit
Iheorems Lhat are true in couniably additive probabilily theory are also
\rue in finitely additive probability (heory.”

More precisely. given a sequence {Y,} of random variables on a finitely
additive probabilily space, we construct a sequence {X,} of random
variables on a countably additive probability space such that a con-
vergence in probability or convergence in distribution type limit theorem
holds for {Y,,} if and only if it holds for {X, } and if, further the sequence
1Y, | salisfies an additional condilion, the same is true for ass. convergence
1ype limit theorems. The sequences {X,} and {Y,} are related via

Ef(Y.Yn..V)=Ef(X,.X)... X)) (1)
for all continuous functions f on R, > 1. This also gives that il { ¥, } is an
iid findependent/strongly mixing/martingale/stationary seq then so
is X0

From 1his, we deduce analogs of several well-known results in the finitely
additive case.
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The formulation of the main result is similar (o Aldous’ formulation of
the subsequence principle [ 1]. The prool is on the same lines as in Karan-
dikar [6). where the same resull was proved for a sequence of independent
random variables in the finitely additive stralegic setting.

We begin with definitions and auxiliary results. For a metric space T, let
C(T) be the class of real valued conlinuous functions on T, C,(7T) be the
class of real valued bounded continuous functions on 7 and 4#(T) be the
Borel o field on 7. Let S be a separable metric space with a metric p.

A finitely additive probubility space (FAPS) is a triplet (H.%. p). where
H is a sel. % is a ficld of subsets of H. and p is a finitely additive
probability measure (FAPM) on (H, ). We will give a brief description of
inlegration theory on ({(H,%.u). For details, see Dunford and
Schwariz [4].

For AcH, let py*(A)=inf{p(C).Ce¥ and Ac¥} and p,(d)=
1 — u*(A"). Without loss of generality, we will assume that (H, 6, p) is com-
plete. ie.. p®(4)=p,(A) implies A€¥.

DernmoN.  Let U, U, be S-valued mappings on H. Say that U,
converges 1o U in je-probability, wrilten as U, —, U if for all £>0,
ne(ptU,. U)>¢e)-0. Let

k
6={U: U=y aJ,,;A,e@.a,eR.k?l}
=

and
LHE = {UVH-Rs1 3,8 U,— U).

Elements of & will be called simple (unctions and elements of £{H. 4. y)
will be called measurable functions or random variables on {H. 6. ).

Remark 1. 1t is easy to see that if Ue L(H, €, p), then for all £>0.
3K < R, K compact such that p*(U ¢ K) < ¢. Indeed, given £> 0, get }" such
that p*(lU~¥|>1)<cand take K=(—a-1, a+ 1], where ais an upper
bound of |V].

From its definition, it is clear that £(H.%. u) is closed under con-
vergence in probability. It is easy 1o sec thal it is closed under addition and
multiplication. More generally, if U, U,....Ue Z(H. 6. 1) and
g€ C(RY), then

g, Uy, ... U )e L(H. %, p). (1.

Integration. For a simple function U=Y* , a,l,, define |Udu=
TE  au(A,). Let £'(H. %€, 1) be the class of Ue L(H. €. p) such that

W,ed. Uy——U  [10,- Ul du~0. e
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For Ue £'(H, €, p), define
[vdu=tim [ U, du. (13)

where U, are as in (1.2). It is shown in Dunford and Schwartz (4, p. 111]
thal (1.3) unambiguously defines | U dp. It is easy to see that all bounded
measurable functions U belong to #'(H, €, p). The following dominated
convergence theorem is proved in [4, p. 124].

TueoreM 1) Let U, U,e £(H, €, p) be such thar U, -, U. Suppose
that |U, (M) € V(h) for all he H and Ve £'(H. 6, p). Then

[w"—wd,‘-»o.

The following inequalities are casy to prove using definition of the
integral. Let Ue £'(H. €, p), U2 0. Then for all 2> 0,

1
. -
u (U;alsajudu (14)
and if 0 U< 1, then
u‘(U>0)zIUdu (1.5)

We will denote [ Udy by EU or E,U. If Ue £(H.€.p). U>0 and
U¢ 2P'(H.%6. p), we define EU=co. With this convention, it is easy to
check thal for al) positive measurable functions U,

EU=lim E(UAn). (1.6)
For Ue £(H. %, u) the set {U<a} may not belong to & for all aeR
and thus we cannot talk of its distribution function. However, the set

1U<a) does belong 10  for all but countably many points a€ R. This is a
consequence of the next resull.

THeoreM 1.2, Let Uy, ... U, e £(H, €. p).

(a) There exists u unique countubly additive probability measure
(CAPM) 2 on (R”, #(R")} such that for all ge C\(R"),

Eg(U,. Uy, o u,)=J'gdA. (n
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(b) Let Be #(R”) be such thar J(0B)=0 (0B = boundary of B). Then
{(U) Uy U)eBYES

and
#(U,, Uy, ... U,)e B) = i(B). (1.8)

In fact for all ge C,(R”), we have

B8, Uso o U) Vst 0= £ L (19

Proof. Lev Lig)=EglU,, Uy, ... U,) geC(R"). L is well defined as
U, Uy, ... U)eIH. 4, p) and is bounded. Let g, € Co{R*) be such
that g, | 0. Using Dini's theorem and Remark ), it can be proved (hat
L(g,)— 0 and hence Daniell's theorem (7, p. 60] implics part (a).

For (b), given Be #(R"). with 2(2B)=0, get g,e C,(R"), 1 ,<g, €1
such that g,(x) = 1 5(x) pointwise. (Here B is the closure of B.) Then

jg. i~ i(B)=1{B). 1110}

Further
U Uy U e BYS pt (gl Uy Use o U2 1)

gng(U..U;' Uy) dy
=Jgkd2

by (1.4) and choice of 4. From (1.9) and (1.10) we can conclude that

p*(U, Uy ... U e BISA(B). (i
Since A(B')=2B, using (I.11) for B and remembering thal
plA)=1—p*(A'), AB)+i(B')=1, we get

HelU.... U, ) e BY2 i(B). 11.12)

Completeness of 6 and (1.11), (1.12)} now give ((U,,... U,)€ Ble‘% and
that (1.8} holds. It can be shown thal g,(U,, .. U} =, 1yr,. . raem and
(1.9) can be deduced from and 1he dominated convergence theorem. |

COROLLARY 1.3 Let G he the distribution funciion of i and It
(a,.a,....a,) be a continuity point of G. Then (1.8) gives {U,<a,) €6 und

uU,ga,:1€i€n)=Gla,. a,. ...a,) {LI3)
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Comlitional Expectation. Let Ue £'(H. €. 1) and F be a sublield of 4.
In analogy with the usual notion of conditional expectation, we make the
following definition.

Dernmmon.  If there exists a Ve £'(H. #, p) such that for all Fe &,
E(U1,)= E{¥1,). then we define V to be the conditional expectation of U
given F and write it as

V=E(U|%).

Given U and #. the condilional expectation E(U)# ) may not exist, but
when it does it has all the properties thal the corresponding notion has in
the countably addilive theory.

Convergence in Disiribution. We will define convergence in distribution
for random variables on {H, €, u). We first introduce the class of S-valued
random variables.

LHEwS)={EH-SsL e L6 p) Tforall geCiS)).
Desinmion.  Let € L(H, %, 1, S) and 2 be a CAPM on (S, B(S)).

Say that ¢, converges in distribution to A(£, =< 1) if for all Be #(S) such
that 4(88)=0, we have

u*(€x€ B)— iB) 11.14)
and
Ho(c€B) = A(B). (1.15)
Since A(0B) =0 implies A(0(B))=0 and pdA)=1—p*(A"), (1.14) for
B implies {1.15). Thus we can delete (1.15) in the above definition.
If p, is any exiension of y 1o P(H). then p*(A) 2 (A)> p,(A4) and
hence (1.14), (1.15) imply that for Be #(S) with 1(3B) =0, we have
(g€ B)—AB)

The next result is a familiar characterization of convergence in dis-
tribution.

THEOREM V4. Let §,€ P(H. €. p; S) and A be a CAPM on (S, #(S)).
Then &, = X if and only if for all fe Cy(S),

Eft6a)~ [ b (1.16)
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Proof. First observe that flii)e L(H.%.p) for feCy(S). Sup-
pose (1.16) holds. Given Bed(S) with A(dB)=0, get f,eC,(S)
lg<fus L [0 1p Then

peBSp 62 ])
<[ feodu=|f,2
and hence by (1.16)
lim sup (2, € 8)< [ /. di. )

But [ f, di. - j(B)=A(B) and hence (1.17) gives

lim sup p*(¢, € B)< A(B). (1.18)
Since A(AB8')=0, using (1.18) for B* we get

timinf u,(£, € B) 2 A(B). {1.19)

Since p*(¢, € B)2 (¢, € B), the two relations (1.18) and (1.19) together
imply

lim p*(¢, € B)=A(B) (1.20)
and
lim p,(§, € B) = A(B). (.21

Thus (1.16) implies that &, = 1. Note that except for the occurence of
outer and inner measures u*, p,, the proof is similar to that in the coun-
tably additive theory, as given in [2].

For the other parl, let 1, be any extension of p to P(H). It is easy to see
that if Ue#'(H.6.p). then Ue¥'(H.P(H.p,) and ihen
fUdu=[Udy,. Thus it suffices to show that & —<i implies
{ &) dp, — [ fdi for all f& C,(S). This proof is also similar to that in the
countably additive theory (sce [2]) and since p,(A) is defined for all
A€ H, outer measures do not appear. We omit the details.

The following observalion can be proved easily using the respeclive
definitions. Let £, € @(H, €. ¢, S) and se S. Let 4, be the measure on S
defined by 4,(4)= 1 ,(s). Then

L——s T G —8, (1.22)
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2. MAIN RESULTS

From now on, we fix a complete FAPS (H, 4, u) and a sequence {Y,} of
real valued random variables on (H, €, u). For each n, let 1, be a CAPM
on (R*, #(R")) such that flor all fe C,(R")

E(Y,. Yoo V)= S, @1

The existence and uniqueness of 1, has been established in Theorem [.2.
Clearly, {4,} is a consistent sequence and hence we can get a countably
additive probability space (@, &, P) and a sequence {X,} of random
variables on (@, &, P) such that for Be #(R"), we have

PUX1 Xy, X, )€ B)=12,(B). 2y
Also
ESUY 1y Y=Ef(X), 0 X,) (23)

for all fe C{R"). Let E,={aeR:P(X,=a)=0}. Then it follows from
Corollary 1.3 that if a,€ £, ! <i<n, then

Y, €a:1<ign)=P(X,<a;:1<ign) (24)

Note that E, is dense in R for each n, indeed EY, is atmost countable.

Let Y=(Y,, Y5, ..) and X=(X,, X, ..) be R*-valued mappings on 4
and R, respectively.

The first result, which has several important implications, admits a very
elementary proof.

THeoRem 2.1. Let (S, p) be a metric space and let |g,) be a sequence of
continuous mappings from R* into S. Assume that for each k, g, depends
only on finitely many coordinates, ie., m, such that

&lxy, Xy, ) = gal X, X3y ) x=x; for 1<igm,. (25)
Let se S and X be a CAPM on (S, B(S)). Then

(a} g(Y)—, s if and only if gu(X)—, s
(b) gY)=Y1if and only if g\(X) =" 1
Proof. In view of (1.22) and the corresponding result on (£, . P), (a)

is a special case of (b) when A(4)=1,(s). Let fe C,(S). Condition (2.5)
gives [hat

S18klx14 Xp0 ) = HalX )y Xy ey X))
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for & certain h, € C,(R™). Hence by (2.3). we have
ESaYN=Eh(Y) V3. Vi)
= Ephy(X,. Xy X))
=E,fla(X)) (26)
Therefore,
alV) = A= E Sl M)~ [ fd  YeCys)

<EfmX)=[fdl  Yecs)

ogX)— A

We have used Theorem 1.3, the relation (2.6). and the definition of
convergence in distribution on countably additive probability spaces. |

Almost Sure Convergence. The notion of almost sure convergence on
(H. %, ) is defined in the obvious manner: U, = U as. il

B {k: U (h) 3 Uh)} =0.

It is well known that the analog of Theorem 2.1 is false for almost sure
converge unless one imposes some condilion on the infinite dimensional
distribution of {Y,}, as the following example shows.

ExaMpLE. Let H be the space of all sequences of 0 and 1 and let ¥, be
the coordinate mappings on H. Let € be the field of finite dimensional sels
and g be the FAPM on H given by u{Y,=i,,... Yi=i)=2"" for all
iys iy iy € {0, 1} The associaled sequence {X,} is an iid. sequence of
Bernoulli random variables and hence by SLLN

X+ +X, |
— 3 as
Let A={heH:(Y,(h)+ --- + Y,(h))/n—}}. Since € contains only finite
dimensional sets, it is easy to see that p*(A")=1, and thus SLLN is not
valid for {Y,}. Here, p,{A}=0 and p*(A)=1. Thus for all 0 [0, 1), we
can get an extension p, of p 1o P(H) such that p,(A)=6. So SLLN will
hold for { Y} on (H, 2(H), u,) only for 8=1.

Of course, as a consequence of the previous resull, it follows that
(Y, + -+ +Y,)/n= 1 The condition we impose on {Y,} for the validity
of as. limit theorems is the following.
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For (0. ,:0€i<k,} S E, n31, let &, be the field generated by the
family

{(Y.€a, ):0€igk, ngm).

Then F, is a finite field, $,c€ (as a,,6E,) and F,£¥,,,. Lat
F, = UnFPa-F, s itsell a ficld.

We will say that {Y,} is regular if the smallest o-field o(, ) conlaining
F, is contained in € and further, the restriction of x to 6(F, ) is countably
additive (for ail choices of {a, ,} S E,).

It should be noted that regulariry is a condition on cv-dimensional joint
distribution and nol on marginal distributions. A sequence of independent
random variables {Y,} in the strategic setting of Dubins and Savage is
regular (See [9]).

Given a consistent scquence G, of “quasi-distribution functions,” (ie.,
G.'s satisly the usual properties of distribution functions except right con-
linuity), we can construct a regular sequence {Y,} on some FAPS
(H.%. u) such that

wY €y 1€i€mM=G6y(y yrn ys)  forall yeR I<ign a2l
(2.7)

Take H=R* and Y, be the coordinate mappings. Then (2.7) defines a
finilely additive measure y, on the field %, of finite dimensional reclangles.
po i8 casily seen to be countably additive on &, =UJ,, %,,. where %, is as
described above and Ihus has an extension to o($,) as a CAPM. These
extensions are consistent and determine a finitely additive probabilily
measure g on

€=\ {o(#,): all choices of &, as described above}.
1t is easy to check that {Y,) is regular on (H, ¥, p) and satisfies (2.7).
We will now prove our general result on as. limit theorems.

THEOREM 2.2. Swuppose that {Y,} is regular. Let A € B(R*) be such that
Jfor some p, 0 < p < 00, we have

©
xed aond Y |xi—x|"<wexed (28)
=

for all x=(x,, X, ..) and X’ = {(x}, x3, .)€ R™. Then

YeAdas.p ifandonly if XeA as. P. 29)
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Proof. Forn>\, get{a, :0€j<k,}<E, — |0} such that
O<a,,~a,, ;1<27% 1<jgk, {292)
and
Plo, o< X,<a,4)21-2"" (2,10
Let g,: R— R be defined by

LN
PACIED NN (P 211

1al

Let Zy=qu( Yo} Wo=gu( X Z=(Z,, Zy. ) W=(W,, Wy,

Let #, be the finite ficld generated by the (finite valued) random
variables (2, Zy. ... Z,,). Since {Y,} is assumed lo be regular, we con-
clude that ¢ =a(|,, F,) €% and restriction ' of u lo & is countably
additive. Note that {2, ] are measurable w.r.l. 2.

Condition (2.4) implies thal finile dimensional distribution of {Z,} and
{W,} coincide. Since s’ is countably additive on &, this implics

W(ZeB)=P(WeB), BeBR") (2.12)

We will now prove that

Y IX,-Wl'<x as P 213)

and

x
YIY.-2)'<0  asp

(2.14)
By the choice of Z,'s.
{1Z,- Y227} e{Z,=0}

and p'(Z,=0)<27" Since )’ is countably additive, the Borel-Cantelli
lemma gives

w{Z,=0i0}=0
which gives
u*{1Z,-Y, |22 "io.}=0 (215

This proves (2.14). The other relation (2.13) can be proved similarly.
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To complete the prool, note that
Yedas. pesZeAas p (by (2.14))
=Wedas. P (by(212))
=Xedas P (by (2.3)). 1

Remark 2. Suppose {g,: k> 1} is a seq of inuou
from R* into § satisfying, for some 0 < p < ou, m,,

plgdx) glxN< Y Gy lx,—x)1? (2.16)
im0

for x. x € R, where C, , are positive constants bounded by C and lor each
i, img Gy, =0. Then

A = {x:g,(x) converges in R}
satisfics (2.8). Thus (2.9) yiclds
£,(Y) converges as. p < g,(X) converges as. P. (2.17)

Let g,(Y) converge as. lo U (say). In general, a.s. convergence does nol
imply convergence is probability on (H, %, p). But in (his case. we can first
verify thal

p(gdY). 2.(Z)) =0  as. pand in p-probability. (218)

Thus. g(2Z)— U as. p. Since Z is Z-measurable and g is couniably
additive, g,(Z)— U in p-probability. Then (2.18) gives that g, (Y}~ U in
u-probability as well. As a consequence, Ue L(H. €. ).

3. CONSEQUENCES

In this section, we define the notions of “an independeni sequence”
“a strongly mixing sequence,” “a martingale,” “a siricily stationary sequence”
on a finitely: additive probability space. Each of these definitions is a natural
one and is equivalent to the usual definition if the underlying probability
space is countably additive. Further, if | Y, ] has one of the properties listed
above, then so does {X,}. where {X,} is the sequence associated with
17.) in the previous section. This enables us to use limit theorems for
| X,} and our resulis in the previous section to deduce analogous resulis
for { ¥,}. This approach has been illustrated in [6] with full details in the
independents case and hence we will be brief in this section. We begin with
a lemma. We inu¢ to use i blished in the previous section.
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Lemma 3.1 Let ge C(R"). Then
EJg(Y) Yy V)l <o if and only if Eflg(X\, Xy Xl <00

3.1
and in that case we have
E, gl Yoo V)= EpglX1. Xg o X,) (32)
and. for all Be #(R™) with P({X,, X,. ... X,)€@B)=0,
EglYi Yoo Yob-Lur ve vy
= EpgX1 Xpuon X} Vwr, e 33)

Proof. For all k21, we have
EJgY . Yy YOl Ak=Ep[g(X) Xy XD A k.

Taking the limil as k — o, using(1.6) on the left-hand side, and the
monotone convergence thcorem on the right, we get

E Yy, Yoo Yol = Eplg(X, Xye X, (34)

This implics (3.1) and (3.2) follows by using(3.4) for the funcuions
g'=gv0and g- = —(gA0) Finally, (3.3) can be deduced lrom (1.9)
similarly.

(i) The Independent Case

DeriniTioN.  Say that {Y,} is a sequence of independent rundom
variables {on (H. . ) il for all n2> 1, for all y,€ E,, | i< n we have

mY <yt<ism=[l mY, <y (35)
1=

It is casily seen that if {Y,} satisfies {3.5), then the associated sequence
{X.} is also a sequence of independent random variables. { ¥, } will be said
to be identically distributed if

wY, <yy=(Y,<y)  forall ye()E,. (36)

and then { X, } will also have the same property. Hence as a conscquence of
Theorem 2.1, we have hat the weak law of large numbers (WLLN), the
Lindeberg-Feller central limit theorem, the Donsker invariance principle
are valid on finitely additive probability spaces as well, and we do nol need
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to assume any aditional condition. Further, il {Y,} is assumed to be
regular. then the strong law of large numbers. the law of iterated
logarithms, the Kolmogonov 3-series theorem, and the Strassen invariance
principle also hold for {Y,}. The details are same as those given in [6].

(i) The Mixing Case

For I<m<n<o, let @7 be the field on H pgenerated by
{(r,<pyyeE, mgign}

DerinimtoN.  Say that { Y, } is a strongly mixing sequence with rate r(n),
if r(n)} 0 and

(E N Ey)— WE)) pEy)l < rim) (37

whenever E €2}, E;e %",

DEFINITION.  Say that {Y,} is a mean-zero weakly siationary sequence if
forall i, j> 1,

EYi<w, EY,=0, EVY,.,  =EY,Y, 08)

If | ¥,} is a mean-zero weakly stationary strongly mixing sequence, then
iL is easy 1o see thal 5o is { X, } with the same rate function r{n). Suppose
further that for some £>0, >0, C< w,

EIY2*4<C<o0,  rAn)=0(n " *e 1

then E)X,12**<C<co as well and then from results of Kuelbs and
Phillips [7. p. 1008] we have that WLLN, SLLN. CLT. and Donsker's and
Strassen’s invariances principle hold for {X,}. Thus, WLLN. CLT.
Donsker's invariance principle also hold for {¥,} and if |V, } is regular.
SLLN and Strassen’s invariance principle are also valid.

Similarly, we can define ¢-mixing and show that the available results for
$-mixing sequences on (L2, &, P) are also valid on the FAPS (H.%. p).
with the exception that for as. results, we need to add the assumption of
regularity.

(iii) Martingales

DesiNmion.  Say that {Y, ) is a martingale if for all », EY,] < and
further for ait m2n,

E(Y.|2)=Y,. 39)
Since @), is a finite field, it can be shown thal (3.9) is equivalent Lo

EYoalyerraam=EYaliycrracm (3.10)
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for all v,€ E,. Now (3.3) implies that similar relation holds for {X,} and
since £, is dense for each n, this gives that { X, } is itsell a martingalc (for
the natural o-fields). Thus the martingale convergence theorem for |.X,}
implies the following.

THEOREM 3.2. Suppose that | Y.\ is a martingale. Suppose that | Y} is
also regular. Then we have

(a) If sup, E|Y,| <, then Y, converges as. p.
(b) If sup, EIY,|?< for some p>1, then Y, ~ Y, as. p and
ElY,— Y, |"—=0. Further,
EfY. 12)=Y,. (31

Proof. For (a), take 4={xeR*: x, converges in R}. Then as noted
carlier. {X, ) is a martingale and sup, E1X,| < x. Hence X, converges as..
ie. XeAd as. Pand thus Ye A as. pu by Theorem 2.2.

For {b). we first conclude as in (a) above that X,~ X, as. P and
E|X, - X,|” =0 by the martingale convergence theorem for {X,}. Now,
going back to the proof of Theorem 2.2, il can be seen that {a, ,} can be
chosen such that {Z,}, [W,] also satisly

E|Y,~Z,|"<2°"  ElX,—W,|"<2°" (3.12)

Hence W,—X, as. and E|W,— X, |”-0. Then(2.12) implies hat
Z,~Y, (say) as. p and E|Z,- Y |”—>0. Now(3.12) implies \hat
EJY,— Y, |7 0.

Since p> 1, we also have E,|Y,.— Y, 1+0asm— . Fix AeZ) then
from the martingale property. we have

E Y .=EY. 1, for mn
and hence E,|Y,,— Y, | =0 implies

EY \,=EY,1, forall de@

Hence (3.11} holds.

The following martingale invariance principle is also a consequence of
Theorem 2.1 and for this we do not need lo assume that {Y,} is regular.

TueoreM 3.3. Let { Y, ) be a martingale such that EY,=0and EY: < .
Joralln Let V2=Y7_ (Y=Y, |\ where Yo=0 and 52 = EV:. For cach
n, let ¢, be C[0, 1] valued mup on H defined by interpolating benseen the
points

0.0 WV VLV Y (VL VI ) (LYY,
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Suppose that {Y,} also satisfies

P55V 26)=0  asmm—oo  forall £>0, (3.43)

lirr; lim sup u®(s;*V2<e)=0 (3.14)
and
st L EV uns aal 20 (315)
I=1

Jor all £> 0 such that es, and —es,, belong to E=\, E,. Then ¢, converges
in distribution 10 the Wiener measure on C[0, 1).

Proof. Let U2=X5_, (X,=X,_\)% with Xo=0. Tt can be seen that
(3.13), (3.14) imply that similar relations hold for {U,} and hence we have

57—~ T with0<T<owas. P. (3.16)

Since we can choose ¢, | 0 such that ¢, s, and —¢,s, belong to E, (3.15)
and (3.3) imply that the Lindeberg condition holds for {X,}. If n, is a
C[0. 1}-valued random element on (£2, &, P) obtained by interpolating
between the points

(0,0 (U710 U7 ' X0)y (L, UT'X,)

then (3.16) and the Lindeberg condition implies that », converges in
distribution to the Wiener measure.

It can be seen that ¢,, n, can be expressed as g,(Y) and g,(X), where g,
are C[0,!]-valued continuous functions on R* satisfying (2.5). Thus,
Theorem 2.1 yields the convergence in distribution of &,=g,(Y) 10 the
Wiener measure as the same holds for g,(X).

(iv) Stationary Sequence

DerinmoN.  Say that {Y,} is a srictly stationary sequence if for all
n2 Loy 1 ya€ E=, Ey,

wY<y i€y Yagy) =< pn s Yo u 1 € 70)
(3.17)

It is casy to see that (3.17) implies that the associated sequence is also &
strctly stalionary sequence.
Let us fix a regular strictly stationary sequence {Y,}. We will now
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introduce the invariant field for {Y,}. Let {f,} be a sequence of simple
functions of the form

A
Slx)= Z bmll(k;.mx‘.‘,)r {3.18)
J=

a, €k, 0<j<k,. Let 5, be the invariant o field on A for the sequence
{/.(Y.)). Since {7,} is regular, f;,,,S¢ and p is countably additive on
- Let

S =Us,),

where union is taken over all sequences(3.18). # will be called the
invariant field for {7, }.
We have the following version of the ergodic theorem.

THEOREM 34. Let {Y,) be a regular siricily siationary sequence. Lat
£:R"— R be such that for some p, 0 < p < o0, for some C,

18(xys 23y %)= B0 X0 S C T Ix= X% (309)

iml
Jor all (xy, Xp, ey X0 (X} X3, . X,) € R™. Further, suppose that
Elg(Y,, .. Y,) <. (3.20)

Then

m—1

Z Y i Yiers o Yig ) = E(8(Y 1, Yau oy Y S)
(a0
as. pand in $(H, €, p)

Proof. As noted earlier, {X,} is strictly stationary and also (3.20)
implies that E|g(X,. ... X,)l <. Thus the ergodic theorem [3, p. 118]
implies

1
Vo=

Up = 8a(X) = E(2(X), X3y u X, ) )= Uy (321
as. Pand in £'(Q, o, P), where S is the invarient o field for {X,] and
gm: R™ = R is given by

| =t
Km(xhxz----)=; z J{C AT P §
=0

It is casy to see that {g,,} satisfies (2.16) and that ¥, = g,(Y). Hence by
Remark 2, we get that for some ¥,

V,—»V,andg,.(Z)> V, as pand io y-probability.  (3.22)
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Continuity of g, Lemma 3.1, and (3.21) imply that
ENVu=Vil=EfU, = U =0 as mk-co (3.23)
and hence (3.22) yields
EVy—Val =0 (3.24)
It remains 1o show that V', = E(g(Y,, ... Y,)|.#). Nole thal the invariant
a-ficld for {Z,} is contained in S and hence in view of (3.22),

V., eLHI ).
Fix a sequence {,} satislying (3.18). Then by Lemma 3.1, for fe C(R™),

Ef[ Y, Yan Y} l,= Ef(xl- Xz- e »\’,,,) |( (3.25)

if the integrals are well defined; for A={(/\(Y))...filY:))eB),
C= (X)) il Xi))€ B}, Be B(R*). Since distribution of {/,(Y,)} is
countably additive (as {Y,} is regular), the dominated convergence
theorem implies that (3.25) holds for any

A=({f(Y))eB).  C=({fiX.)}eB), BedR") (326)

Fix a shift invariant set Be #(R™) and let 4, C be defined by (3.26). Then
as noted above we have

Eg(Y Yy Y Ly=EglX, Xy n X)) 1 (3.21)
and
EV,1,=EU,!.. (3.28)
Since E1V,,— V| -0, E)U,,— U, | -0, we get
EV, 1,=EU 1. (3.29)

Since Ce.#” and U, = E(g(X,. X,, ... X,)|.7°), we get that the right-hand
sides of (3.27) and (3.29) are equal and hence

EV 1, =E(Y. Yy Y4 (3.30)

Since {/,} salisfying (3.18) and the shift-invariant set B are arbitrary and
V,eXP(H, S, u) we conclude

E(g(Y .Yy Y=V,

Remark 3. Even in the independent case, results proved in this paper
are more general than those in [6]; as for convergence in probability and
distribution type theorems, the central limit theorem in particular, we do
not need 10 assume that {¥,) is regular.
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Remark 4. Since a Martingale or a Markov chain in the sirategic
setting may not be regutar, the results of Purves and Sudderth [9] on mar-
tingales and Ramakrishnan [10] on Markov chains cannot be deduced
from our general principle.

Remark 5. We can define an exchangeable sequence in an obvious
manner and can obtain an analog of De Fenniti's theorem for regular
excangeable sequences. Also, we can prove an analog of Challerjees sub-
sequence principle (see [1]) for an arbitrary regular sequence {Y,}.
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