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SUMMARY. In this paper we consider the problem of constructing run orders of facto 

rial designs having all factors at two levels that are robust against smooth polynomial spatial or 

time trends. Bounds are obained on the number of constrasts in a complete 2n design that 

can be orthogonal to a ?-degree polynomial trend for k = 
1, ..., n? 1 and it is shown that the 

highest degree polynomial trend that a contrast in a complete 2n design can be orthogonal to is 

n?1. Also, some suggestions are made as to how to construct main effects only fractional fac 

torial designs when the number of available experimental units is a multiple of 4. 

1. Introduction 

In this paper we consider experimental situations in which a factorial 

design with all factors at two levels is to have its treatments applied to ex 

perimental units in some sequence over space or time. In such a setting, the 

results obtained may be affected by the particular time or space order in which 

treatments are applied and this should be taken into consideration both when 

the experiment is planned and when the results are analyzed. While the time 

or space order of treatment applications may not itself be an important vari 

able, it may serve as a good approximation for other important variables 

that are highly correlated with it. For example, a manufacturer may be 

interested in determining the best chemical mixture to be used m a new pro 

duct. However, if the chemicals involved are mixed over time using the same 

equipment, it may be that time could serve as an approximating variable for 

the effects of mixing equipment wear-out. Or if the experimental material 

to which treatments are to be applied is put together at the beginning of the 
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experiment and treatments are administered over time, then time might serve 

as an approximating variable for the effects of aging on the experimental 
material. 

Cox (1951) began the study of systematic designs for the efficient estima 

tion of treatment effects in the presence of a smooth polynomial trend in the 

context of variety trials. Other papers on the sujbect include Daniel and 

Wilcoxon (1966), Hill (1960), Draper and Stoneman (1968), Dickinson (1974), 

Joiner and Campbell (1976) Cheng (1985), Coster and Cheng (1986), and 

Cheng and Jacroux (1988). In particular, Cheng and Jacroux (1988) showed 

that in the standard order of a complete 2n design, any k-factor interaction 

contrast is orthogonal to any (k? l)-degree polynomial trend. Thus, by 

designating some high-order interaction terms as main effects, one can derive 

from the standard order a run order of a complete 2n design in which the main 

effects are orthogonal to high degree polynomial trends. 

In this paper we further consider determination of run orders of factorial 

designs having factors at two levels. In section 2 we give a summary of the 

notation and terminology that is used throughout the paper. In section 3, 

some extensions of a result given in Cheng and Jacroux (1988) are, given. 
More specifically, bounds are given for the number of contrasts in a complete 
2n design that can be orthogonal to a p-degree polynomial trend and a bound 

is also given for the highest degree of polynomial that a contrast in a complete 
2n design can be orthogonal to. Finally, in section 4, we discuss the problem 

of constructing main effects only fractions of 2n designs where the number of 

observations to be obtained in some positive multiple of 4. 

2. Preliminary notation, definitions and lemmas 

We shall refer to the two levels of each factor as high level and low level. 

With each factor i we associate the letter Ai and call Ai the main effect of factor 

i. The product A. ... 
Ai of main effect letters shall be called the t-factor 

interaction term for factors iv i2, ...,it. The set of 2n products A\ ... An 

where x% e {0, 1} form an abelian multiplicative group which we denote 

by An. 

In a complete 2n design a particular treatment combination is represented 
as the product of some subset of letters out of av ...,an with the presence of 

ai in the product indicating that factor i occurs at its high levei and 

the absence of ai from the product indicating that factor i occurs at its 

low level. We use (1) to denote that treatment having all factors occur at 

their low levels. 
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We shall also consider some fractions of a complete 2n design denoted by 

d(n, m) where n = the number of factors and m = the number of different 

combinations out of the 2n available that are in d(n, m). Any sequential 

applications of the treatments in d(n, m) to experimental units over space or 

time is called a run order of d(n, m). In the present context m is not necessa 

rily 2n~v as discussed in Cheng and Jacroux (1988). 

We now refer to Cheng and Jacroux (1988) replacing N and T* of that 

paper by m and d(n, m) respectively in the present context for some definitions 

that are central to our discussion e.g. componentwise multiplication operator 

V (Definition 2.1), main effect contrast u% associated with A% and the contrast 

u{ ou{ o... out associated with the ?-factor interaction At A{ 
... 

A{ 

(Definition 2.2). 

In a complete 2n design, we note that the set of ali 2n products that can 

be formed from ul9 ...,un under the opertion of c0' forms a group that we 

denote by Un. Clearly Vn and An are isomorphic to the additive abelian 

group of ^-dimensional vectors Vn over the field Zn 
? 

{0, 1} where vector 

addition is carried out modulo 2, From this isomorphism it follows that since 

Vn is an n-dimensional vector space, every basis consisting of a minimal number 

of generator elements for An(Un) contains exactly n elements. 

Suppose we let y 
= 

(yv ..., ym)' denote the vector of ordered observations 

obtained after applying the treatments in d(n, m) to experimental units. The 

model assumed here for analyzing the data obtained in d(n, m) is the usual 

model that can be written as 

y = X?+ = 
X^+X^+e 

... (0.1) 

where is an m X 1 vector of independent error terms having expectation zero 

and constant variance a2. The parameters in ?x correspond to the usual 

factorial main effect terms At and interaction terms 
Ai 

... 
Ai 

and the para 

meters in ?2 correspond to smooth polynomial trend effects. We shall assume 

throughout the sequel that the levels of each factor have been coded so that 

they correspond to +1 or ? 1 values. Thus if we let X = 
(xl9 ..., x%) 

= 
(##), 

then the column of Xx corresponding to the main effect term Ai is precisely 

Ui for i = 1, ..., n and the column of Xt corresponding to the interaction 

term Ai 
... 

Ai 
is ui o ... 

ou{. The columns of X2 correspond to some 

space or time trend effect. We shall assume that any trend that might effect 

the observations can be represented by 

trend effect = 
a0+a1z+a2z2+ 

... +affi ,.. (2.2) 
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and the values that z assumes correspond to equally spaced positions at which 

observations are obtained. 

In the partitioned form of the design matrix X = 
(Xv X2) given above, 

if the columns of X1 are orthogonal, then we shall say that d(n, m) is an orthogo 
nal design. The ultimate goal of this paper is to study run orders of 2-level 

fractional factorial designs that yield estimates for main effects that are not 

contaminated by unknown trend effects of the form given in (2.2). But the 

only way this can happen if the columns of X1 corresponding to the factorial 

effects of interest are orthogonal to the columns of X2 corresponding to trend 

effects. With this in mind, we refer to the definition of a k-trend free main 

effect or t-factor interaction discussed in Cheng and Jacroux (1988) e.g. defini 

tion 2.4 with an obvious replacement of N by m in the present context. 

One method that sometimes proves useful for constructing trend-free 

contrasts involves the Kronecker product between matrices (Raghavarao, 

1971). When the Kronecker product is applied to k-trend free vectors, we 

have the following result. 

Lemma 1. (a) If px is an mXl vector of-\-Vs ana?Vs such that 

p[T0 7^ 0 and p2 is an nxl vector of -\-Vs and?Vs that is q-trend free, then 

JPi??*2 is q-trend free. 

(b) 7/ px is a p-trend free m X 1 vector of-\-1 's and- 1 's and p2 is ?an nxl 

vector of+Vs and?Y s such that p2T0 ^- 0, then p1($p2 is p-trend free. 

(c) If P! is an mXl vector of -\-Vs and?Vs that is p-trend free, p > 0 

and p2isannxl vector of -\-Vs and?Vs that is q-trend free, q > 0, then px (g) p2 
is (p-\-q-\-l)-trend free. 

Proof. The proof for (a) is obvious and the proof for (b) is similar to 

the proof of (c). Thus we shall only prove (c). So let pt 
= 

(ev e2, ..., em)' 
and p2 

? 
(dv d2, ..., dn)'. Since p? is ^p-trend free, 

m 
S i*ei = Q for x = 0, 1, ...,p. ... (2.3) 

Upon expanding ix ? 
((i?l)-{-l)x m (2.3) binomially and proceeding sequen 

tially for succeeding values of x, we see that 

m 
S (i-l^^Ofora^ 1,2, ...,p. ... (2.4) 

Now consider 

Pi<8>jP2 
= 

(ei?i> etd2, ..., exdn, e2dx, e$2, ..., e2dn,..., emdv emd2, ..., emdn)' 
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and the vector 

Tx = 
11? 2 , ..., n*, (n+l)*, (n+2)*, ..., (n+n)*, ..., ((m-l)n+l)*, 

((m?l)n+2)x, ...,((m?l)n+nY)x. 

Using these last two expressions and binomially expanding terms of the form 

(an+b)x in Tx, we see that 

n m f n , x . 
x . ? x 

(Pi?P2YTx 
= el S i?di+ S eA S d< iM ((j-l)?)*-i ??)}... (2.5) 

For x = 0, 1, ..., q, it follows from (2.5) and the fact p2 is #-trend free that for 

each fixed value of j and i, 

S ?* d* = 0 and S d* ( S ( 7 ((?"-i)w)*-i ?0 = 0. 
{=1 i=l m=o W / / 

Thus (p1i^p2Y Tx = 0?ovx = 0, 1, ...,q. For a; = 
q+l}q+2,..., p+q+l, 

upon collecting cosfficients in (2.5) for each il term separately, 

i = 1, ,.., n, i = 
g+1? ,#, it follows from (2.4) that (2.5) is equal to zero. 

Hence, (/>x? p2)' Tx = 0 for # = 
q+l, ..., p+q+l, and we have the 

desired result. 

3. Bounds fob tbend besistent contrasts in complete 2n designs 

In this section we extend a result given in Cheng and Jacroux (1988). 

In particular, Cheng and Jacroux (1988) give an upper bound of 2n?n?~ 1 as 

the maximal number of 1-trend free orthogonal contrasts that a complete 2n 

design can have. In this section we derive an upper bound for the number of 

p-trend free contrasts that a complete 2n design can have as well as a bound 

on the degree of trend resistance that any contrast in a complete 2n design can 

have. We begin by giving a Lemma. 

Lemma 2. Let T[ 
= 

(1, 2, 3, ..., h) and let 1?, Wl9 ..., Wt be a set of vec 

tors where lh is the hxl vector of ones and Wl9 ..., Wt ctre hxl vectors whose 

components are all + l's and ? Vs. If Tt 
= 

c0 ln+cx W?-\- +c$ Wt for 

appropriate constants c0, cl9 ..., ct, then t^n where 2? < h < 2n+1. 

Proof. Assume ?<rc-l, let W == 
(Wv ..., Wt) and let ?V-c0l? 

= 

c1W71+... +ct Wt. Since all the rows of T1?c0l^ are different, it follows that 

none of the rows in W can be identical. But since all of the entries in W are 

-f Vs and?-1'? and t < n? 1, it follows that there can be at most 2* < 2n_1 < h 

distinct rows in W. Hence we have a contradiction and we see that t > n. 
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Theorem 1. In a complete 2n design d(n, m) with m = 2n, the maximal 

number of mutually orthogonal contrasts that are i4rend free is 2n? 1 ? 2 ( j. 

Proof. We begin by observing that in a complete 2n design, all of the 

contrasts, main effect and interaction, are mutually orthogonal and under the 

operation of c0\ these contrasts form the group Un defined in the previous 
section. Suppose that p of the contrasts in d(n, m) are not orthogonal to Tx 
and suppose that we denote them by W^, ...,WP. It then follows that we 

can write Tx 
= 

c01lm+c1IF1+ +cpWp for appropriate nonzero scalars 

c0, cl9 ...,cp and from Lemma 2 that ^ > n. 

Claim : The set of vectors Wv ..., Wp generates the group Un. 

Suppose the claim is not true and Wv ..., Wp generate a proper subgroup 
of Un, say Ug. Then U% can have at most 2W_1 elements in it and all elements 

in Un not contained in l/g are orthogonal to all of the elements in Ug. Using 
the properties of component wise multiplication, we see that 

X 

Tx 
= 

?> ... oT\ 
= 

(c.lm+cJV^ 
... 

+CpWp)o 
... 

o^lm+cJV^ 
... 

+cpWp) 

P V 
= 

^0^+ S ... S ait...ti (WxoW2o ...oWp) for x = 1, 2, ...,m, 

and for appropriate scalars ^ ,?,...,< Hence Tx can be expressed as a 

linear combination of contrasts in the subgroup t/g generated by Wv ..., Wp 
for x = 1, ..., m and any vector in Un not contained in ?7J is orthogonal to Tx 
for x = 1, .,., m, But this is impossible since Tl9 T2, ..., Tm form a linearly 

independet sent of vectors and we have a contradiction. 

Since the claim is true, it follows that Wv ..., Wp must contain a basis 

for Un. Thus if we create the set of ( ̂  
J 

vectors Wi 
o ... o 

Wi where 

iv ..., ix correspond to distinct subscripts out of 1, ..., p, then this set of vectors 

must contain at least ( 
) 

distinct contrasts out of Vn for x = 1, ..., n. 

Now, sisee 

T2 
= 

TtoTx 
= 

(Colm+cJV^ ... 
+0^)0(0^+0^+ 

... 
+cpWp) 

= b0lm+b1W1+ +KWP+ S I btfWioWt) 

for appropriate scalars 6<, i = 0, 1, ...,p and byi, j 
= 1, ...,#, ? ̂  j, we 

see that T2 is a linear combination of at least 1+ ( l ) + ( 2 ) 
distinct con 

B 2-8 
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trasts in Un, hence at most 2W?1 ? 
( ? ) 

? 
( 

? 
) 

vectors in Un can ^e orthogo 
nal to T2. Similarly, 

T3 
- 

TxoTxoTx 
= 

(c0lm+c1W1+ 
... 

+cPWp)o(c0lm+clW1+ 
... 

+cpWp) 

?{G0lm+cJV1+ 
... 

+cPWP) 

= d0lm+ I diWi+ 1 I dij(WioWj)+ I S S dtflXWioWjoW*) 
i=i i=i i=i i=i 4-1 *-i 

for appropriate scalars di, dy and d<# and we see that T8 can be expressed as a 

linear combination of at least 1+? 1 )+(?)+(o) 
distinct contrasts 

in Un. Hence there are at most 2n? 1? ( . - 
L 

- 
L ) 

vectors in Vn 

orthogonal to T3. Continuing in this manner, we obtain the desired formula. 

Corollary 1. In a complete 2n design the degree of resistance of any 
contrast cannot exceed n?l. 

Proof. In the proof of Theorem i, we saw that the set of contrasts Wv 
..., Wp that are not orthogonal to Tx must contain a set of n generator vectors 

for Un and that Tx is a linear combination of at least 1+ ()+...+1 ) 

contrasts in Un. We also saw that the only contrasts in Un that are orthogonal 
to Tx are those that are not part of the linear combination of vectors in Un that 

give Tm. Therefore, the largest value of x such that Tx can have contrasts in 

Un orthogonal to it is the largest value of x such that 
1+(1) + (o)+--- + 

j 
< 2n, i.e., x ? n?l. 

With Theorem 1 and Corollary 1 in mind, we now describe a method for 

constructing trend free complete 2n designs that is given in Cheng and Jacroux 

(1988). To begin with, write down the treatment combinations in a complete 
2n design in standard order, i.e., in the order (1), av a2, axa2, az, axaz, a2a3, 

axa2a%, ...,an, axan, ..., a1a2 
... 

an. Let sv s2, ..., sn denote the main effect, 

contrasts uvu2, ...,un derived from this standard ordering, i.e., 

Sl 
= 

(-1, 1, 
- 

1, 1, ..., -1, 1)', s2 
= 

(-1, -1, 1, 1, -1, -1, 1, 1, ..., -1, 

-1 1, 1)', 
... 

sn 
- 

(-1, -1, -1, ..., -1, 1, 1, 1, ..., 1)'. 

Cheng and Jacroux (1988) call sl9 ..., sn the standard maine ffect contrasts 

and prove that sf 
o ... o 

s4 is (t? l)-trend free for any subscripts il9 ..., it. 
i t 
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From this latter fact, we see that from the standard ordering of treatment 

combinations in a complete 2n design we can derive ( I contrasts that are 
x ' 

(x? l)-trend free for x = 1, ..., n. Thus the standard ordering of treatment 

combinations in a complete 2n design yields contrasts that attain the bounds 

given in Theorem 1 and Corollary 1. Now, to obtain a run order of a complete 
2n design that has main effect contrasts that a,re at least p1-trend free one can 

use the following algorithm ; 

(1) Consider the group Un that is generated by the standard main effect 

contrasts sx, ..., sn. Find a set of n generators for Un which involve products 

containing at least px-\-l elements out of sx, ...,sn 

(2) With each generator obtained in (1), identify exactly one of the 

main effects Av ...,An. 

(3) Write down the run order of the 2n complete design indicated by the 

assignment of main effects to generator contrasts given in (2), i.e., factor j 
occurs at its high or low level in run t depending upon whether the ?-th entry 

of the generator contrast identified with A$ is a 1 or ? 1. 

Example 1. To produce a 23 design where the main effects are at least 

1-trend free, consider the set of three generators for Sn consisting of s2?s3 
= 

(1, -1, -1, 1, 1, -1, -1, 1)', sxosz 
= 

(1, -1, 1, -1, -1, 1, -1, 1)', and 

sxos2o s3 
= 

(?1, 1, 1, ?1, 1, ?1, ?1, l)1, If we assign Ax, A2 and As to 

s2os%, sxos3 and sxos2osz, respectively, we obtain the run order (axa2, ax as, a2az, 

1, %, 1, a19 a2 axa2az). This run order yields estimates for Av A2 and A% that are 

1,1 and 2-trend free, respectively. To obtain the interaction contrasts, we take 

the appropriate products between the contrasts assigned to Al9 A2 and Az. 

For example, the estimate for the AXA2 interaction term is 1-trend free since 

its corresponding contrasts is (s20S3)?(si0S3) 
= 

sxos2. However, the estimates 

for the interaction terms AXA2, A%AZ and A^A^A^ are not even 1-trend free 

since their corresponding contrasts are sx, s2 and s3 respectively. 

4. Fractional factorials 

In this section we consider the problem of constructing fractional factorial 

designs d(n, m) that have orthogonal main effect contrasts that are at least 

1-trend free. If jx? is an mX 1 contrast that is at least 1-trend free, then jx<T0 
= 0. From this fact if follows that {i^ must have an equal number of+l's 

and ? l's in it and that (^i+T0YTx 
= 

-(y.i-T0)'Tx. Using this latter 

expression and the fact that T'0TX 
= 

m(m+1)/2, we see that m must be a multi 

ple of 4. Thus we shall consider the construction of fractional factorial design 
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d(n, m) where m ? 4? for some value of s > 2. Furthermore, we shall restrict 

our attention to main effects only designs. Thus the problem becomes one 

of constructing a set of orthogonal m x 1 contrasts where m = 4s for some 

s > 2 that can serve as estimates for some specified set of main effects. With 

this in mind, we consider two cases. 

Case 1. m = 4s where s = 
2p for some p > 1. 

In this case, we consider even multiples of 4. One easy method of con 

structing a set of orthogonal contrasts for this case is via the use of Hadamard 

matrices. Detailed discussion on Hadamard matrices is available in Raghava 
rao (1971). 

Without loss of generality, we can assume that the first row and column 

of a Hadamard matrix Hq consists of all +1'?. We shall make this assumption 
for the remainder of this section. Of course, given a Hadamard matrix Hq, 
the last q? 1 columns of HQ or some subset of these columns could serve as a 

set of mutually orthogonal contrasts for some specified set of main effects. 

However, there is no guarantee that these contrasts are at least 1-trend free. 

With this in mind, we give the following Theorem. 

Theorem 2. Let HP and Hq be Hadamard matrices of orders p and q, and 

let Hp and Hq denote those matirces that are obtained by dropping the first column 

of all + V s from Hv and Hq, respectively. Then Hp <g) Hq is a pqX (p?l)(q? 1) 
matrix whose columns are contrasts that are at least l-trend free. 

Proof. This follows directly from the properties of Hadamard matrices 

and Lemma 1. 

Corollary 2. Suppose m = ?s where s = 
2p. Then there exists an orthogo 

nal main effects only design d(n, m) that has main effect contrasts that are at least 

l-trend free for 1 < n < ?p? 1 provided there exists a Hadamard matrix Hq 
where q = 

?p. 

Proof. Suppose Hq exists where q = 
4j?. Now consider the matrix 

Hg defined in Theorem 1 and (1, ?1)' ?Hq. The result now follows from 

Theorem 1. 

Case 2. m ? 4s where s = 
2^+1 for some p > 1 

The construction of orthogonal main effects only designs for this case 

appears to be a much more difficult problem. In fact, the authors could find 

no systsmatic m3thod for constructing trend free sets of multually orthogonal 
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contrasts for this case. One logical approach to this problem is to start out 

with a Hadamard matrix Hm of order m, then by rearranging rows within 

Hm, develop a set of columns that are at least 1-trend free. In proceeding 

along these lines, the authors have had some limited success. But there seems 

to be no way of determining how many trend free contrasts can be obtained 

using this technique. 

Example 2. Consider the case where m = 12. For this number of 

observations, the authors could find at most 3 orthogonal contrasts that are 

at least 1-trend free. One set of such contrasts is given by 

(1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1)', 

(1, -1, -1, 1, 1, -1,-1, 1, -1, 1, 1, -1)', 

(1,-1,1,-1,-1,-1,1,1,1,-1,1,-1)', 

We note that the last contrast given above is also 2-trend free and is the only 
2-trend free contrast that the authors could find for m ? 12. 

Gomment : If one relaxes the condition of mutual orthogonality in the 

problem of constructing trend free contrasts, then a good deal more can be 

done with respect to constructing 1-trend free main effects only designs. For 

example, let P be an a X 6 matrix of rank 6 and let Q be a c x d matrix of rank 

d such that all the columns of P and Q each contain an equal number of + Vs 

and ?Vs. Then by Lemma 1 the acXbd matrix P? Q has columns that 

can serve as a set of linearly independent contrasts that are at least 1-trend 

free. A design d(n, m) that is constructed based on contrasts such as those 

given bv the co?umns of P (g) Q will not in general have orthogonal estimates 

for main effects and hence will not be optimal. However, these more general 

designs constructed in this manner will yield esimates for main effects that 

are not influenced by at least unknown linear trends. 
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