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ABSTRACT

If x and y are nonnegative vectors of order n, and if ¥ x, =L}.,y;, then a
well-known inequality asserts that I17_,x[* >IT]_,y, with equality if and only if
x=y. In this paper various situations are considered where this inequality can be
applied to obtain inequalities concerning nonnegative matrices. In particular, inequali-
ties are proved concerning nonnegative matrices which are diagonally equivalent,
permanents and functions more general than the permanent, and diagonal products
and circuit products of nonnegative matrices.

1. INTRODUCTION
Let
n
pr= {xER":x;O, Yy xi=1}.
=1

Throughout this paper we take 0°=1 and 0log0=0. The following in-
equality is well known and has applications in information theory (see, for
example [11, p. 58]).

TueorReM 1. Ifx € P", y € P", then
n n
ITxp> Iy,
i=1 i=1
with equality if and only if x =y.
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The purpose of this paper is to describe various situations where the
inequality of Theorem 1 can be applied to obtain inequalities concerning
nonnegative matrices. In Section 2 we prove an inequality concerning A and
D,AD,, where A is a nonnegative matrix and D, and D, are diagonal
matrices with positive diagonal entries. In a digression, it is also shown thata
result due to London [9] can be strengthened by using majorization. In
Section 3 we consider a function similar to but more general than the
permanent. A generalized form of an inequality due to Bregman (7] is proved
in a simple way. The last two sections are d d to diagonal products and
circuit products of nonnegative matrices. The contents of Sections 3 and 4 are
partly based on [3].

2. DIAGONALLY EQUIVALENT MATRICES

Let A =((a;;)) be a positive m X n matrix, and define a map f: P™ x p"
— P™ X P" as follows:

flx,y)=(%.9),

where

n
xrza.ﬂ]

S
=,  i=12,..m,

e
Y, % Xy,
1

i=1j=

It was shown in [4] that f maps P™ X P" onto itself. Also, it is known
(see, for example, [4]) that f is one-one. It will be seen that this fact can also
be deduced from a result in Section 4 (see Corollary 12).

The following inequality was proved by Atkinson, Watterson, and Moran
[1] (also see [11, p. 71]). For any (x,y) € P™ X P",

mon m n @
XX a;, x> X X a;;xY; 3
(=1j=1 i=1j=1
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In fact, the result in [1] is the following, which may be easily obtained
from (2) by a continuity argument.

LemMa 2. Let A be a nonnegative n X n matrix and let (x,y)€ P™ X P".

5 Ea.,(r.Zﬂ..u.)(v,ia.,x) (): ):a.,x u,)

i=1j=1

We now prove a result which is stronger than Lemma 2.

TueEoREM 3. Let A be a positive m X n matrix and let f be defined as in
(1). Then for any (x,y) € P™ X P" and for any vectors A >0, p >0,

£ Eopns(E Za.,m,)H(A')i‘jlf[l(ﬂ)m.

i=1j=1 X Yy

Proof. We will assume that x,y, A, p are positive, and the general case
will follow by a continuity argument. First note that the inequality of the
th h d if each A; and each p; is multiplied by the same
positive constant. So we assume w1thout loss of generality that

m n m o n
X a,,X,p]= x X @Yy
imlj=1 i=1j=1

But now the result follows, after a trivial simplification, from the following
inequality, which is true in view of Theorem 1:

ﬂ(“u*dﬁ)ﬂ”x'v' > ”(a',h“!)a,,x.v,.

The next result is an immediate consequence of Theorems 1,3 and the
following fact, which is easily deduced from Theorem 1 and the arithmetic
mean-geometric mean inequality: if x € P", y € P", then

n n
I_Il{0x,+(l—0)y,}"> ITye for 0<b<l.
e i=1
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m
)y
i=1f=

CoRroLLARY 4. Let (x,y)€ P™ X P", and let A = 0x +(1 - )%, p=6y

n m n

> a e, > > X axY;.
1 i=1j=1
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+(1-0)j, 0<0 <1, where % and § are as defined in (1). Then

CoRoLLARY 5. Let A be a nonnegative n X n matrix, and suppose u,v
Then forany A >0, p>0,

are positive vectors such that the matrix ((a, juvy) is doubly stochastic

(Z Z a g

L) n
) n“nl’s?""n’n#.--
imlj=1 i=1 i=1
Proof. Define x,y as
u,
X = =, i=12,...,m,
Z“l
i
and
]

S =12,
Yy Z"/' i 2
i

LN
Now apply Theorem 3.

If A is a nonnegative n X n matrix and if u, v are positive vectors such
that ((a;;u;v)) is doubly stochastic, the following lower bound was obtained
by London [9]: For any x >0

ﬁx:

i=1

1)

n
I_I"i"l> "
i=1

3
At this point we will digress from our main topic for a moment and show
that the bound in (3) can be strengthened and put in a better perspective by
using the concept of majorization.
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Keeping the same notation as above, let D, = diag(u,,...,u,), Dy=
diag(vy,..., v,), let x be a nonnegative vector, and let y = Ax. Then

D,y=D,ADy(D; 'x).

Since D,AD, is doubly stochastic, it follows by a well-known theorem of
Hardy, Littlewood, and Polya that

Uy x/v
is majorized by (4)
UnYy %/,

We refer to Marshall and Olkin [10] for definitions and standard results
concerning majorization. It follows from (4) that

n n x'
rluﬂ1> rl"
i=1 i=19;

which is the same as (3).

3. PERMANENTS AND GENERALIZED FUNCTIONS

Let S, denote the set of permutations of 1,2,...,n. If A isan nXn
matrix, the permanent of A, denoted by perA, is defined as

n

perA= Y la“,(,,.

a€s, i=

We will denote by A(i, j) the matrix obtained by deleting the ith row and
the jth column of A. Let @, denote the set of n X n doubly stochastic
matrices. If A€ Q,, define g(A)=B= ((by)), where

" “A/Pel'A("'j)

b" perA

forall i, j.

It was shown by Bregman (7] that the map g: 2, = &, is one-one and
pnto, and he also proved the following interesting inequality. The inequality
may also be deduced from Lemma 8 of Rothaus [12].
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TuEoREM 8.  For any nonnegative n X n matrix Z and for any A€ @

n z, by,
perZ>perA [] (—') 5

Gj=1\08
where B =g(A).
We will extend the results of Bregman to functions more general than the
permanent.

Fix a nonempty set K C S, and for any n X n matrix A, define
n
pergA= L nala(i)'
ceki=l

If A is an n X n matrix and if ¢ €S,, we define d (A)=T1}.,8,q)
First we will prove the following.

Lemma 7. S A, B are gative n X n ices such that

Y d(A)= ¥ d(B) forall ij. (5

o(i)y=j, 0 €K o(i)=j. e €K
Then d (A)=d (B) forall s € K.
Proof. Note that if, for some i, j, o(i)# j for any o € K, we take the
sums in (5) to be zero.
Summing both sides of (5) with respect to j, we have
pery A = perg B.
If pery A =0, the result is trivial, so suppose per, A > 0. Now
[T do(A)"® = [Taks-scaxdus)
o€k i

= Toney. sakdolA)
aspn=). eaxdy
Hefr

= T a,(a).
o€k
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Similarly

I1 d.(B)"*'= [T d,(B)**®
o€k eeK

I1 d,(A)*"d,(B)**= T] d,(A)"a,(B)y»  ©
a€K o€K

Since

Y d(A)= T d(B),
oc€K o€K
it follows by Theorem 1 that
I1d,(4)**> 1 d,(B)"*
oK o€K

and

1 2,B)*®> [ d,(4)**
o€K oK

In view of (6), equality must hold in the above inequalities, and so d (A)=
d(B)forall 0 € K.

Note that if we take K =S5, in Lemma 7, we get the known result that
g:Q,—Q, is oneone. For, if A,BEQ, and g(A)=g(B), by Lemma 7 it
follows that d (A)=d,(B) for all 0 €S,. But then A = B, using, for exam-
ple, Corollary 11.

The next result generalizes Theorem 6. The proof is based only on
Theorem 1.

THEOREM 8. Let A be a nonnegative n X n matrix and suppose pery A
> 0, where K is a fixed nonempty subset of S,. Then for any Z> 0,

2\
WTKZZWTKAH(_) ,
i\ By

where B= g (A).
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Proof. We will assume that A>0, Z> 0, and the general case will
follow by a continuity argument.

Note that if each entry of Z is multiplied by the same positive constant,
the inequality is unaffected, and so we may assume that pery Z = pery A. But
now the inequality reduces to

| CHES B EHE
(¥} [¥]
This is the same as the following inequality, which is true by Theorem 1:
IT d,(4)**'> T1 d(2)**.
o€k o€k

CoroLLARY 9. Let A be a nonnegative n X n matrix with L].,Z]. 8,
=n, and suppose pery A> 0 for some K CS,. Then

(i) perg B> perg AIl, ;(bq/a q)b"- where B=gy(A);
(ii) peryx B > perg A, with equality if and only if A= B.

Proof. Inequality (i) is obtained by setting Z = B in Theorem 8. Now (ii)
follows from (i) by Theorem 1.

It must be pointed out that (ii) of Corollary 9 has been obtained by several
authors in various forms. As noted earlier, when K =§,,, it was obtained by
Bregman [7]. It may also be deduced from more general results of Rothaus
[12] and of Baum and Eagon [5). The proof given here seems much simpler
than the known proofs.

4. DIAGONAL PRODUCTS

It was proved in [2] that if A and B are distinct n X n doubly stochastic
matrices, then there exists o €S, such that d (A)>d (B). It was also
pointed out in that paper that the result does not hold if we only require that
A and B have corresponding row and column sums equal. However, a proper
reformulation of the result is true in this case, as we will see in this section.

Fix positive integers m, n, and let r and ¢ be positive vectors of order m
and n respectively, such that Z7_ 5, = I. ,c; We will denote by U(r,c) the
set of all nonnegative m X n matrices A with row sums r,,...,,, and column
sums ¢,,..., ¢,. Then U(r, c) is a compact, convex set, and the extreme points
of U(r,c) can be described fairly easily (see, for example, (8]).
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We now have the following.

THeoREM 10. Lel A €U(r,c), let B be a nonnegative m X n matrix such
that L. \L5.,b;;= L. 1, and suppose A # B. Then there exists an extreme
point X of U(r, c) such that

[aty> [Tbp-
i ij
Proof. Forany Z€U(r,c), let
#(2)= Z Z ~|,(l°ga.[ l°gb|[)
p=1f=
Then the maximum of ¢ in U(r, ¢) is attained at an extreme point, say X, of
U(r,c).
By Theorem 1,

L ¥ a,(loga;;~logh;;)>

imlj=1
and so ¢(X)> 0, which completes the proof.

CoroLLaRy 11. Let A€ Q,, and let B be a distinct nonnegative n X n
matrix with T} \Lj. b,;=n. Then there exists o €S, such that d (A)>
d(B).

Proof. The result follows from Theorem 10 and the well-known fact that
the extreme points of 2, are precisely the n X n permutation matrices.

COROLLARY 12. Let A be an m X n positive matrix, let (x,y)€ P™ X P",
(u,v)€ P™ X P", and suppose f(x,y)= f(u, v), where f is the map defined
in Section 2. Then (x,y)=(u,v).

Proof. Let B,C be the n X n matrices where

i* Yy S5t

ZE"A;’N, Z Z“./“t”}

forall i,j.
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Then B and C are both in U(%, §). If B # C, then by Theorem 10, there exist
extreme points W and Z of U(Z, i) such that

I'[b”u>nc v and Hb.)'<nﬁ]‘

nfe)-nla)”

which is a contradiction. Therefore B = C, and it follows that (x, y)=(u,v).

But then

5. CIRCUIT PRODUCTS

If C is an n X n 0-1 matrix, it will be called a circuit matrix if there is a
sequence of distinct integers i,,1,,...,i, such that C has 1's at positions
(i} i9)s(igs d3)y- -5 (fg— 1 ix)s (i, i) and zeros elsewhere.

If A is an n X n nonnegative matrix and if C is an n X n circuit matrix,
then [T; ;afy will be called a circuit product of A corresponding to C. We
will state two lemmas which are mere reformulations of known results in
graph theory. The proofs may be given along similar lines to Berge [6].

Lemma 13. If A€U(r,r) for some r> 0, then A has a positive circuit
product.

LemMa 14. Let A be an n X n nonnegative matrix with positive row
sums r,..., 1, and column sums c,,...,c,. Then A can be written as a linear

bination of circuit ices with positive coefficients if and only if r,= ¢,
i=12,...,n

The next result is analogous to Corollary 11.

TueoreMm 15. Let A, B be disti ive n X n matrices such that
AeU(r,r) r>0, and I 1) 1by =Zi_ . Then a circuit product of A
ds the corresp g circuit product of B.
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Proof. By Theorem 1,

n n
> ):ﬂu(losaq—logbubo.
i=1j=1

while by Lemma 14,

K
A=Y oC',
i=1

where a; > 0 and C' is a circuit matrix, i =1,2,..., k. Now the result follows.
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