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SUMMARY. In the lot tolerance percent defective (LTPD) single sampling attribute 

plan proposed by Dodge-Romig (1929) the process average and the LTPD cannot be known 

precisely. These two parameters are assumed random variables so that the Dodge-Romig 

problem becomes a stochastic programming problem. Two chance constraint programming 

models are developed. Solution methods with numerical examples are provided. 

1. Introduction 

We consider a producer's final inspection of a series of lots of size N, under 

the production process where each lot retains its identity such as lots of 

electronic equipment for a large computer or a missile. In designing a single 

sampling attribute plan (SSP) for acceptance inspection, it is assumed that 

the producer knows his process average px, under normal manufacturing 

conditions and that he occasionally produces lots of bad quality. He may 

then select lot tolerance fraction defective (LTPD), p2 say p2 > px and 

a risk P(p2) 
= /? of accepting the lots of this quality where P(p) is the 

operating characteristic of the SSP. The Dodge-Romig (1929) LTPD SSP 

with total inspectkn of rejected lots is to find the sample size n and the accep 

tance number c which 

minimize I(px, n, c) 
? 

n-\-(N?n) (l?P(p\)) ... (1) 

subject to P(P%> n,c) 
= 

? ... (2) 

and n, c > 0, integer. 
... (3) 

We note that the above optimization problem (1) through (3) is a nonlinear 

integer programming (NLIP) problem. 

In the above problem, the decision maker (DM) assumes px and p2 are 

deterministic. However, in practical applications, px and p2 cannot be known 

precisely but can be stated only in close range from the experience of the DM. 
mmm^m ?i i i i. i .-. - ? < ' ? 
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So these two parameters are assumed random variables such that the Dodge 

Romig problem becomes a stochastic programming (SP) problem. We shall 

consider two types of the stochastic version of the objective function (1) and 

develop solution procedures for both the type of the problem. To the best 

of our knowledge, this approach to design SSP has not appeared in the litera 

ture. However, for applications of programming techniques in designing 

SSPs, see Chakraborty (1986, 1989, 1990). 

We shall restrict our discussions under Poisson conditions, see Hald 

(1981). 

2. Stochastic programming problem 

Dodge-Romig LTPD SSP when the parameters px and p2 are assumed 

random variables is a NLISP problem and may be formulated, under Poisson 

conditions, as 

optimize I(px, n, c) 
= 

n+(N?n) (1?0 (c, npx)) ... (4) 

subject to Pr{P(p2) < ?} > 1?e ... (5) 

n, c > 0, int. ... (6) 

where 0 < e < 1. 

The objective function is usually assumed to be the mean of the stochastic 

objective function. The constraint (5) is known in the literature as the chance 

constraint which was first formulated by Chames, Cooper and Symonds 

(1958) and by Chames and Cooper (1959). 

Following Kataoka (1963), we shall consider a second version of the 

Dodge-Romig problem with the objective function (for a real numbers k and 

0 < a < 1) 
minimize {k\Pr {I(px, n, c) <? k} > a} ... (7) 

subject to (5) and (6). 

2.1. Deterministic equivalent of the chance constraint. It is easy to see 

that the constraint (5) is equivalent to 

Pr{pz > m? (c)jn} > 1-e. ... (8) 

We assume p2 follows the distribution 
Fp (z) and let p\ be the greatest value 

such that F (pi) 
= e, so that from (8) we have 

Theorem 2.1. The chance constraint (5) is equivalent to the deterministic 

constraint 

pl>m?(c)ln ,.. (9) 



244 T. K. OHAKRABORTY 

2.2. Expectation of the chance objective function : Normal distribution 

case. We assume px follows N(/i, a*2). 

Lemma 2.1. E(g(px)) = ~ e ^ 2 
>ErPl N(ji-n<r*, cr2) 

Proof. E(g(p1)) 

(10) 

. 
r, ^ 

, -<S* 

?r i ? (pf-2pl/t+/ta+2wpi(r2) 

r ! V 277- (T -x 

nr 1 
r ! V277 a J Pi 

? 
^a [Pi?2Pi(/t?ntr2)+/t2?2n/t?T!!+?i2(T4+2?/t(r2-??3?r4] 

dft 

= ?.e \nfl 2 ) 
E'Pl N(fi-no-*,o-*). 

Theorem 2.2. The expected value of the chance objective function (4) under 

normal distribution of px is equal to 

c r ?(n "^^ 
N-(N-n) 2 ? e Vp 2 ) E^ N(jJb_n(T^^ (11) 

f=0 r 

Proof. Follows from Lemma 2.1. 

Remarks. The r-th moment ?i, of 2V(/i, <r2) can be obtained from 

Bain (1969) 

,r2r-iy (2r-l)!(/*)g<-i r_12? M2v 

r (2*^ ! //2' 
^ = 

<r2f? (24)l(r-012^aT' 
r = 1'2'3. (13) 

J5efa distribution case. We assume ^ follows Beta distribution 

#e(2>i> s, t). Also 3M = 
x(x+l).,,(x+r~l). 
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?r ?c nX a [r+x] 

Lemma 2.2. E(g(Pl)) = 
-y 

?(-D^(^i^1 
... (W) 

M. *<*<*)> = 
o? 
^ ^V ^f-1 

#x 

Je Wl^+'-1(l-i'i)f-1#i 

rW?) ? (1-*+!W--)t^,<1-*>H* 

Theorem 2.3. TAe expected value of the chance objective function (4) imder 

.Befa distribution of px is equal to 

N-(N-n) ??(-I)? ^ (^y^- 
- <?> 

Proof. Follows from Lemma 2.2. 

2.3 Deterministic equivalent to Kataoha objective function. We note that 

I(Pv n,c) < i 

o ^+(^?71) (1??(c, Tipx) < & 

o \-0(c, npx) < 
j^- 

= 8 (say) 

ojPi <mx-?(c)ln. 
... (16) 

We assume ^ follows distribution F (z) and let p\ be the least value such 

that F (p*x) 
= a, so that from (16) we have 

Theorem 2.4. iTAe probabilistic statement Pr{I(px, n, c) < k} > a is 

equivalent to the deterministic statement 

P? < i-*(c)/n. ... (17) 

3. Solution methods 

3.1. Expected value objective function case. When px is assumed N(/il9 erf) 
and #2 is assumed N(fi2, erf) the deterministic equivalent of the Dodge Romig 

problem is to minimize (11), subject to (9) and (6). 
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Given ?Jb2,0*2 and e, one can find p\ from standard normal table. Now 

for c = 0,1, 2, ..., the values of m?(c) can be obtained from Table 1 of Hald 

(1981) and hence for each c = 0,1, 2, ..., the corresponding value n is obtained 

from (9). 

Now for each pair of (c, n), the function (11) is evaluated and by enumer 

ation the optimum pair (c, n) is found out. 

Example 3.1. We consider the probabilistic version of the example given 
in Hald (1981, p. 101) 

N = 2,000, ? 
= 0.10, fix 

= 0.02, crx 
= 0.001, 

?i2 
= 0.10, a2 =0.002 and e = 0.05. 

Solution, pt 
= 

/?2? 1.645Xcr2 
= 0.0967. From Table 1 of Hald (1981), 

5.322 
we obtain the pairs (c, n). For c = 2, n > 0 0Qfi7 

= 55.04, so integer % = 56. 

For this pair we evaluate (11) and obtain 255.24. The values are tabulated 

in Table 1 below. 

TABLE 1. OPTIMAL STOCHASTIC LTPD PLAN WHEN PARAMETERS 
FOLLOW NORMAL DISTRIBUTIONS 

c n E{G(c,np\) W(p\)) 

2 56 0.89751 255.24 

3 70 0.94513 175.90 

5 96 0.98592 122.81 

*6 109 0.99271 122.79 

7 122 0.99525 130.92 

The obtimal solution is n = 109 and c = 6 with E(I(px)) 
= 122.79. The 

deterministic problem has the corresponding solution n = 93, c = 5 and 

I(px) = 116. 

When px is assumed Be(p, sx, tx) and p2 is assumed Be(p, s2, t2), the solu 

tion procedure is modified accordingly. However, for practical problems, 
the shape parameter s is required to be greater than 20 and t is required to be 

greater than 200. In this case pi can be found by approximate formulas 

accurate enough, but evaluating (15) is very difficult since the function con 

verges very slowly. 

3.2. Kataoka-type objective function case. When px is assumed N(jtix, <r\) 
and p2 is assumed N(/i2, crl) the deterministic equivalent of the Dodge-Romig 

problem is to minimize k, subject to (17), (9) and (6). 
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The solution can be obtained by adapting the procedure of subsection 3.1. 

Example 3.2. Same as Example 3.1 with an additional parameter 
a = 0.05. 

Solution. As in Example 3.1, we obtain pairs of (c, n) satisfying (9) and 

(6). The value of p\ is obtained as 0.0216 and for each pair of (c, n) we find 

the minimum 8 satisfying (17) and hence calculate minimum k ? 
(N?n)8+n 

for the pair and hence obtain the optima] (n, c). The values are given in 

Table 2. 

TABLE 2. STOCHASTIC LTPD PLAN OF KATAOKA TYPE 
OBJECTIVE FUNCTION 

c n minimum ? minimum k 

2 56 0.1226 294.33 

3 70 0.0672 199.70 

5 96 0.0194 132.94 

6 109 0.0105 128.91 

7 122 0.0058 132.82 

The optimal solution is n = 109, c = 6. 

4. Effect of variability and concluding remarks 

In a production process, the parameters px and pz cannot be known pre 

cisely and it is more appropriate to assume them as random variables. If 

the variability of the parameters is also taken into account in the model, then 

the DM will be more confident that his ultimate objective of sending very 

few bad lots to the market will be fulfilled. The effect of variability of the 

parameters on the expected average inspection is presented in Table 3. 

TABLE 3. EXPECTED AVERAGE INSPECTION FOR DIFFERENT VALUES OF 

<7x and <r2 ; N = 2,000, fiy 
= 

0.02, ?i2 
= 0.10, ? 

= 0.10, e = 0.05 

<rx 0.000 0.001 0.002 0.003 

<ra n c E(I) n c E{I) n c E(l) n c E(I) 

0.000 93 5 115.9 93 5 116.3 93 5 117.5 93 5 119.5 

0.001 95 5 120.2 95 5 120.6 95 5 121.9 95 5 124.0 

0.002 96 5 122.4 109 6 122.8 109 6 123.8 109 6 125.4 

0.005 115 6 132.6 115 6 133.1 115 6 134.3 115. 6 136.3 
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From Table 3 it is seen that for small variability of px and p2, the 

increase in the expected average inspection is insignificant for practical appli 
cations. We may note that the classical Dodge-Romig model is robust in 

the sense that even for stating the values of px and p2 reasonably produces 
near optimal plans. Since it is well known that the deterministic Dodge 

Romig optimal and its neighbouring plans have nearly same average inspec 

tion, it will be advantageous to apply the next higher neighbouring plan 
which will take care the possible variability of the parameters px and p2. 

For example, in the case of the example considered, (see Hald (1981), p. 101) 

the optimal plan for the deterministic case is n = 93, c = 
5,1(px) 

= 116 

and its next higher neighbouring plan is n = 106, c = 
6,1(px) 

= 117. It is 

seen that it would be advantageous to apply SSP n = 106, c = 6 in the situa 

tion where it is required to assume small variability of px and p2. 

The procedure developed is simple and the required plans can be designed 

easily for any type of distribution appropriate to an environment such as 

triangular, uniform, Beta etc. However, from experience it seems that 

assumption of normal distribution is realistic in most of the industrial 

applications. 
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