

A New Method for Constructing Factorisable Representations for Current Groups and Current Algebras

K. R. Parthasarathy and K. Schmidt

Mathematics Institute, University of Warwick, Coventry, Warwickshire CV4 7AL, England

Abstract. Let $C_c^\infty(R^n, G)$ denote the group of infinitely differentiable maps from *n*-dimensional Euclidean space into a simply connected and connected Lie group, which have compact support. This paper introduces a class of factorisable unitary representations of $C_c^\infty(R^n, G)$ with the property that the unitary operator U_f corresponding to a function f in $C_c^\infty(R^n, G)$ depends not only on f, but also on the derivatives of f up to a certain order. In particular these representations can not be extended to the group of all continuous functions from R^n to G with compact support.

§ 1. Introduction

Let G be a simply connected and connected Lie group and let $\mathscr G$ be its Lie algebra. Let $\exp:\mathscr G\to G$ denote the exponential map. We denote by $C_c^*(R,G)$ the class of all C^∞ maps from R into G with compact support. A map $\varphi:R\to G$ is said to have compact support if takes the value e, i.e., the identity element of G outside a compact set. Let $C_0^\infty(R,\mathscr G)$ denote the class of all infinitely differentiable maps from R into the vector space $\mathscr G$ with compact support. For any $f\in C_0^\infty(R,\mathscr G)$, we define $\operatorname{Exp} f \in C_0^\infty(R,G)$ writing $(\operatorname{Exp} f)(x) = \exp f(x)$, for all $x\in R$, $C_0^\infty(R,G)$ is a group (under pointwise multiplication) and $C_0^\infty(R,\mathscr G)$ is a Lie algebra (under pointwise addition, scalar multiplication and Lie brackets). These may respectively be called as current group and current algebra over R. We give $C_0^\infty(R,\mathscr G)$ the usual Schwarz topology. A homomorphism $\varphi \to U_\varphi$ of the group $C_0^\infty(R,\mathscr G)$ into the group of unitary operators on a Hilbert space H is said to be a unitary representation or simply a representation if $U_{\operatorname{Exp} f}$ converges weakly to $U_{\operatorname{Exp} f}$ whenever $f_n \to f$ as $n \to \infty$ in the topology of $C_0^\infty(R,\mathscr G)$.

For any compact set $K \in R$, let $C(K, G) \in C_0^\infty(R, G)$ be the subgroup of all those maps with support contained in K. If K_1 , K_2 are two disjoint compact subsets of R, $C(K_1 \cup K_2, G)$ can be identified in a natural manner with the cartesian product $C(K_1, G) \times C(K_2, G)$. Indeed, for any $\varphi \in C(K_1 \cup K_2, G)$, define

$$\varphi_i(x) = \varphi(x)$$
 if $x \in K_i$
= e if $x \notin K_i$, $i = 1, 2$.

Then $\varphi = \varphi_1 \varphi_2$. The map $\varphi \to (\varphi_1, \varphi_2)$ gives the required identification. For any representation U of $C_r^{\infty}(R, G)$, we define the representation U^K of the subgroup C(K, G) by

$$U_{\bullet}^{K} = U_{\bullet}, \varphi \in C(K, G)$$
.

We say that a representation U of $C^{\infty}(R,G)$ is factorisable if, for any two disjoint compact sets $K_1, K_2 \subset R$, the representation $U^{K_1 \cup K_2}$ is unitarily equivalent to the tensor product $U^{K_1} \otimes U^{K_2}$. This unitary equivalence will of course depend on K_1 and K_2 . Examples of such factorisable representations based on the unitary representations of G and their first cohomologies were first constructed by Streater [6] and Araki [1]. Further development of these ideas may be found in the works of Parthasarathy and Schmidt [4, 3], Vershik, Gelfand and Graev [7]. and Guichardet [2]. However, most of these examples have the degenerate property that they factorise completely. These representations extend to borel maps from R into G and the factorisability property extends to pairs of disjoint borel sets. This is mainly because the representations constructed in these papers do not involve the derivatives of smooth maps in a certain sense. One may compare this with the following situation in the classical theory of distributions. To evaluate the Dirac δ at a testing function φ one need not know the derivations of φ . However to evaluate the distributions δ', δ'', \dots one requires a knowledge of $\varphi', \varphi'', \dots$ The main aim of this paper is to construct factorisable representations U which for their evaluation at $\text{Exp} f, f \in C_0^{\infty}(R, \mathcal{G})$ requires a knowledge of f, f', f'', \dots A beginning in this direction was already made by Schmidt [5] in the case when G is the Heisenberg group, whose representations lead to canonical commutation relations.

§ 2. The Leibnitz Extension of a Lie Algebra

In order to outline the method of constructing factorisable representations we need to construct an extension of the Lie algebra \mathcal{G} . To this end consider the space \mathcal{G}_n which is the n+1-fold Cartesian product of \mathcal{G} . Any element X of \mathcal{G}_n can be written as

$$X = (X_0, X_1, ..., X_n), X_i \in \mathcal{G}$$
 for each i.

Between two elements X and X' in \mathcal{G}_{α} define the bracket operation by

$$[X, X'] = X''$$

where

$$X_0'' = [X_0, X_0'],$$

 $X_j'' = \sum_{r=0}^{J} {j \choose r} [X_r, X_{j-r}].$ (2.1)

An easy computation shows that for $X, Y, Z \in \mathcal{G}_{-}$,

$$[[X, Y]Z] = T$$

where

$$T_r = \sum_{k_1+k_2+k_3=r} (r!/k_1!k_2!k_3!)[[X_{k_3}, Y_{k_2}], Z_{k_3}].$$

This shows that

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.$$

In other words \mathcal{G}_n becomes a Lie algebra. We shall call \mathcal{G}_n the nth Leibnitz extension of the Lie algebra \mathcal{G} . The mapping $X \rightarrow (X, 0, 0, ..., 0)$ is an isomorphism of \mathcal{G} into \mathcal{G}_n . All elements of the form $(0, X_1, X_2, ..., X_n), X_1 \in \mathcal{G}$, i = 1, 2...n constitute a nilpotent Lie subalgebra $\mathcal{E}^{(n)}$ of \mathcal{G}_n . Further

$$[(X, 0, 0, ..., 0), (0, X_1, X_2, ..., X_n)]$$

=(0, [X, X,], [X, X,], ..., [X, X_n]).

Thus \mathscr{G} acts as a Lie algebra of derivations of the nilpotent Lie algebra $\mathscr{K}^{(n)}$. In other words \mathscr{G}_n is a semi-direct sum of \mathscr{G} and $\mathscr{K}^{(n)}$.

Remark 2.1. Since any Lie algebra $\mathscr G$ can be represented as a Lie algebra of matrices, we shall assume that $\mathscr G$ is a Lie algebra of real matrices in all our computations hereafter. Let the order of the matrices in $\mathscr G$ be $k \times k$.

Lemma 2.2. The map

$$A:(0,X_1,X_2,...,X_n)\to A(X_1,X_2,...,X_n), X_i\in\mathscr{G}, i=1,2...n$$

where

$$A(X_1, X_2, ..., X_n) = \begin{pmatrix} 0 & X_1/1! & X_2/2! & ... & X_n/n! \\ 0 & 0 & X_1/1! & X_2/2! & ... & X_{n-1}/n-1! \\ 0 & 0 & 0 & X_1/1! & ... & X_{n-2}/n-2! \\ ... & ... & ... & ... \\ 0 & 0 & 0 & ... & ... & 0 \end{pmatrix}$$

is an isomorphism of the Lie algebra $\mathcal{S}^{(n)}$ into the Lie algebra of all matrices of order $k(n+1) \times k(n+1)$.

Proof. This follows from a routine computation and is left to the reader.

Lemma 2.3. Let A be the map defined in the preceding lemma. Then the matrix $\exp A(X_1, X_2, ..., X_n)$ is of the form

$$\begin{pmatrix} I & A_1 & A_2 & \dots & \dots & A_n \\ 0 & I & A_1 & A_2 & \dots & A_{n-1} \\ 0 & 0 & I & A_1 & \dots & A_{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & I \end{pmatrix}$$

where

$$A_{j} = \sum_{p=1}^{J} 1/p! \sum_{\substack{m_{1} + \dots + m_{p} = j \\ 1 \le m \le j}} m_{1}!^{-1} X_{m_{1}} m_{2}!^{-1} X_{m_{2}} \dots m_{p}!^{-1} X_{m_{p}}.$$

Proof. It is left to the reader.

Remark 2.4. Let H be the group generated (algebraically) by all matrices of the form $\exp A(X_1, X_2, ..., X_n)$, $X_i \in \mathcal{G}$, i = 1, 2...n. Its Lie algebra is isomorphic with $A^{(n)}$. Let G be the simply connected group for which the Lie algebra is \mathcal{G} . Then for any $X_0 \in \mathcal{G}$, the element $\exp X_0$ of G acts as an automorphism of H as follows:

$$\exp X_0 : \exp A(X_1, X_2, ..., X_n)$$

$$\rightarrow \exp A(e^{\operatorname{ad} X_0}(X_1), e^{\operatorname{ad} X_0}(X_2), ..., e^{\operatorname{ad} X_0}(X_n)).$$

Hence we can form the semi-direct product $G \odot H$ of the two groups G and H. $G \odot H$ consists of all pairs $(g,h), g \in G, h \in H$. The multiplication operation is defined by

$$(g,h)\cdot(g',h')=(gg',h\cdot g(h')),$$

where $h' \to g(h')$ is the automorphism of H induced by g. The Lie algebra of the group $G \odot H$ is then isomorphic to the Lie algebra \mathscr{G}_{r} . In particular \mathscr{G}_{1} is the Lie algebra of the semidirect product of G and the additive group \mathscr{G} , where G acts as the adjoint representation in \mathscr{G} .

Lemma 2.4. For any $X = (X_0, X_1, ..., X_n) \in \mathcal{G}_m$, the exponential map from \mathcal{G}_n into $G \odot H$ is defined as follows: let

$$A_{j}(t) = \sum_{p=1}^{j} \sum_{m_{1} + \dots + m_{p} = j} \int_{0 < t_{1} < t_{2} < \dots < t_{p} < t} \left(\prod_{k=1}^{p} e^{j_{k} \operatorname{ad} X_{0}} (m_{k}!^{-1} X_{m_{k}}) \right) dt_{1} \dots dt_{p}$$
 (2.2)

for j = 1, 2...n. Let

$$A(t) = \begin{pmatrix} I & A_1(t) & A_2(t) & \dots & A_n(t) \\ 0 & I & A_1(t) & \dots & A_{n-1}(t) \\ 0 & 0 & I & \dots & A_{n-2}(t) \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 0 & I \end{pmatrix}$$

Then

$$\exp tX = (\exp tX_0, A(t))$$
 for all $t \in R$.

Proof. Indeed, differentiating (2.2) at t=0, we get

$$dA_j/dt|_{t=0}=j!^{-1}X_j.$$

Thus

$$dA(t)/dt|_{t=0} = \begin{pmatrix} 0 & X_1/1! & \dots & X_n/n! \\ 0 & 0 & X_1/1! & \dots & X_{n-1}/(n-1)! \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Further

$$(\exp t X_0, A(t)) \cdot (\exp s X_0, A(s))$$

$$= (\exp(t+s)X_0, A(t) \cdot \exp t X_0(A(s)),$$

where

$$\exp tX_0(A(s)) = \begin{pmatrix} I & B_1 & B_2 & \dots & B_n \\ 0 & I & B_1 & \dots & B_{n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & I \end{pmatrix}$$

and

$$B_{j} = B_{j}(t, s) = e^{tX_{0}} A_{j}(s) e^{-tX_{0}}$$

$$= \sum_{p=1}^{j} \sum_{\substack{m_{1} + \ldots + m_{p} = j \\ m_{i} \geq 1}} \int_{0 < t_{1} < t_{2} < \ldots < t_{p} < s} \prod_{k=1}^{p} e^{tt_{k} + t) \text{ ad } X_{0}} (k!^{-1} X_{m_{k}}) dt_{1} \ldots dt_{p}$$

$$= \sum_{p=1}^{j} \sum_{\substack{m_{1} + \ldots + m_{p} = j \\ m_{p} \geq 1}} \int_{0 < t_{1} < t_{2} < \ldots < t_{p} < t + s} \prod_{k=1}^{p} e^{tt_{k} \text{ ad } X_{0}} (k!^{-1} X_{m_{k}}) dt_{1} \ldots dt_{p}. \quad (2.3)$$

A straightforward matrix multiplication shows that

$$A(t) \cdot \exp tX_0(A(s)) = \begin{pmatrix} I & C_1 & C_2 & \dots & C_n \\ 0 & I & C_1 & \dots & C_{n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & I \end{pmatrix},$$

where

$$C_j = \sum_{r=0}^{j} A_r(t)B_{j-r}(t,s),$$

$$A_0(t) = B_0(t, s) = I$$

and where A_r and B_r is defined by (2.2) and (2.3) respectively. Now an easy computation gives $C_j = A_i(t+s)$. This shows that $(\exp tX_0, A_i(t))$ is a one parameter group with the generator $(X_0, X_1, X_2, ..., X_n)$. The proof is complete.

Corollary 2.5. When n=1 and $G \odot H$ is identified with the semidirect product of G and the additive group \mathcal{G} , where G acts as adjoint representation in \mathcal{G} , we have

$$\exp t(X_0, X_1) = \left(\exp tX_0, \frac{e^{t \operatorname{ad} X_0 - 1}}{t \operatorname{ad} X_0}(X_1)\right)$$

for all $t \in R$.

Proof. This follows from the preceding lemma by noting that

$$\int_{0}^{t} e^{t_1 \operatorname{ad} X_0}(X_1) dt_1 = \frac{e^{t \operatorname{ad} X_0} - 1}{t \operatorname{ad} X_0} (X_1).$$

§ 3. Representation of Current Algebras and Current Groups

In the preceding section we gave a complete description of the group associated with the *n*-th Leibnitz extension \mathscr{G}_n of a Lie algebra \mathscr{G} . The following lemma yields the required embedding of $C_0^\infty(R,\mathscr{G})$ into $C_0^\infty(R,\mathscr{G}_n)$ for writing down our representations.

Lemma 3.1. Let Π_n be the map from $C_0^{\infty}(R, \mathcal{G})$ into $C_0^{\infty}(R, \mathcal{G}_n)$ defined by

$$\Pi_{\bullet}(f)(x) = (f(x), f'(x), f''(x), ..., f^{(n)}(x))$$

for all $x \in R$, $f \in C_0^{\infty}(R, \mathcal{G})$.

Then Π_n is a Lie algebra isomorphism of $C_0^{\infty}(R, \mathcal{G})$ into $C_0^{\infty}(R, \mathcal{G}_n)$.

Proof. This follows immediately from the fact that

$$d^{j}[f,g]/dx^{j} = \sum_{r=0}^{j} {\binom{j}{r}} [f^{(r)}(x), g^{(j-r)}(x)]$$

and the commutation rules in \mathcal{G}_n are defined by (2.1).

As mentioned in § 1, we define for any $f \in C_0^{\infty}(R, \mathcal{G})$, Exp f as the element in $C_0^{\infty}(R, G)$ with the property

$$(\operatorname{Exp} f)(x) = \operatorname{exp} f(x), x \in \mathbb{R}$$
.

Consider the group $G \odot H$ described in Remark 2.4. We shall call it the n-th Leibnitz extension of the group G. For any $f \in C_0^{\infty}(R, \mathcal{G})$, we define $\operatorname{Exp}_{n} f$ as the element in $C_0^{\infty}(R, G \odot H)$ with the property

$$(\operatorname{Exp}_n f)(x) = (\operatorname{exp} f(x), A^f(x)),$$

where

$$A^{f}(x) = \begin{pmatrix} I & A_{1}^{f}(x) & A_{2}^{f}(x) & \dots & A_{n}^{f}(x) \\ 0 & I & A_{1}^{f}(x) & \dots & A_{n-1}^{f}(x) \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & I \end{pmatrix}$$

$$A_{j}^{f}(x) = \sum_{p=1}^{j} \sum_{\substack{m_{1} + ... + m_{p} = j \ 0 < t_{1} < t_{2} < ... < t_{p} < 1}} \int_{\substack{k=1 \ k = 1}}^{p} e^{j k n \delta f(x)} dx dx dx dt_{1} dt_{2} ... dt_{p},$$

$$(3.1)$$

for j = 1, 2...n. With this notation we have the following corollary to Lemma 3.1.

Theorem 3.2. Let G be a connected and simply connected Lie group whose n-th Leibnitz extension is G_{π} Suppose $\varphi \to U_{\Phi}$ is a factorisable representation of the current group $C_{\pi}^{\infty}(R, G_{\Phi})$. Then the map

$$U^{(n)}$$
: Exp $f \to U_{\text{Exp}_n f}$, $f \in C_0^{\infty}(R, \mathcal{G})$

determines a factorisable representation of the current group $C^*_{c}(R, G)$. In particular this determines a factorisable representation of the current algebra $C^*_{c}(R, G)$.

Remark 3.3. To construct a factorisable representation U of the current group $C_c^\infty(R,G_n)$ one may start with a projection valued measure on the Borel subsets of R, a unitary represention V of the group G_n commuting with the projection valued measure and a first order cocycle for the representation V, and adopt the procedure outlined in [4]. Since G is a subgroup of G_n it follows that $C_c^\infty(R,G)$ is a subgroup of G_n it follows that $C_c^\infty(R,G)$ hence the restriction of U to $C_n^\infty(R,G)$ yields a representation $U^{(0)}$ of $C_n^\infty(R,G)$. The representation $U^{(m)}$ of Theorem 3.1 obtained from U may be considered as the n-th derivative of the representation $U^{(0)}$

Example 3.4. We shall now illustrate the procedure outlined in the preceding remark in a special case. Let G be a compact, connected, simply connected and semi-simple Lie group with Lie algebra \mathcal{G} and Cartan Killing form B(X, Y), $X, Y \in \mathcal{G}$. Let $g \to Adg$ be the adjoint representation of G acting in \mathcal{G} . Let G_1 denote the first Leibnitz extension of G. Then G_1 is the semi direct product of G and the additive group \mathcal{G} in which G acts as a group of automorphisms through the adjoint representation. Any element of G_1 can be expressed as a pair $(g, X) \to Adg$ is an irreducible unitary representation U of G_1 acting in the vector space \mathcal{G} with the positive definite inner product -B. Define the map $\delta: G_1 \to \mathcal{G}$ by

$$\delta(q,X)=X$$
.

Then δ is a first order cocycle for the representation U. Hence the function

$$\Phi(g, X) = \exp \frac{1}{2} B(X, X)$$

is an infinitely divisible positive definite function on the group G_1 .

Let now $\varphi: R \to \mathscr{G}$ be a C_0^∞ map from R into \mathscr{G} . Then the map $t \to (\varphi(t), \varphi'(t))$ is a C_0^∞ map from R into \mathscr{G}_1 the Lie algebra of G_1 . Let

$$\psi(t) = \frac{e^{\operatorname{ad}\varphi(t)} - 1}{\operatorname{ad}\varphi(t)} (\varphi'(t)),$$

and let

$$K(\operatorname{Exp}\varphi) = \exp \frac{1}{2} \int B(\varphi(t), \psi(t)) dt.$$
 (3.2)

Then K is an infinitely divisible positive definite functional on $C_{\bullet}^{\infty}(R, G)$ which extends to $C_{\bullet}^{*}(R, G)$, the group of all C^{*} maps from R into G with compact support. This positive definite functional defines a factorisable representation of $C_{\bullet}^{*}(R, G)$ which cannot be extended to all bounded borel maps from R into G with compact support.

Since the factorisable representation corresponding to (3.2) is in a sense a continuous tensor product of copies of the irreducible adjoint representation of G one is tempted to conjecture that (3.2) yields an irreducible factorisable representation of $C_i(R,G)$.

Remark 3.5. The theory outlined above extends in a natural manner when R is replaced by R^m and one considers current groups $C_e^m(R^m,G)$. To describe this extension we adopt the following conventions. Let, for any positive integer N, F_N denote the set of all ordered m-tuples $j = (j_1, j_2, ..., j_m)$ of non-negative integers such that $j_1 + j_2 + ... + j_m < N$. For any $j \in F_N$, let $j! = j_1! j_2! ... j_m!$, where 0! = 1. A general point of R^m will be denoted by $x = (x_1, x_2, ..., x_m)$. Let $|j| = j_1 + j_2 + ... + j_m$. For any C^∞ map f from R^m into the Lie algebra \mathcal{G} , let

$$f^{(j)} = \partial^{(j)} f / \partial x_1^{j_1} \partial x_2^{j_2} \dots \partial x_m^{j_m}$$
.

We now define the N-th Leibnitz extension \mathscr{G}_N of \mathscr{G} as the set of all maps X from F_N into \mathscr{G} with Lie bracket [X,Y] defined by

$$[X, Y](j) = \sum_{j} (j!/r!(j-r)![X(r), Y(j-r)]$$

where the summation is over all $0 \le r \le j$. Here $r \le j$ means that $r_i \le j_i$ for all i = 1, 2, ..., m. Then \mathscr{G}_N is a Lie algebra. As before \mathscr{G} may be embedded in \mathscr{G}_N by mapping any $X \in \mathscr{G}$ to the element X with X(0) = X, X(i) = 0 for $i \ne 0$. Let us say that j < j if $j \ne j$ but $j \le j$. As before all elements X such that X(0) = 0 constitute a nilpotent Lie subalgebra $\mathscr{A}^{(M)}$ of \mathscr{G}_N . \mathscr{G}_N is a semidirect sum of \mathscr{G} and $\mathscr{A}^{(M)}$. For $X \in \mathscr{A}^{(M)}$, we define the matrix A(X) whose $(i,j)^{th}$ element is X(i + j) if j > j and 0 otherwise. The order of the matrix is $ck \times ck$ where c is the cardinality of F_N and k is the order of the matrices which constitute the Lie algebra \mathscr{G} . Lemma 2.3 now holds with the convention

$$A_{\underline{j}} = \sum_{p=1}^{|J|} p!^{-1} \sum_{\underline{m}_1 + \dots + \underline{m}_p = \underline{j}} \underline{m}_1!^{-1} X(\underline{m}_1) \dots \underline{m}_p!^{-1} X(\underline{m}_p)$$

Lemma 2.4 holds with the condition

$$A_{\underline{f}}(t) = \sum_{p=1}^{|f|} \sum_{\underline{m}_1 + ... + \underline{m}_p = f} \sum_{\substack{0 < t_1 < t_2 ... < t_p < t}} \prod_{i=1}^{p} e^{t_i \operatorname{ad} X(0)} \cdot (\underline{m}_1!^{-1} X(\underline{m}_i)) dt_1 ... dt_n.$$

Then Theorem 3.2 holds with the condition that in defining the map $f \to \text{Exp}_n f$ we change (3.1) to

$$\begin{split} A_I^f &= \sum_{p=1}^{|I|} \sum_{m_1 + \dots + m_p = \frac{1}{2}} \int\limits_{0 < t_1 < t_2 \dots < t_p < 1} \int\limits_{|I| = 1}^{n} e^{t_1 \operatorname{ad} f(x)} (\underline{m}_I)^{-1} f^{(\underline{m}_I)}(x)) dt_1 \dots dt_p. \end{split}$$

Acknowledgement. The first named author wishes to thank the Mathematics Institute, University of Warwick and the Science Research Council (U.K.) for their generous assistance in the preparation of this article.

References

- Araki, H.: Factorisable representations of current algebra, Publications of R.J.M.S. Kyoto University, Ser. A. 5 (3), 361—422 (1970)
- Guichardet, A.: Symmetric Hilbert spaces and related topics. In: Lecture Notes in Mathematics, Vol. 261. Berlin-Heidelberg-New York: Springer 1972
- Parlhasarathy, K. R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. In: Lecture Notes in Mathematics, Vol. 272. Berlin-Heidelberg-New York: Springer 1972.
- Parthasarathy, K. R., Schmidt, K.: Factorisable representations of current groups and the Araki-Woods imbedding theorem. Acta Math. 128, 53—71 (1972)
- Schmidt, K.: Algebras with quasilocal structure and factorisable representations, Mathematics of Contemporary Physics (ed. R. F. Streater), pp. 237—251. New York: Academic Press 1972
- Streater, R. F.: Current commutation relations, continuous tensor products and infinitely divisible group representations. Rend. Sci. Int. Fisica E. Fermi, XI, 247—263 (1969)
- Vershik, A. M., Gelfand, I. M., Graev, M. I.: Representations of the group SL(2, R) where R is a ring of functions. Russ. Math. Surv. 28, 87—132 (1973)

Communicated by H. Araki

Received July 16, 1975; in revised form March 30, 1976