SINGLE SAMPLING LTPD PLANS AS A STOCHASTIC PROGRAMMING PROBLEM

By T. K. CHAKRABORTY

Indian Statistical Institute

SUMMARY. In the lot tolerance percent defective (LTPD) single sampling attribute plan proposed by Dodge-Romig (1929) the process average and the LTPD cannot be known precisely. These two parameters are assumed random variables so that the Dodge-Romig problem becomes a stochastic programming problem. Two chance constraint programming models are developed. Solution methods with numerical examples are provided.

1. Introduotion

We consider a producer's final inspection of a series of lots of size N, under the production process where each lot retains its identity such as lots of electronic equipment for a large computer or a missile. In designing a single sampling attribute plan (SSP) for acceptance inspection, it is assumed that the producer knows his process average p_{1}, under normal manufacturing conditions and that he occasionally produces lats of bad quality. He may then select lot tolerance fraction defective (LTPD), p_{2} say $p_{2}>p_{1}$ and a risk $P\left(p_{2}\right)=\beta$ of accepting the lots of this quality where $P(p)$ is the operating characteristic of the SSP. The Dodge-Romig (1929) LTPD SSP with total inspectio n of rejected lots is to find the sample size n and the acceptance number c which

$$
\begin{array}{lc}
\operatorname{minimize} & I\left(p_{1}, n, c\right)=n+(N-n)\left(1-P\left(p_{1}\right)\right) \\
\text { subject to } & P\left(p_{2}, n, c\right)=\beta \\
\text { and } & n, c \geqslant 0, \text { integer. }
\end{array}
$$

We note that the above optimization problem (1) through (3) is a nonlinear integer programming (NLIP) problem.

In the above problem, the decision maker (DM) assumes p_{1} and p_{2} are deterministic. However, in practical applications, p_{1} and p_{2} cannot be known precisely but can be stated only in close range from the experience of the DM.

Paper received. December 1989; revised March 1991.
AMS (1980) subject classification. 62N10, 65 K 05.
Key words and phrases. Single sampling attribute plan, lot tolerance percent defective, Poisson case, stochastic programming, chance constraint programming, Kataoka's problem, deterministic equivalent.

So these two parameters are assumed random variables such that the DodgeRomig problem becomes a stochastic programming (SP) problem. We shall consider two types of the stochastic version of the objective function (1) and develop solution procedures for both the type of the problem. To the best of our knowledge, this approach to design SSP has not appeared in the literature. However, for applications of programming techniques in designing SSPs, see Chakraborty ($1986,1989,1990)$.

We shall restrict our discussions under Poisson conditions, see Hald (1981).

2. Stochastic programming problem

Dodge-Romig LTPD SSP when the parameters p_{1} and p_{2} are assumed random variables is a NLISP problem and may be formulated, under Poisson conditions, as
optimize

$$
\begin{gather*}
I\left(p_{1}, n, c\right)=n+(N-n)\left(1-G\left(c, n p_{1}\right)\right) \tag{4}\\
\operatorname{Pr}\left\{P\left(p_{2}\right) \leqslant \beta\right\} \geqslant 1-\epsilon \tag{5}\\
n, c \geqslant 0, \text { int. } \tag{6}
\end{gather*}
$$

subject to
where $0<\epsilon<1$.
The objective function is usually assumed to be the mean of the stochastic objective function. The constraint (5) is known in the literature as the chance constraint which was first formulated by Charnes, Cooper and Symonds (1958) and by Charnes and Cooper (1959).

Following Kataoka (1963), we shall consider a second version of the Dodge-Romig problem with the objective function (for a real numbers k and $0<\alpha<1$)
$\operatorname{minimize} \quad\left\{k \mid \operatorname{Pr}\left\{I\left(p_{1}, n, c\right) \leqslant k\right\} \geqslant \alpha\right\}$
subject to (5) and (6).
2.1. Deterministic equivalent of the chance constraint. It is easy to see that the constraint (5) is equivalent to

$$
\begin{equation*}
\operatorname{Pr}\left\{p_{2} \geqslant m_{\boldsymbol{B}}(c) / n\right\} \geqslant 1-\epsilon . \tag{8}
\end{equation*}
$$

We assume p_{2} follows the distribution $F_{p_{2}}(z)$ and let p_{2}^{*} be the greatest value such that $F_{p_{2}}\left(p_{2}^{*}\right)=\epsilon$, so that from (8) we have

Theorem 2.1. The chance constraint (5) is equivalent to the deterministic constraint

$$
\begin{equation*}
p_{2}^{*} \geqslant m_{\beta}(c) / n \tag{9}
\end{equation*}
$$

2.2. Expectation of the chance objective function: Normal distribution case. We assume p_{1} follows $N\left(\mu, \sigma^{2}\right)$.

Lemma 2.1. $E\left(g\left(p_{1}\right)\right)=\frac{n^{r}}{r!} e^{-\left(n \mu-\frac{n^{2} \sigma^{2}}{2}\right)} E_{p_{1}} N\left(\mu-n \sigma^{2}, \sigma^{2}\right)$
Proof. $\quad E\left(g\left(p_{1}\right)\right)$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} e^{-n p_{1}} \frac{\left(n p_{1}\right)^{r}}{r!} \cdot \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{\left(p_{1}-\mu\right)^{2}}{2 \sigma^{2}}} d p_{1} \\
& =\frac{n^{r}}{r!} \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} p_{1}^{r} e^{-\frac{\left(p_{1}^{2}-2 p_{1} \mu+\mu^{2}+2 n p_{1} \sigma^{2}\right)}{2 \sigma^{2}}} d p_{1} \\
& =\frac{n^{r}}{r!} \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} p_{1}^{r} \\
& e^{-\frac{1}{2 \sigma^{2}}\left[p_{1}-2 p_{1}\left(\mu-n \sigma^{2}\right)+\mu^{2}-2 n \mu \sigma^{2}+n^{2} \sigma^{4}+2 n \mu \sigma^{2}-n^{2} \sigma^{4}\right]} d p_{1} \\
& =\frac{n^{r}}{r!} e^{-\left(n \mu-\frac{n^{2} \sigma^{2}}{2}\right)}\left[\int_{-\infty}^{\infty} p_{1}^{r} \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{2 \sigma^{2}}\left(p_{1}-\left(\mu-n \sigma^{2}\right)\right)^{2}} d p_{1}\right] \\
& =\frac{n^{r}}{r!} e^{-\left(n \mu-\frac{n^{2} \sigma^{2}}{2}\right)} E_{p_{1}}^{r} N\left(\mu-n \sigma^{2}, \sigma^{2}\right) .
\end{aligned}
$$

Theorem 2.2. The expected value of the chance objective function (4) under normal distribution of p_{1} is equal to

$$
\begin{equation*}
N-(N-n) \sum_{r=0}^{c} \frac{n^{r}}{r!} e^{-\left(n \mu-\frac{n^{2} \sigma^{2}}{2}\right)} E_{p_{1}}^{r} N\left(\mu-n \sigma^{2}, \sigma^{2}\right) \tag{11}
\end{equation*}
$$

Proof. Follows from Lemma 2.1.
Remarks. The r-th moment μ_{r}^{\prime} of $N\left(\mu, \sigma^{2}\right)$ can be obtained from Bain (1969)

$$
\begin{align*}
\mu_{2 r-1}^{\prime} & =\sigma^{2 r-1} \sum_{i=1}^{r} \frac{(2 r-1)!(\mu)^{2 i-1}}{(2 i-1)!(r-i)!2^{r-i} \sigma^{2 i-1}}, \tag{12}\\
\mu_{2 r}^{\prime} & =\sigma^{2 r} \sum_{i=0}^{r} \frac{(2 r)!\mu^{2 i}}{(2 i)!(r-i)!2^{r-i} \sigma^{2 i}}, \tag{13}
\end{align*} \quad r=1,2,3 \ldots .
$$

Beta distribution case. We assume p_{1} follows Beta distribution $B e \cdot\left(p_{1}, s, t\right)$. Also $x^{[r]}=x(x+1) \ldots(x+r-1)$.

Lemma 2.2. $E\left(g\left(p_{1}\right)\right)=\frac{n^{r}}{r!} \sum_{x=0}^{\infty}(-1)^{x} \frac{n^{x}}{x!} \frac{s[r+x]}{(s+t)^{[r+x]}}$

Proof. $E\left(g\left(p_{1}\right)\right)=\int_{0}^{1} e^{-n p_{1}} \frac{\left(n p_{1}\right)^{r}}{r!} p_{1}^{s-1} \frac{\left(1-p_{1}\right)^{t-1}}{\beta(s, t)} d p_{1}$

$$
\begin{aligned}
& =\frac{n^{r}}{r!\beta(s, t)} \int_{0}^{1} e^{-n p_{1}} p^{8+r-1}\left(1-p_{1}\right)^{t-1} d p_{1} \\
& =\frac{n^{r}}{r!\beta(s, t)} \int_{0}^{1}\left(1-n p_{1}+\frac{n^{2} p_{1}^{2}}{2!}-\ldots\right) p_{1}^{8+r-1}\left(1-p_{1}\right)^{t-1} d p_{1} .
\end{aligned}
$$

Theorem 2.3. The expected value of the chance objective function (4) under Beta distribution of p_{1} is equal to

$$
N-(N-n) \sum_{r=0}^{c} \sum_{x=0}^{\infty}(-1)^{x} \frac{n^{r+x}}{r!x!} \frac{s^{[r+x]}}{(s+t)^{[r+x]}} .
$$

Proof. Follows from Lemma 2.2.
2.3 Deterministic equivalent to Kataoka objective function. We note that

$$
\begin{align*}
& I\left(p_{1}, n, c\right) \leqslant k \\
\Leftrightarrow & n+(N-n)\left(1-G\left(c, n p_{1}\right) \leqslant k\right. \\
\Leftrightarrow & 1-G\left(c, n p_{1}\right) \leqslant \frac{k-n}{N-n}=\delta \text { (say) } \\
\Leftrightarrow & p_{1} \leqslant m_{1-\delta}(c) / n . \tag{16}
\end{align*}
$$

We assume p_{1} follows distribution $F_{p_{1}}(z)$ and let p_{1}^{*} be the least value such that $F_{p_{1}}\left(p_{1}^{*}\right)=\alpha$, so that from (16) we have

Theorem 2.4. The probabilistic statement $\operatorname{Pr}\left\{I\left(p_{1}, n, c\right) \leqslant k\right\} \geqslant \alpha$ is equivalent to the deterministic statement

$$
\begin{equation*}
p_{1}^{*} \leqslant m_{1-\delta}(c) / n . \tag{17}
\end{equation*}
$$

3. SOLUTION METHODS

3.1. Expected value objective function case. When p_{1} is assumed $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and p_{2} is assumed $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ the deterministic equivalent of the Dodge Romig problem is to minimize (11), subject to (9) and (6).

Given μ_{2}, σ_{2} and ϵ, one can find p_{2}^{*} from standard normal table. Now for $c=0,1,2, \ldots$, the values of $m_{\boldsymbol{A}}(c)$ can be obtained from Table 1 of Hald (1981) and hence for each $c=0,1,2, \ldots$, the corresponding value n is obtained from (9).

Now for each pair of (c, n), the function (11) is evaluated and by enumeration the optimum pair (c, n) is found out.

Example 3.1. We consider the probabilistic version of the example given in Hald (1981, p. 101)

$$
\begin{array}{ll}
N=2,000, & \beta=0.10, \quad \mu_{1}=0.02, \quad \sigma_{1}=0.001 \\
\mu_{2}=0.10, & \sigma_{2}=0.002 \quad \text { and } \quad \epsilon=0.05 .
\end{array}
$$

Solution. $\quad p_{2}^{*}=\mu_{2}-1.645 \times \sigma_{2}=0.0967$. From Table 1 of Hald (1981), we obtain the pairs (c, n). For $c=2, n \geqslant \frac{5.322}{0.0967}=55.04$, so integer $n=56$. For this pair we evaluate (11) and obtain 255.24. The values are tabulated in Table 1 below.

TABLE 1. OPTIMAL STOCHASTIC LTPD PLAN WHEN PARAMETERS FOLLOW NORMAL DISTRIBUTIONS

c	n	$E\left(G\left(c, n p_{1}^{*}\right)\right.$	$E\left(I\left(p_{1}^{*}\right)\right)$
2	56	0.89751	255.24
3	70	0.94513	175.90
5	96	0.98592	122.81
${ }^{*}-$	109	0.99271	122.79
7	122	0.99525	130.92

The obtimal solution is $n=109$ and $c=6$ with $E\left(I\left(p_{1}\right)\right)=122.79$. The deterministic problem has the corresponding solution $n=93, c=5$ and $I\left(p_{1}\right)=116$.

When p_{1} is assumed $\operatorname{Be}\left(p, s_{1}, t_{1}\right)$ and p_{2} is assumed $\operatorname{Be}\left(p, s_{2}, t_{2}\right)$, the solution procedure is modified accordingly. However, for practical problems, the shape parameter s is required to be greater than 20 and t is required to be greater than 200. In this case p_{2}^{*} can be found by approximate formulas accurate enough, but evaluating (15) is very difficult since the function converges very slowly.
3.2. Kataoka-type objective function case. When p_{1} is assumed $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and p_{2} is assumed $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ the deterministic equivalent of the Dodge-Romig problem is to minimize k, subject to (17), (9) and (6).

The solution can be obtained by adapting the procedure of subsection 3.1.
Example 3.2. Same as Example 3.1 with an additional parameter $\alpha=0.05$.

Solution. As in Example 3.1, we obtain pairs of (c, n) satisfying (9) and (6). The value of p_{1}^{*} is obtained as 0.0216 and for each pair of (c, n) we find the minimum δ satisfying (17) and hence calculate minimum $k=(N-n) \delta+n$ for the pair and hence obtain the optimal ($n, c)$. The values are given in Table 2.

TABLE 2. STOCHASTIC LTPD PLAN OF KATAOKA TYPE OBJECTIVE FUNCTION

c	n	$\operatorname{minimum} \delta$	$\operatorname{minimum} k$
2	56	0.1226	
3	70	0.0672	294.33
5	96	0.0194	199.70
6	109	0.0105	132.94
7	122	0.0058	128.91

The optimal solution is $n=109, c=6$.

4. Effect of variability and conoluding remaris

In a production process, the parameters p_{1} and p_{2} cannot be known precisely and it is more appropriate to assume them as random variables. If the variability of the parameters is also taken into account in the model, then the DM will be more confident that his ultimate objective of sending very few bad lots to the market will be fulfilled. The effect of variability of the parameters on the expected average inspection is presented in Table 3.

TABLE 3. EXPECTED AVERAGE INSPECTION FOR DIFFERENT VALUES OF

$$
\sigma_{1} \text { and } \sigma_{2} ; N=2,000, \mu_{1}=0.02, \mu_{2}=0.10, \beta=0.10, \varepsilon=0.05
$$

σ_{1}	0.000			0.001			0.002			0.003		
$\sigma_{\mathbf{3}}$	n	c	$E(I)$									
0.000	93	5	115.9	93	5	116.3	93	5	117.5	93	5	119.5
0.001	95	5	120.2	95	5	120.6	95	5	121.9	95	5	124.0
0.002	96	5	122.4	109	6	122.8	109	6	123.8	109	6	125.4
0.005	115	6	132.6	115	6	133.1	115	6	134.3	115.	6	136.3

From Table 3 it is seen that for small variability of p_{1} and p_{2}, the increase in the expected average inspection is insignificant for practical applications. We may note that the classical Dodge-Romig model is robust in the sense that even for stating the values of p_{1} and p_{2} reasonably produces near optimal plans. Since it is well known that the deterministic DodgeRomig optimal and its neighbouring plans have nearly same average inspection, it will be advantageous to apply the next higher neighbouring plan which will take care the possible variability of the parameters p_{1} and p_{2}. For example, in the case of the example considered, (see Hald (1981), p. 101) the optimal plan for the deterministic case is $n=93, c=5, I\left(p_{1}\right)=116$ and its next higher neighbouring plan is $n=106, c=6, I\left(p_{1}\right)=117$. It is seen that it would be advantageous to apply SSP $n=106, c=6$ in the situation where it is required to assume small variability of p_{1} and p_{2}.

The procedure developed is simple and the required plans can be designed easily for any type of distribution appropriate to an environment such as triangular, uniform, Beta etc. However, from experience it seems that assumption of normal distribution is realistic in most of the industrial applications.

Acknowledgement. The author wishes to express his appreciation to Professor A. C. Mukhopadhyay for reviewing the paper and gratefully acknowledge an unknown referee whose comments led to improve this paper.

References

\rightarrow Bain, L. J. (1969). Moments of a non-central t and non central F distribution. The American Statistician, 23, 33-34.
Cefakraborty, T. K. (1986). A preemptive single sampling attribute plan of given strength. Opsearch, 23, 164-174.
—_ (1989). A group single sampling attribute plan to attain a given strength. Opsearch, 26, 122-124.
—— (1990). The determination of indifference quality level single sampling attribute plans with given relative slope. Sankhy $\bar{a}, 52, B, 238-245$.
Charnes, A. Cooper, W. W., Symonds, G. H. (1958). Cost horizons and certainty equivalents : an approach to stochastic programming of heating oil. Management Sci., 4, 235-263.
Charnes, A., Cooper, W. W. (1959). Chance-constrained programming. Management Sci., 6, 73-79.
Dodge, H. F., Romia, H. G. (1929). A method of sampling inspection. Bell Syst. Tech. J., 20, 1-61.
Hald, A. (1981). Statistical Theory of Sampling Inspection by Attributes, Academic Press, London.
\rightarrow Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181-196.
SQC and OR Division
Indian Statistioal Insmitute
203 B. T. Road
Caloutta 700035
Irdia.

