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A method for the computation of a consistent set of material balances is proposed
when there are capacity limitations in domestic production and exports, and it is
related to certain planning practices in East European countries as reported by Montias.
Although the computational procedure solves a linear programming problem, it has
nothing to do with standard linear programming algorithms. Instead it is a direct
generalization of the input—output type of balancing method. J. Comp. Econ., June
1984, 8(2), pp. 159-167. Indian Statistical Institute, New Delhi, India.
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In this paper we propose a method for the computation of a consistent
set of material balances when there are capacity limitations in domestic
production and exports. The underlying model is due to Chenery (1953) who
used it for studying the industrial structure of Italy. The formal properties
of this model were first reported by Arrow (1954), who also provided a
rigorous justification for the computational procedure or algorithm used by
Chenery for solving the model. In some variant or other, the model has also
cropped up a number of times in the literature on short-term economy-wide
planning in East European countries. See, for example, Montias (1962) and
Kalecki (1963).

We carry out some further analysis of this model and offer an alternative
computational procedure. We also touch upon certain planning practices in
East European countries as reported by Montias and relate these to the
proposed procedure. Although both the Arrow-Chenery algorithm and the
one to be proposed here solve linear-programming problems, these have
nothing to do with the standard linear-programming algorithms. Instead,
these are direct generalizations of the input-output type of methods.
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We begin with a description of the model and note some of its analytic
properties. The task of describing the model can be split into three parts
dealing, respectively, with (domestic) production, foreign trade (or trade for
short), and the planning objective.

As mentioned earlier the production conditions are assumed to be described
by a simple input-output model with specific capacity limitations on the
production of each sector, 7 in number. There are no other primary resources
in the model. That is, there is a single activity for producing each commodity
i(i=1,...,n) with one upper bound, say X; > 0, on the permissible level
of its operatlon We denote the input matrix by 4 = (d;) and the net output
matrix by A = I — A. The production vector (also called production program)
is denoted by x.

As for trade, it is assumed that each good can be exported or imported at
given respective export and import prices (expressed in some common foreign-
exchange unit), with a ceiling on the permissible export levels representing
the maximum world-market demand for the respective products from the
country considered.? No parallel restrictions are imposed on imports so that
the country is assumed to face a competitive world market so far as the
supply of the import requirements is concerned. The import price of each
commodity is taken to be larger than or equal to its export price. The excess
represents the trade transport margin (the export prices are f.o.b. and the
import prices c.i.f.). Finally, the production and trade conditions are connected
by the crucial assumption that each sector has a nonnegative value added
at international prices regardless of the actual source of its inputs and des-
tination of its output. Since import prices are larger than or equal to export
prices this amounts to the assumption that the export price of each good is
greater than or equal to the unit intermediate input cost of its production
when all the inputs are valued at their respective import prices. Formally,
by letting p° and p™ be the vectors of export and import prices the two
assumptions boil down to

pm 2 pt 2 pmA (H)

We shall assume throughout that 4 is indecomposable. Assumption (H) then
implies that 4 is a productive input-output matrix.

We shall denote the export and import vectors by x° and x™, respectively,
and the given vector of export ceilings by x¢ = 0.

We now turn to the specification of the planning objective, which is of an
extremely eimple form. The domestic final use of each commodity i, denoted
by y;, is treated as a fixed target and the only flexibility is with regard to

2 The defense put forward by Arrow for this assumption is as follows: *This is an approximation
10 a declining demand curve, and, in view of the wide-spread quantitative restrictions on imports,
may have a certain degree of realism. Some such assumption is widely made by planning au-
thorities.”
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trade balance p°x® — p™x™. The trade balance is assumed to be maximized
subject to the constraints imposed by the given targets regarding domestic
final use, the given capacities of production, and the given export ceilings.
The model may be fully expressed by means of the linear-programming,
problem>;
(P) maximize (p°x® — p™x™), subject to

Ax + x™ — x* =y, ()

x = X, (2)

Xx® = x°, ?3)

and x, x™, x*=z0. (4)

Note that (P) always has a feasible solution (x™ = y, x = x® = 0) and the
value of its objective function on the set of feasible solutions is bounded
above. Hence the existence of a solution of (P) is guaranteed.

The constraints of (P) can be, however, simplified by recognizing that in
view of (H) one can always find a solution of (P) where no good is simul-
taneously exported and imported. Hence x* = 0 whenever x{ > 0, and
x§ = 0 whenever x[" > 0, so that defining

z=x*"—x*+x"20, (5)
we can simply read off (x°, x™) from z by the rule

(5, xP) =(xi— 2,00 if  z=x;

=(0, z; — x§) otherwise. 6)

Hence writing d = y + x°, (1), (3), and (4) can be rewritten as
Ax+z=d @)
(x,2)z 0. (8)

Henceforth, we shall speak of (x, z) as being a feasible solution of (P) if it
satisfies (2), (7), and (8), it being understood that z refers to (x¢, x™) as defined
in (6). We call z and d the trade vector (or trade program) and the maximum
demand vector, respectively.

A third simple result concerning the optimum solution of (P) follows from
the first inequality in (H). Suppose that (x, z) is a feasible solution of (P),
with x; < x;. Then the production of commodity i can certainly be increased
by importing all the intermediate inputs for some additional output. If x$

*In Arrow’s paper, the objective function is stated as the minimization of trade deficit rather
than the maximization of trade surplus and (1) is stated in a weak inequality form with the left-
hand side greater than or equal to the right-hand side. However, as proved by Arrow, one can
always find a solution of (P) with equalities in (1) and this is the form we start with here.
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< x¢, then some additional output can be entirely exported resulting in 5
positive or at least zero trade surplus by the assumption just referred to. It
follows that one cannot find an optimum solution of (P) where in some
sector there is simultaneously an excess capacity (i.e., X; > x;) and an unutilized
potential for increasing export (i.e., z;i > 0). Hence for the optimum solution
of (P) one need only search over (x, z) satisfying

(6 —x)=0 (i=1,...,n). 9)

We shall refer to (9) as the optimality condition and to (2), (7), (8), and (9)
as defining the optimum system. Notice that the optimum system does not
involve the export and import prices. Arrow proves that the optimum system
has a unique feasible solution, which must therefore be the optimum solution
of (P). We give here an alternative and simple proof of this result by using
some well-known properties of input—output systems.*

THEOREM 1. The optimum program of production and trade is independent
of export and import prices so long as these satisfy (H).

Proof. We show that the optimum system has a unique feasible solution.
Suppose this is not true. Let (x, 2) and (x', z') be two feasible solutions, then
(7) implies

' A(x' — x) = —(z' — 2). (10)

The optimality condition (9) implies

if xi>x; then z;=0=2z; (sincex;>x;=X;<X)

if xi<x;, then z,=052z (sincex;<x=Xx;<X)

This means (x;, — x)(z, —z) 2 0fori=1,..., n, i.e., the vectors (x’' — X)
and (z' — z) have the same sign. Equality (10) then means that the matrix
A reverses the sign of the vector (x’ — x). But this.is a contradiction to the
assumption that 4 is productive (see Theorem 3 of Parthasarathy, 1983).
Hence the theorem.

At this point, it is convenient to introduce some notation. We shall denote
the set of sectors in the model by N, identifying each sector by a positive
integer (its number) ranging from 1 to n, ie., N = {1, 2, ..., n}. For any
J C N, J will denote the complementary set {i € N: i & J}, matrix Ay will
denote the restriction of 4 to its rows and columns whose indices are inJ
and J, respectively, arranged in any definite order. Given any x € R”, X; and
x; will denote the restrictions of x to the components in {i € N: i € J} and
{i € N: i € J}, respectively, arranged in the same order as the rows and

“ This proof was suggested to the author by an anonymous referee of this journal.
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columns of A4,5. Hence, given any J C N and x € R", the product Ax can
be written after a suitable rearrangement of its rows and columns as

(AJJAJJ‘)(-’CJ) _ (AJJxJ + Alixj)
AuAiil\xi)  \Ajx; + Apx;)

Returning to the analysis, let (x, z) be the solution of the optimum system,
and K the set of sectors operated at full capacity in this solution. I shall
denote by K and K the sets of bottleneck and free sectors, respectively. Then

it follows from (9) that zz = O while xx = xx, by definition of K. Hence
from (7)

AKKJEK + AKRX]Z = dK — 2k

AgxXx + Agrxg = dg,
that is,
Zx = dx — AxxXx — AxgXg, (11)

xg = Arildi — AgxXy). (12)

Thus once K is known, the solution of the optimum system is fully de-
termined. In economic terms, output in the bottleneck sectors is capacity-
determined and in the free sectors demand-determined, where demand includes
the input requirements for the products of the free sectors in the bottleneck
sectors, besides the maximum final demand. The computational procedure
proposed here works upon this basic principle and sets out to find X in an
iterative fashion, simultaneously with (x, z).

Mathematically, the procedure consists of constructing a sequence of vectors
{x', z'} through the following sequential relations. Given x’, z* is computed
from

z'=d— Ax' (13)
and a set J’ defined there from
Jt={i EN: z{ > 0}. (14)
And x*! is then computed from
x5 = x,, (15)
x5 = A3i(dj — Aix)), (16)
where we have put J' = J and J' = J for notational simplicity. The procedure
is initiated by putting
x°=x (17

and is terminated at step 7 satisfying
JT=Jm, (18)



164 PARKASH CHANDER

Thus the proposed solution at the terminal step is (x7, z7) as determined by
(15), (16), and (13). )

In economic terms it is seen that J* and J* are precisely the sets of bottleneck
and free sectors, respectively, at step (¢ + 1). The procedure begins with all
sectors being treated as bottleneck sectors, and finds which of these have
exports in excess of the prescribed ceilings as indicated by a negative com-
ponent in the trade vector. These sectors are then taken to be free and their
outputs are determined by solving the input-output subsystem consisting of
the free sectors, treating the input requirements of their products in the
bottleneck sectors as part of their final demands. Since the excess exports of
these sectors are cut out, their output levels are smaller than their previous
levels, with a corresponding reduction in the flow of inputs from the bottleneck
sectors to the free sectors. This entails a larger availability of the outputs of
bottleneck sectors for final uses and gives rise to the emergence of fresh excess
exports, the corresponding sectors being then taken to be free for the next
round, and so on. The process continues till there are no excess exports.
These assertions are borne out, inter alia, in the following algebraic discussion.

To begin with, it is easily seen that the sequence is well defined, for 4
being a productive input—output matrix, each principal submatrix of it is
also a productive input—output matrix by the Hawkin-Simon condition.
Hence A4;; has a nonnegative inverse. We now prove the convergence of our
procedure.

THEOREM 2. The computational procedure as defined by Egs. (13)~(17)
converges in a finite number of steps T < n.

LEMMA. There exists a finite T such that J™ = JT/, that is, (18) is satisfied.

Proof. Advancing the step index in (13) by one and retaining only those
equations in it with indices belonging to J*, one obtains

A + Agpcft = dy — 25, (19)
From (15), (16), and (19) it follows at once that
Zft =0. (20)
Hence if z4 < 0 then z' = 0, i.e.,
J-'CJ'  which implies that ~ J*' D J-. 21)

Since J' is a finite set (containing at most n elements) which contracts at
each step, it must become stationary at some finite 2. This proves the lemma.

Since J' uniquely determines (x‘*', z**') (see (15), (16), and (13)), the
lemma implies (x 7!, zT*") = (x7, z7).

Proof of Theorem 2. By the Lemma above, there exists a finite 7 such that
JT = JT and (xT*!, z™*") = (x7, z7). We show that (xT*!, z7*!) satisfies
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(), (M), (8), and (9), i.e., (x™*', zT*') is the feasible solution of the optimal
system.

It follows from (13) that (x', z') satisfies (7) at each ¢. From (15) and (20)
it follows that the optimality condition (9) is also satisfied at each ¢ (since i
€J"' = xi= X and i €J"' = z! = 0). Next, since 4j, < 0 and A7} = 0,
it follows from (16) that x5 = 0, hence x' = 0, for all 7. As for z7, since
Jrt=J7, z[*' < 0 only if z7 < 0. But as in (20), z7*' = 0 for all i such
that z[ < 0. Hence z™"' 2 0. Thus (x7*!, z7*!) satisfies (8). It remains to
prove that x7*! satisfies (2). For this, one notes from (19), putting back the
step-index to ¢ but keeping to J = J! that

xb = A3(ds — Apxb) — A7} zY
= Ajj(dy — Ajpxb) (since z5 < 0 by (14) and 4]} = 0)

Z A3j(ds — A% (by (15) and (21)).
Thus, '
x52Z x5! (by using (16)). (22)

This proves that {x'} is a nonincreasing sequence. Since x° = X%, x’ must
satisfy (2) for all 2. This completes the proof,

Thus the computational procedure as defined by (13)~(18) indeed computes
the solution of (P) in a finite number of steps. Computationally, the major
task in the procedure is the inversion of a sequence of input—output matrices
of an increasing order, for J* expands with each step. Clearly, the smaller
the number of sectors in J7, the smaller the computational task, for the
matrices to be inverted are then of a smaller order and the convergence is
also speedier. Also, it appears possible to improve the speed of convergence
if there is some a priori knowledge about the set of bottleneck sectors. Thus
if J%is an initial guess regarding the set of bottleneck sectors, then the algorithm
can begin straightaway with (15) and (16)—with ¢ = 0 and J = J°—instead
of with (17). Since J* contracts at each step and (17) was required only to
prove that xT = x,, this modified procedure will also terminate with a solution
- {x, z), provided that K C J°. Thus, overestimates of K in the initial “guess”
can always be corrected in the subsequent steps, though not underestimates.
This imparts a certain flexibility in the initiation of the procedure although
at this stage this hinges entirely upon an a priori judgment.

We compare the present procedure with the original Arrow-Chenery al-
gorithm which represents, in some sense, a polar opposite approach. It
suffices to quote Arrow on this

At the initial stage, we set the output of each industry equal to its capacity or the final
demand for its product, including maximum possible exports (i.e., our maximum final
demand), whichever is smaller. At each subsequent stage, the output of each industry is
expanded to meet the derived demand of the previous round until capacity limits are
reached; any remaining demand is met from imports. (Arrow, 1954)
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Thus, the sequence of production vectors x' in the Arrow—Chenery algorithm

approaches the solution vector x from below with a corresponding expansion

of the set of bottleneck sectors over the steps. However, the sequence is an

infinite one, converging asymptotically, and does not make any direct use

of (11) and (12). That is, it goes on comparing successive rounds of desired
demand and raising the output levels even after the correct partition of N
into K and K has been obtained. In fact, the Arrow-Chenery algorithm is a
direct generalization of the iterative method for solving an input-output
system and dispenses with the necessity of computing an inverse matrix at
any stage.’ However, the attractiveness of this dispensation is largely a matter
of the sizes of the matrices to be inverted which in turn depends directly
upon the size of J*. f7. Hence the Arrow—Chenery algorithm appears to have
an advantage when J J7 is large. However, the Arrow—Chenery algorithm will
generally have a slower speed of convergence not only b-cause the convergence
is asymptotic, but also because the set of bottleneck sectors does not necessarily
change at every step even before K is obtained—it also lacks any flexibility
regarding ititiation. This is as far as it appears possible to compare the two
algorithms on a priori- grounds short of specific numerical trials.

Finally, it is interesting to note that the proposed procedure appears to
resemble a certain approach to physical planning at the national level,.as
reported by Montias (1959, 1962) and by Kalecki (1963) in their work on
short-term planning in Poland.® Speaking about the method of material bal-
ances in the presence of bottleneck problems and foreign trade, treated ex-
ogenously, Montias (1962), for example, writes

From experience, or by means of trial and error methods, the planners should have a definite

notion as to which sectors present bottleneck problems and which do not. The planner will

generally operate the bottleneck sectors at full capacity, if the supply of other exogenous
inputs (including foreign exchange) permits.
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