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SUMMARY. Some optimality results have been derived on efficiency-balanced designs, 

with special emphasis on binary designs. Several specific applications have also been indicated, 

1. Introduction 

Although the history of efficiency-balanced (EB) designs can be traced 

back to the work by Jones (1959), the study of such designs underwent a vigo 
rous development over the last fifteen years. Significant results on charac 

terization problems relating to EB designs were obtained by Williams (1975), 

Puri and Nigam (1975a), Kageyama (1980) and Dey, Singh and Saha (1981) 
and useful construction procedures were proposed by Puri and Nigam (1975b, 

1977), Dey and Singh (1980), Kageyama (1981), Kageyama and Mukerjee 

(1986) and Ghosh and Karmakar (1988), among others. The simplicity in 

the analysis of EB designs has been noted by various authors but, with the 

availability of computers, this property alone does not seem to be very attrac 

tive and further statistical justification, through optimality considerations, 

is called for. It, however, appears that not much work has been reported on 

the optimality aspects of EB designs, especially in the non-equireplicate case, 

except for some results recently obtained by Das (1989). This point has been 

noted, among others, by A. Dey in a private communication. The present 

paper attempts to fill in this gap to some extent. 

It is well-known (see e.g., Williams (1975), Dey, Singh and Saha (1981)) 
that an equireplicate EB design is variance-balanced and that for such designs, 

particularly when they are binary, optimality results are available in the 

AMS (1980) subject classification: 62K05, 62K10. 
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literature (cf. Kiefer (1975)). In this paper, therefore, non-equireplicate EB 

designs have been considered. In pratical situations, when the use of a non 

equireplicate design is contemplated, it often happens that there are restric 

tions on the availability of the treatments and, as such, a particular replication 

pattern has to be followed. In such situations, in addition to the number of 

treatments, the number of blocks and the block sizes being fixed, the replica 
tion numbers may also be fixed a priori from a practical standpoint. Hence 

while studying the optimality aspects of a non-equireplicate EB design d*, 

it is often natural to restrict attention to the class S(d*) of designs having the 

same number of treatments, the same number of blocks, the same block sizes 

and the same replication numbers as d*. At this point, we deviate from the 

traditional optimal design theory where optimality is explored within the 

broader class S0(d*) of designs with the same number of treatments, the same 

number of blocks and the same block sizes as d*. This change, indeed, makes 

our results theoretically restrictive. But still, the findings are practically 
useful when, as indicated above, the replication numbers have to be fixed a 

priori from extraneous considerations. 

2. Main results 

Consider an EB design d* involving v treatments and b blocks such that 

the ?-th treatment is replicated r$ times in d* and the j-th block in d* hat size 

kj (1 < i < v ; 1 < j < b). Letr = 
(rv ..., rv)', R == 

diag(rl5 ..., rv), and 

n = 2 r?. The optimality of d* within the class S(d*), as defined above, 

will be investigated. We assume the usual fixed effects additive model with in 

dependence and homoscedasticity of errors. 

Let t be the vXl vector of (fixed) treatment effects. Then a complete 

set of JB~1-normalized treatment contrasts is given by Pt, where the (v-l)xv 

matrix P satisfies 

PR^P' = I, P? - 0, ... (2.1) 

with 1 as the vxl vector with all elements unity. For any design d e S(d*), 

let Ca denote the coefficient matrix of the reduced normal equations for t 

(cf. Raghavarao (1971)). It is not hard to see that, under the design d, the 

information matrix for Pt is proportional to J(d) 
= 

PR-1'OdR"1P,9 and that 

by (2.1), 

HJ{d))^v- i inl-jKnkj), 
... (2.2) 
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where _?# 
= 

{(nay)) is the incidence matrix of d. For the EB design ?*, 

Cd* is proportional to (R?w1 r r'), so that by (2.1), J(d*) is proportional to 

the identity matrix. Hence by (2.2), along the line of Kiefer (1975) (see also 

Sinha and Mukerjee (1982)), the following result is evident. 

Lemma 2.1 : Let d* be an EB design and suppose 

S S nfo/fa*,) > S inl.iilinkj), ... (2.3) 
t=-i /=i i-i y=i 

for every d e S(d*). Then d* is universally optimal in S(d*) for the estimation of 
a full set of R"1-normalized treatment contrasts. 

Since universal optimality implies D-optimality and since D.-optimality 
with respect to one complete set of treatment contrasts implies that with 

respect to every complete set of treatment contrasts, from Lemma 2.1 one 

obtains the following result which is perhaps more important in terms of 

applications. 

Lemma 2.2 : Let d* be an EB design and suppose the condition (2.3) holds 

for every de S(d*). Then d* is D-optimal in S(d*) for the estimation of every 

complete set of treatment contrasts. 

There is yet another implication of Lemma 2.1. For any design d in S(d*), 
let fa denote the minimum efficiency with respect to a treatment contrast in d, 

where efficiency is relative to the corresponding (unblocked) completely ran 

domized design with the same replication numbers. A typical treatment 

contrast is of the from ?'P?, where P is as defined above and ? is a (v? 1) x 1 

non-null vector. Hence by (2.1), for a connected design deS(d*), 

fa = inf ftPR-WlK PC-dP'\) 
= 

{K^PCjP')}-1 
= Amin(JW), ... (2.4) 

where for any square matrix A, Amax(_?) (Amin(_?)) denotes its maximum 

(minimum) eigenvalue and _?~ stands for any generalized inverse of A. 

Trivially, for a disconnected design d{ e S(d*)), fa 
= 0. Since universal 

optimality implies E- optimality, the following result is evident from 

Lemma 2.1. 

Lemma 2.3 : Let d* be an EB design and suppose the condition (2.3) holds 

for every d e S(d*). Then fa* > fa for every d e S(d*). 

Note that the optimality criterion in Lemma 2.3 is analogous to the 

E-optimality criterion. In order to indicate specific applications of the above 

lemmas, we now consider EB designs with exactly two distinct replication 
numbers and exactly two distinct block sizes?most of the EB designs reported 
in the literature are of this type. With such an EB design d*9 one can find 
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non-empty sets Gv G2, Tv T2 such that (i) Gv G2 provide a disjoint partition of 

{1, 2, ..., v) ; Tv T2 provide a disjoint partition of {1,2, ..., b), (ii) r? = / 

for i e Gx ; rt = r" for i e G2 ; r' J? r", (iii) kj 
= k' for j eT1;kj 

= k" for j e T2 ; 

k! ^ k". Without loss of generality, let 

r' <r", kf < k". ... (2.5) 

For every deS(d*), let AJ?0 
= ? 2 ndij; s, s' = 1, 2. As every 

ie08 jeTg 

d(eS(d*)) has the same replication numbers and the same block sizes as d*, 

writing hf?* 
*> = 

fd for the sake of notational simplicity, it follows from (ii) and 

(iii) above that for deS(d*), 

ha, 2) = 
wr>?U U% i) = 

uy_fd9 ?(2, 2) = 
(6_tt) k"-wr'+fa, 

... 
(2.6) 

where w and w are the cardinalities of Gx and T1 respectively (0 < w < v, 

0 < u < V). Hence for every d e 8{d*), 

v b v b 
2 2 nfo/fa**) > 2 S nmlinkf) 

= 
(r'*')-1/?l+(^*)-1(tw'-/l) + (r'*,)-1(?*'-/?) 

+ (r"F)-1{(fe-W)?;"-w'+/4 

= 
A+(7-^)(f-f)/- 

- (2-7) 

by (2.6), where A is the same for all designs in S(d*). Note that equality holds 

in (2.7) provided d is binary and that by (2.5), the coefficient of fa in the 

right-hand member of (2.7) is positive. Furthermore, by (2.6), fa ^ max 

{0, wr' ? 
(b?u)k"}=if0, say, for each d e S(d*). Hence by (2.3), (2.7), 

the following result holds. 

Theorem 2.1 : Let d* be a binary EB design such that fd* =/0. Then 

d* is optimal in S(d*) in the senses considered in Lemmas 2.1?2.3. 

3. Applications 

The results in the last section, particulraly Theorem 2.1, are helpful in 

exploring the optimality of a large variety of EB designs available in the litera 

ture. In order to save space, we cannot deal with each and every available 

EB design. However, it appears that the examples presented below have a 

fairly wide coverage. 
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N = 

Example 3.1. Let NX,N2 be incidence matrices of balanced incomplete 
block (BIB) designs with parameters v, bv rv kv ?x and v, b2, r2, k2, A2, res 

pectively. Suppose there exist positive integers x, y such that 

.-. = ^(ki+l)-hhr2 _____ ^(h-h-y+hA} (3 jj 
y *2(*i?Ai) Vi^-y 

Then, as shown in Corollary 2.4 in Kageyama (1981) (see also Theorem 5 in 

Puri and Nigam (1977)), the design d* with incidence matrix 

/v-n, 
o' o' \ 

\NX...NX N2...N2 J 

x times y times 

is EB with parameters v = v + 1, b = 
xbx+yb2, ^ = 

xbx or xrx+yr2, kj 
= 

^+1 
or ifc2 (here for a positive integer a, lam the ax 1 vector with all elements unity). 

By (3.1), 
xbx?(xrx+yr2) 

== 
yr2v{k2-kx-l)l(kxk2), 

so that xbx is greater than, less than or equal to xrx-\-yr2 according as k2 is grea 
ter than, less than or equal to kx-\-l respectively. If k2 

= 
kx+l9 then d* 

becomes a variance-balanced design. Consider therefore the case k2^k1+l. 
If k2 < kx-{-l9 then using the notations of the last section, it is easy to see that 

w = l,u = 
yb2, rf = 

xbx, k" = 
^+1, so that/0 

= 0. Also,/^ 
= 0. Further 

more, d* is binary. Hence by Theorem 2.1, d* is optimal in S{d*) in the senses 

considered in Lemmas 2.1?2.3. On the other hand, if k2> kx-\-l, then 

w ~v,u = 
xbv r' = 

xrx-\-yr2, k" = 
&2, /0 

= 
awx 

= 
/?#, and as before the 

optimality of d* follows. 

Example 3.2. Let Nx be the incidence matrix of a BIB design with para 
meters vv bv rv kx, Ax and suppose there exist positive integers x, y such that 

x\y 
= 

2Axvxk^-rv 
... (3.2) 

Then, as shown in Corollary 2.5 in Kageyama (1981), the design d* with in 

cidence matrix 

x times y times 

is EB with paramters v ? 
vx-\-l, b = 

a^+yfti, r? = otx or y^+a?, % 
= 2 

or k\ (here for a positive integer a, Ia is the axa identity matrix). Consider 
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the case kx > 2 (if kx 
? 2 then it can be seen that d* reduces to a BIB design 

for which optimality results are well-known). Then from (3.2), it follows 

that xvx > yrx+x. Hence w = 
vv u = 

xvv r' = 
yrx+x, k" = 

kv so that 

f0 
= 

xvv Also fa* 
= 

xvx and d* is binary. Hence by Theorem 2.1, d* is opti 
mal in S(d*) in the senses considered in Lemmas 2.1?2.3. 

Example 3.3. Let Nx be as in the last example and let there exist positive 

integers x, y such that 

x\y 
= 

Xxv^-rx(vx-l). ... (3.3) 

For positive integers a, a', let Jaa* 
? 

lal?>, Ja 
= 

Ja,a> Then as shown in 

Corollary 2.8 in Kageyama (1981), the design d* with incidence matrix 

N 

x times y times 

is EB with parameters v = 
v?+l, b = 

xv?+ybv r% = 
xvx or x(v?? l)+yrv 

kj 
= 

kx or vx. Clearly, kx < vx, and by (3.3), xvx < x^?^+yr^ Hence 

w = 1, w = 
ybv r' 

? 
xvv k" = 

v1? /0 
= 0. Also fa* 

= 0 and d* is binary. 
Hence as in the last example, the optimality of d* in S(d*) follows. 

Example 3.4. Let Nx be in Example 3.2. Then, as shown in Kageyama 
and Mukerjee (1986) (see also Das and Ghosh (1985)), the design d* with inci 
dence matrix 

Ni Jv 
N = /ivi ?V-ri-AA 

is EB with parameters v = 
vx+l, b = 

bx+rx??v r% = 
2rx?Xx or bl9 kj 

= 

kx+l or vv Considering the non-trivial case kx+l < vv one obtains w = 
vv 

u = 
bv r' = 

2rx?Al5 &" = 
v1? /0 

= v^. Also, /?* 
= vxrx and d* is binary 

and as before the optimality of d* in S(d*) follows. 

Example 3.5. Let Nx be as before. Assume that rt 
= 

2?X. Then, as 

shown in Corollary 2.6 in Kageyama (1981) (see also Das and Ghosh (1985)), 
for an arbitrary positive integer y, the design d* with incidence matrix 

is EB with parameters v = 
v?+l, b = 

bx+y, r% 
? 

rx+y or y, kj 
= 

kx or vx+l. 

Clearly, w = 1, u ? 
bx,r' 

? 
y, k" = 

vx+l, f0 
= 0. Since/?* 

= 0 and d* is 

binary, the optimality of d* in S(d*) again follows by Theorem 2.1. 

B3-11 
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Example 3.6. Let Nx be as in Example 3.2 and assume that y 
= 

rx(vx+l)? 

(vx?2kx? 1) is a positive integer. Then, following Kageyama and Mukerjee 

(1986), the design d* with incidence matrix 

V?;, k ) 
is EB with parameters v = 

vx+l, b = 
bx-\-y, rt = 

rx+y or bx-\-y, kj 
= 

kx-\-l 
or vx+l. Clearly, w = 

vx, u = 
bx, r' = 

rx-\-y, k" = 
vx+l, /0 

= max 

(0, vxrx?y). But/d? 
= 

vxrx. Hecne fd* >/0, and the sufficient condition for 

optimality given by Theorem 2.1 fails. However, one can directly check the 

condition (2.3). After some tedious algebra, it can be seen that (2.3) holds 

(and hence d* is optimal in S(d*) in the senses considered in Lemmas 2.1?2.3) 

if, in particular, 

f%-to>1(3k1+l)+{2It*-kx+2) < 0. ... (3.4) 

The condition (3.4) is satisfied for practically useful values of vx (i.e., when vx 

is not too large). The derivation of (3.4) is omitted here but may be obtained 

from the authors. 

It appears that the above examples provide a reasonable coverage of the 

binary EB designs available in the literature?in particular, they demonstrate 

that many of the binary EB designs given by Puri and Nigam (1977), Kage 

yama (1981), Das and Ghosh (1985) and Kageyama and Mukerjee (1986) are 

optimal in the senses considered in Lemmas 2.1?2.3. It may be noted 

that the EB designs due to Dey and Singh (1980) and Ghosh and Karmakar 

(1988) are either non-binary or, when binary, become equireplicate and hence 

variance-balanced (cf. Kageyama (1982)); therefore, these designs have not 

been considered here. 
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