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1. Introducti We ider a syst with a finite number of states
1,2, -+, 8. Once a day, we observe the current state s of the system and choose
an action a from an arbitrary set A of actions. As a result, two things happen:
(1) we receive an immediate income i(s, a), and (2) the system moves to a new
state &’ with probability ¢(s’ | s, a). Assume that the incomes are bounded, that
is, there exists a posxhve number M such that |i(s, a)] = M,s = 1,3, , S,
ae A. The problem is to maximise the average rate of income (to be deﬁned
below).

Denote by F the set of all functions f on S into A. A policy x = [fi , fr, -~}
is & sequence of functions f, £ F. Thus, to use policy = is to choose the action
fa(8) on the nth day, if the system is in state s on that day. We shall call a policy
= = |f.| stationary if fa = f,n = 1,2, ---, and denote it by .

With each f ¢ F, associate (1) the S X 1 vector r(f), whose sth coordinate is
(s, f(8)) and (2) the S X S stochastic matrix Q(f), whose (s, &') element is
¢(8' | 8, f(8)). Hence, if we use the policy = = {f.], the n-step transition matrix
of the system is Qu(x) = JIi-1 Q(fi). In particular, if our policy is stationary,
the system becomes a discrete time-parameter Markov chain with stationary
transition probabilities.

Given a policy x, let us denote by Wa(x) the S X 1 vector of incomes on the
nth day, when the policy « is used. Set

z(x) = limy.a N7 251 Wa(x)

whenever the limit exists. Blackwell (1) has shown that the limit exists whenever
x i8 a stationary policy. In the case of a stationary policy, z(f*™) is the vector
of average rates of income, when the policy f* is used.

We shall say that a policy fu'™ is optimal among stationary policies if z(fo™) 2
z(f*) for all f £ F (for any two S X 1 vectors w, and w, , we shall write w; 2 w0
if every coordinate of 1, i8 at least as large as the corresponding coordinate of
ws, and w; > wy if vy = ws and w, > wy).

Blackwell {1] showed that, if A is finite, there exists an optimal policy among
stationary policies. When A is not finite, there may not exist an optimal policy.
Consider, for instance, a system with a single state and A = {1, 2, - -}. Choice
of action 7 brings an income of 1 — 1/ dollars. It is clear that there is no op-
timal stationary policy.

The purpose of this note is to prove:

TeeEorEM. Let A be arbitrary. Given ¢« > 0, there exisis a slalionary policy f.
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such that z(£,"”) Z supsr z(f™') — e, where ¢ is the S X 1 vector with all co-
ordinales unity.

2. Proof of theorem. We introduce a discount factor 8,0 < 8 < 1, so that the
value of unit income 7 days in the future is 8”. Blackwell [1] has shown that the
total expected discounted return from a policy f* is given by the S X 1 vector

Va(f) = T8N
and that

2(f*) = limpus (1 — B)Va(f*).

With each fe F and each 8, 0 £ 8 < 1, let us associate the transformation
La(f) which maps the S X 1 vector w into La(f)w = r(J) + SQ(f)w. We note
that Ls(f) is monotone, that is, wy = 0, implies La(f)w; 2 Ls(f)w, . Note that
V() is the fixed point of Ly(f).

In order to prove our theorem, we need a lemma.

LeMMA. Let fy, fa, -+ , fu € F (k 2 2). Then there exists h ¢ F such that

Va(h'™) 2 Vp(f™), i=1,2 -,k

for all B Z some B .

Proor. It suffices to prove the lemma for k = 2. The proof for general k then
proceeds by induction.

Denote by u, the sth coordinate of the S X 1 vector u.

Consider Va(£,'), and Va(£), . Either Vo(£,i*), = Va(fi™), for all 8 2
some 8’ or Va(fi"), < Vs(£:*?), for a sequence of f's tending to 1. But for each
sand each f, V(S ). is a rational function of 8, as the representation Vy(f) =
\I — BQUNYr(f) shows. Consequently, either Vs(£'™), = Va(£,™). for all
8 = some B or Va(fi'"). < Va(fs'™), for all 8 = some #”. Thus, for each s,
there exists & 8, < 1 such that either Va(£i’), = Vo(fs'), for all 8 = 8, or
V,(j,"’)), < Vn(fz"))- forall 8 & B8, .

Let 8o = maX;g.5s 8. . For each 8 = fo, define u(8), = max (Va(A™).,
Va(£,*).). We now define h ¢ F as follows:

h(s) = fi(s) if Vo(h™)e 2 Valai™), for allg 2 8,
=fa(8)  if Va(i')s < Vo), forallf =, 1Sss8S

Set u(B) = (u(B)1, u(B)1, ---, u(B)a). It is easy to check that Ly(h)u(B) 2
u(B) for all 8 2 B . Denoting by Ls'”(h) the nth iterate of Ls(h), we see that
L (h)u(B) = u(B) for N = 1,2, --- and all 8 = B, . For fixed 8 = o, let
N — o, We get: Va(h™) = u(8) for all 8 = 8. This completes the proof of
the lemma.

Proor oF THEOREM. Set z,* = sup.r (z(f*).) and z* = (2,*, %", -+, z5°).
Let ¢ > 0. For each s, choose f, ¢ F such that z(£.*), > z,* — ¢ Hence, for
each s, there exists 8,' < 1 such that (1 — B)Vs(£,"), > 2,* — eforall 8 2
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8. Let #/ = maxi5,<s 8, . But by the preceeding lemma, there exists b £ F and
8" < 1 such that Va(h'?) = Vo(f.") for1 S & < Sand all 8 = §”. Hence
(1 — B)Va(h'™) > z* — eeforall = max (,87). Let 8— 1. We get: z(h™) 2
2* — ee. The proof is completed by taking h = f, .

ReMarE. In [2], I gave an example of a system with countably infinite state
space and finite action space 4, where there exists no optimal policy among sta-
tionary policies. It would be of interest to know if there exist e-optimal policies
in this case.
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