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ESTIMATION OF A FINITE POPULATION TOTAL 
UNDER REGRESSION MODELS : A REVIEW* 

By P. MITKHOPADHYAY 
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SUMMARY. Estimation of a finite population total under prediction approach using 

regression superpopulation models has engaged the attention of survey statisticians over more 

than the last two decades. Some of these model-dependent and model-based investigations 

have been reviewed in this article. It has also been shown that a sampling design-based 

conventional strategy fares better than some optimal model-dependent procedures on an 

average from the point of view of robustness. 

0. Introduction 

This paper makes a review of some works on estimating a finite popula 
tion total based on the assumption of an underlying superpopulation model. 

1. Model dependent optimal prediction 

We denote by IP a finite population of N identifiable units {1, ..., i, ..., N} ; 

yi value of V (character of interest) on i, p a fixed size (n) sampling 

design (s. d) with inclusion-probabilities nt, ira* used toes t?mate the population 

total Y( 
= S yi) by choosing a sample (set) s with probability p(s), s = *P?s, 

?in = 
{p}. Under prediction theory based approach, y 

? 
(yv ..., ?/#')' is con 

sidered as a realisation of F = 
(Tv ..., Yn)' [Yi being a r.v. having avalu? 

yi\ having a joint distribution t/q , 6 = 
(6X, ..., dp) e J?(parameter space). 

7/q may belong to a class G = 
{r?^ }, called the superpopulation model. Given 

the data d = 
{(k9 yjc), k e s) one draws inference about Y = S Yi (now a r.v) 

A. A, 

on the basis of prior tj, using a predictor T?. Ts is m-(model-) unbiased if 

&(Ts? Y) 
= 0 Y s : p(s)>0 andern -(design-model-) unbiased if E &(T8? Y) 

= 

0. E, Vi &, <V, Q will denote respectively p?(design-) expectations-variance, 

m-expeotation, ra-variance, ra-covariance. For a non-informative design 

(p(s) is independent of y), order of operations E, & are interchangeble. 
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The problem studied in this section were foreshadowed and considered 

by Brewer (1963). Royall (1970, 1971), Royall and Herson (1973) gave general 
formulations to the problem in their elegant papers. 

Since (Royall and Herson, 1973) 7 = S 7*+2 Yk) after d have been 
8 8 

collected, 7 = 
2^+5 7* and hence 

8 

T, = 
Zy?+U? 8 

where U8 is a predictor of ^ 7*. T8 is m-unbiased for Y if U8 is so for 2 7#. 
8 8 

Two types of mean square errors (mse) of strategy (p, Ts) of interest are : 

(i) & E (fs- Yf = M (p, T) (say) (ii) E ?(Ts-/i)* = M1 (p, T) (say), where 

?=&(Y). It has been recommended (Sarndal, 1980) that when one's real 

interest is in the present population from which the sample has been drawn, 

one should use M for choosing an optimal strategy. For deriving an optimal 

present predictor of Y for some future population which is of the same type 
as the survey population (having the same /i), one's real interest is actually 
in {i and here Mt should be used. Relation between M and Mx is 

M(p} T) = 
Eq)(T)+E(?(T)Y+q)(Y)--2&{(Y-ii)E(^ 

... (1.1) 

where ?(T) 
= 

&(T? Y), m-bias in T. 

For a ra-unbiased T, 

M(p,T)=E[v(U8) 
+ 

q)(x 7*)-2<?(?7,,2 7*)] 
... (1.2) 

If rj is a product-measure (7<'s are independent) M is minimum if <ZJ(?7_) is 

minimum and thus for a given s the optimal m-unbiased predictor of Y is 

T+=Zyt+U+ 8 

where Uf is minimum (m~) variance (m-) unbiased predictor of __ 7*. 
s 

An optimal strategy (p+, T+) in the class (/*, t) is, therefore, one for which 

M(p+, f+) < M(p, T) Y P e/i, f e r. ... (1.3) 

The form of T+ does not depend on the s.d. (unlike p-based estimators, say, 

Horvitz-Thompson estimator, euT)> After _T+ is obtained, p+ is chosen through 
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(1.3). The emphasis on this m-dependent approach is, therefore, on a correct 

postulation of r? and generating Ts* The choioe of a suitable p takes a secon 

dary role. 

Optimal prediction under some models : polynomial regression model 

7)(S0, ..., Sj ; v(x)). Assume %i} value of an auxiliary variable x on i is known 

(i 
= 1, ..., N), Yi, Y.? (i ^= i') are uncorrelated with 

?(Yilxu^idj?izi o 
... (1.4) 

<V(Yi\xi)^^v(xi)> 

?fs, cr2 are unknown constants, v(xt), a known function of x%, Si = 
1(0) if ?j 

is present (absent) in &(Yi). The best linear (m-) unbiased predictor (BLUP) 
of 7, for a given s, is 

T*t(?0, ..., Sj ; v(x)) ? S tfk+ S *, j?S a* 

where $* is the BLUP of ?j under 7/ (obtained by Gauss-Markoff theorem). 

Royall (1970) studied f*(0, 1 ; x?) = f J(say), ? = 0, 1, 2 
(#; 

is the ratio 

a. 
Ys \ 

predictor Tr = ~ 
X] 

and proved. 

Theorem 1.1. If (a) v(x) is non-decreasing function of x, (b) v(x)jx2 is a 

non-increasing function of x, optimal s.d. to use T* in ju,n is the purposive design 

p* where the sample s* having units mth the highest n values of Xi are selected with 

centainty. 

Multiple regression models, (a) Yi, Y.,, (i # i') uncorrelated : Assume 
i 

for each i, values x^ of (r+1) auxiliary variables Xj(j 
= 0, 1, ..., r) are known 

and Yi, Y., (i ̂  i') are uncorrelated with 

&(Yi\x?) 
= x?p 

q)(Yi | Xi) 
= er2 v(Xi) 

= <rHt ... (1.5) 

where x{ = 
(xio,..., xir), ?' 

= 
(?0, ...,/?r). Often (as is here), xio 

= 1 Y?. 

Denoting Ys 
= 

[Yk> k e s]nxnYj 
= 

[Yk, k e s]{N-.n)xl, X = 
(fat, i = 1,...,N; 

j 
= 0, ..., r))*x<r+i> xs 

= 
((%> * e M 

= ?> > r))nx(r+i), Xs 
= 

((xij9 i e s, 

j 
= 

0, ..., r)(N~n)x(r+i)> ip 
= 

(1? ? 1)3?xi? #* 
== 

(^so> ? ̂ w* **? 
== 

(*^q$> 
" ? 

#r*)> *i? = 2 ^M = ?fcM (and 5Pj'), $f similarly^ 
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V = 
Diag (vjc ; k = 1, ..., N), Ys 

= 
Diag (vjc ; kes) (and Fj similarly), and 

assuming wig Y' = 
\Y'8), Yj], the model (1.5), denoted as r?(X,v) is 

&(Y) = Xp,MY) = cr*V ... (1.6) 

(&(-)) denoting the dispersion matrix). The BLUP of 7 is Royall (1975) 

T*(X,v) 
= 

^yk+x-8'p 
... (1.7) 

8 

where ?* = (*, V? XS)-*(XS V^YS). 

(b) Yi, Tf not all uncorrelated : Denoting _(7j. 7<i) 
= <r2 %, (vu 

= 
t><), 

r = 
(M)jixy=(w_rii 

? 
) 

... (1.8) 

K = 
[f;, F,;], the BLUP of 7 under this model, denoted as tj(X, V) is 

(Royall (1976), Tarn (1986)) 

f*(x, v) = i; Y8+rN_n[x-8 p+v-8i8 fj1 (ys-xs p*)]. ... (i.9) 

In particular when Yi} Y?, (i ̂  i') have a constant correlation 
pe[? 

~ 
,1J 

(denoting this model as ?/(_!_, V, p)) we have (Isaki and Fuller, 1982), 

Theorem 1.2. Assume (a) ^/ve(B(X), where ^Jv 
= 

{y/vl9 > V^)' a7M^ 

(?(Z) denotes the column-space of Z ; or (b) p 
= 0. _TAe BLUP of Y, 

T* (X,F,p) is gwen by (1.7). 

If, further, F follows a _V-variate normal distribution we have an 

exchangeable general linear model (EGLM) (Arnold, 1979) and (Mukhopadhyay, 

1991), 

Theorem 1.3. Under EGLM, T* given in (1.7) ?5 UM VU in the class of 

all unbiased predictors of 7. 

Rodrigues et al. (1985) extended the concepts to develop a general theory of 

prediction which covers both linear and quadratic functions of population 

values. Skinner (1983) considered the multivariate prediction of mean,. 

Projection predictors. When predicting the mean of a future population 

of the same type as the present one, one's real interest is actually in fi and the 

the optimal prediction is obtained by minimising M? (p, T) 

Cochran (1977, p. 159), Sarndal (1980 a, b), Wright (1983), Isaki and FuUer 

(1982) considered such optimal predictors T* (r?) under r?. Here all 7^'s 
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(including those with kes) are predicted and d are used only to predict the 

model-parameters. Thus 

T*(X,v)=X$*. 
We have (Sarndal, 1980a), 

* A 

Theorem 1.4. Under y (X, v), T* = T* iff T* based on the entire 

7? equals Y. 

2. Robustness op T* (tj) under alternative models 

Royall and Herson (1973) showed that Tr remains unbiased under 

V'(?'o> > ij I *>'(#)) OI* a balanced sample st(J) of order J, which satisfies 

x<?) 
= Xw j=i,...,j 

x{P 
= n~x Z x{, XW = N'1 __ x{. T*(t)) will, in general, have non-zero bias 

A 

Bn< {T(t/)} under ^'. For a given _, one should, therefore, choose the one which 

is least biased (most bias-robust) in a class of rival predictors. The following 
theorem has been proved (Mukhopadhyay, 1977). 

Theorem 2.1. Under assumptions, 

?j > 0 Vi \X]?,kes are not all equal ... (i) 

for samples for which 

Vi a 

(a) rg(0,s)>0,T:(0,l;xny-T*8(0,l;xe)}g>g' 
... (2.1) 

(&) ^_ (j> s) < 0 V"i = 2, ..., J toYA ai ?fea_? owe iV(j, s) < 0, 
A V2 A A S A 

SFJ (0,1 ; %') ^- ^* (?> 1 ;%9)>9 > 9' where T8 ^? _T? ttiean* 7, involves less 

absolute bias than T's under ? ?md % 
= 

?/' (1, ?\ ; v' (x)), r/2 
= 

?/' (0, dv 
... 

Sj ; 

v' (x)) and 

Ig(j, s) = S 3j[+w S ^-23 af-' S 4 5 s z s 

Under p*, T* (0, 1 ; x2) is most bias-robust in the class {T*(0, 1 ; xP), g e [0, 2]}, 
both wrt 7j1 and 1J2 

The above result gives a basis for a post-sample selection of robust predi 
dictors. 

Scott et al. (1978), on generalisation of the concept of JRi?-balanced sampl 

ing, noted that under generalised balanced samples S* (J), which satisfies 

s 4 s 4+1iv(x?t) j s . 
(22) 
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T* (0,1 ; v(x)) remains unbiased und^r r? (S0> ..., Sj ; V(x)). They studied the 

case, v(x) 
= x2, denoting the corresponding S*(J) as overbalanced samples 

S0(J). It has been shown 

Theorem 2.2. For S = 
S*(J), T*(0,1 ; v(x)) is BLUP under 7?(80, ...,?j; 

j 

V(x)) provided V(x) 
= 

v(x) S SfAxi-1, o-fs being arbitrary constants. 
o 3 

Cumberland and Royall (1981) defined a 7r-balanced sample of order J, 

Sn(J) as one for which &j(s) 
= 

0,j 
= 0, ... J where 

A|(?) 
= ? 2 xi-i-XW. 

... (2.3) 

For a nps-s.d. (n^pi = xt?X, E(^(s)) 
= 0 Y/)- Kott (1986a) showed that 

X Y 
under 7/(0, Sv S^;!) the mean of the ratio predictor 

? 2 - 
coupled with a 

n 8 Xi 

pn(2)-s.d. (p (Sn(2)) 
= 1) provides a BLU-prediction strategy. Kott (1986b) 

also considered asymptotically balanced samples. Pfefferman (1984) consi 

dered large sample properties of balanced sample. 

Pereira and Rodrigues (1983), Pfefferman (1984) examined the ques 

tions when T*(X, v) remains unbiased and BLUP under rj* (X*, v*) where if is 

based on some additional explanatory variables apart from x0, ...,xr and v* 

is a known function of all these variables. Tallis's (1978) result on when NY8 

becomes BLUP under tj comes as a particular case of their results. 

All types of balanced samples are really non-existent in practice. Royall 

and Herson (1973), Royall and Pfefferman (1982) recommended srs, appro 

priately stratified random sampling as approximately balanced sampling. 

Herson (1976) empirically assessed the efficiency of ratio estimator 

of total using conventional unrestricted random sampling, extreme and 

balanced sampling plans for sample size ranging from small to 

large. Cumberland and Royall (1981) proposed the following s.d. 

to approximate p(l) [p(J) :p(S0(J)) = 1] : 
[[?>(<s)= 

0 if xs?E > d, 

= ? othersise 
c? J 

where S is a pre-assigned small quantity, c? is the number of s with xs?X < S. 

lachan (1985) proposed 
a similar design with some modifications. Mukho 

padhyay (1985b) showed srs and pps y^s.d. (^?y^) are asymptotically 

equivalent to f(l) for using T%. 
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Noting that under 7/v \Bn {T*(0,1 ; x<*)}\ 
= B?(g) (say) is a monotonically 

increasing function of g (subject to fulfillment of (i)), Mukhopadhyay (1985a) 

proposed that for a given s, one can find a g* for which B?(g) is near to zero 

as possible and hence use T*8(0, 1 ; xo) as the most bias-robust in the class 

J = 
{f*(0, 1 ; x*), g real}. Similarly | J3^T*(0, 

1 ; &)}\ 
= B2(g) (say) being a 

monotonically decreasing function of g (under (i)), one can find a post-sample 
A. 

most robust predictor T*8(0,1 ; x0**) in J under ij2. 

3. Model-based predictors 
A. 

To take care of the brittleness of m-dependent T* and T* under departure 
from the assumed model, the genesis of the model-based predictors which 

combine both m-randomisation and ^-randomisation was evolved. Cassel, 

Sarndal and Wretman (1976), Sarndal (1980) suggested the generalised regre 

ssion predictor [GRP] of Y, 

r?=i;i?1Ff+(l/-I--llli?-1if)P* 
... (3.1) 

where n = 
Diag (nk, k = 1, ..., N), ns = 

Diag (nk, k e s), 1 = 
(1, ..., 1)1xn> 

More generally, the class of GRP of Y is TgR(Q) obtained by replacing ?* by 

jS(?) 
= 

(i.OA^d.'?.r,) ... (3.2) 

where Q is an arbitrary positive-definite diagonal matrix of order NxN 

and Qs corresponds to its part in s. TQIi (Q) is m-unbiased under y (X, v) and is 

^-biased in general. Noting that a predictor ? of ? is of the form (Z'8XS)~X 

Z'8YS9 Zs 
= 

((%kj))nx(r+i) being a matrix of suitable weights, Sarndal (1980c) 

suggested that ? may be called n'1 weighted if nj1 lse?(Zs). For a n*1 

weighting in ?, TqR coincides with the corresponding projction predictor TGR. 

Wright (1983), generalising GRP, introduced the (Q, R) predictor, 

Y(Q, R) = 
V[*RY+<f-UR)X$(Q)] ... (3.3) 

where A = 
Diag (Sk, k = 1, ..., N), R = 

Diag (rk,k 
= I, ..., N), I = 

Diag 

(1, > 1)nxN, h 
= 

1(0) if k e (4)s. For different choices of (Q, R), different 

types of predictors are obtained. R = 0 gives the class of projection predic 

tors, R = /, the class of Royall's linear predictors, R = 
w1, the class of GRP. 
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Sarndal (1980b) had considered a more general strategy. For a s.d. p, 

his predictor is 

f(p, Q, W8) = 2 wksYk+X to-S wksxkj) ... (3.4) 
8 0s 

/_V\ 
where Ws is a NX ( I matrix of weights wks, wk8 being such that __ wksYk 

\n 
' 

g 

is p-unbiased for 7. 

Montanari (1987), generalising Wright's results, defined an enlarged class 

of (Q, R)?predictors to include suitable predictors for the model r? (X, V). 

Brewer, Samiuddin, Hanif and Asad (1989) considered alinear ^-unbiased 

estimator f*g 
= S C?5_/?, the weights Gu being chosen so as to endow Ye with 

8 

the ratio estimator property (V (Ye) 
= 0 if y% oc- #$) and some stability, 

specially, for outliers. For n = 2, they obtained solution to Oi5 by appealing 

to ri (0, 1 ; t><). 

The strategies suggested hare often do not possess any desirable properties 

(unbiasedness, attainment of a minimum variance bound etc.) in exact analysis, 

though in asymptotic analysis most of these properties hold. 

4. Asymptotically optimum sampling strategies 

Brewer (1979) considered the class of predictors which are asymptotically 

design unbiased (ADU), the predictors being of a particular form suggested 

by a model and in this class the optimal strategy is one which minimises the 

asymptotic expected mse (AM). Brewer's stand-point is somewhat between 

design and pure super-population as a basis for inference. Under his framework 

for asymptotics, which assumes the repetition of the survey population k 

times, drawing of independent samples from each (hypothetical) population 

using the same s.d., producing a pooled predictor of 7 based on the combined 

sample and allowing &->oo, the optimal T, genrated out of 7/(0, 1 ; of} is 

with 

?__(_!,?)= 
_^-_<r? 

... (4.2) 

which equals the minimum value of the average variance of any ^-unbiased 

strategy under the above model, as obtained by Godambe and Joshi (1965), 

GJLB (say). Rao (1984) obtained Brewer's results under a slightly different 

approach. 
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Robinson and Tsui (1981) pointed out some disadvantages in the asym 

ptotic approach considered by Brewer. They considered a sequence of popula 
tions H?k of size N{k) with Nik)-> ?. as nk?> ?,, a sample sk of size n{k) 

being drawn from H?k using the similar s.d., with lim?? < oo. Under this 

framework they proved ADU and ADC of T*m. 

Wright, in his asymptotic framework assumed both population size and 

sample size increasing to infinity with sampling fraction fixed, to conceptu 
alise which he used Brewer's framework and assuming t?(X, v) showed his 

(p, (Q, R)) strgegy is ADU for d(Y) 
= aY [a' 

= 
(av ..., aN), ai a known 

constant (i 
= 1 ..., _V)] iff 

(I-Rn)a 
= 

QnXX 
... (4.3) 

for some X = 
(A0, ..., Ar). He also showed the AM of all the ADU?strategies 

are given by the GJLB, (4.2). The most efficient stragegy is, threfore, an 

ADU-predictor with p : 7T< cc a$ ^Jv% when AM is 

(-1^1 v?r 
-s^^^-) ... (4.4) n 

In particular, the class of GRP, Tgr (Q), T*br along with the corresponding 

optimal s.d.'s are ADU and asymptotically most efficient. 

Wright suggested that when the efficiency of an equal probability ADU? 

strategy is poor, one can use stratification using cv of |a<| y^vt 
= ct (say) as 

stratification variable (cv of c\ in stratum Vn < e V h) and allocating nn 

oc __ ci and using srs within Pn, when v* is approximately attained. 

iePh 

Robinson and Sarndal (1983) assumed : (i) there are M nested populations 

^^ ^iC^C-^ N1<N2< ... (ii) a sample st of size nt 

is selected from T>% using s.d. pt with n% < nt+1, ? = 1,2,..., samples sv s2 ... 

being not necessarily nested (iii) M-> oo. Under some regularity conditions 

on pt and the moments of the distributions in the 'model they established 

ADC and ADU of TR (Q) and showed that under r?(X, v), its AM attains (4.2) 
and with a suitable design, (4.4). 

Fuller and Isaki (1981) showed the AM of the projection predictor 
A 

T-2 = 
l'X? (n-2) 

B2-2 
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coupled with a npv?s.d. (/r< ce vi) under 9/(AT, F, p) is asymptotically minimum 

in the class of all linear predictors provided v' e G(X) when v ? 
(vv ..., vy)'. 

Li (1983) considered another type of ADC, which may be termed in 

consistency. T is L2?consistant if as k~~* oo, (in Brewer's framework), 

E(T-T)2-> 0. 

It is of interest to differentiate between the AD? strategies, using the same 

set of 7r-values, by studying for example, their second-order efficiency 

(in some sense). 

5. Optimality of a linear predictor under multiple 

regression models 

Pfefferman (1984), Tarn (1986, 1988), Brewer, Tarn and Hanif (1988), 

among others, addressed the question when a linear prediotor becomes BLUP 

under tj(X, V). It has been proved (Tarn, 1986), 

Theorem 5.1. The n.s. conditions for h' Ys when h = 
(hl8, ..., hn8) to be 

BLUP of Y under t/(X, V) are : for all s : p(s) > 0, 

(i) K X8 = X 

(ii) Vsh-Kl ee(X9). 

Tarn examined the conditions required for different predictors e.g. 

T*(X, v), T (X, v), NY s to be B?LP under r?(X*, V) where X* may lack 

(accommodate) some (additional) explanatory variables. Bolfarine and 

Rodrigues (1988) examined the conditions when T* (X, V) 
= T* (X, V). 

Brewer et al. (1988) cosidered the conditions on Q when T (Q) [Royall's 

predictor using ? (Q)], T(Q) and Tgr (Q) coincide under r?(X, v) so that T (Q) 

and T(Q) may share the ADU and ADC properties of TGR(Q). Tarn (1986) 

examined the s.d's for which T*, T*, T*QR become identical. 

Tarn (1988) confronted a prediotor to Tqr(Q) and investigated the condi 

tions for a linear strategy to be asymptotically best (i.e., ADU and attaining 

(4.4) under t?(X, v)). He proved 

Theorem 5.2. The sufficient condition for (hr YB, p) to be best under r?(X, v) 
are : for all s : p(s) > 0, 

(a) (i) of Theorem 5.1 holds 

(b)Qrllh-W7l?U-\e<e{Xt) 
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where k = - __ 
\/vt, Q is any p.d. diagonal matrix. 

A predictor satisfying (b) has been termed weakly robust (or robust under 

covariance-matrix mis-specification). Relevance of these conditions for robust 

prediction under t?(X,v) have been considered. 

6. Sampling designs making predictors robust and near optimal 

The approach in this section is to find s.d.s within a class of competing 

designs which endow robustness and near-optimality to some simple predic 

tors?optimality being in the sense of attaining GJLB. Notingthat under model 

r,?(a) : &(Yt) = at+?xh V(7i) = o*f(xx), Q(Yh Yr) = 0 (i ̂  1'), (at, /?, /(*_,) 
known quantities), the generalised difference predictor 

e(a,?)= S Ti~~at'~~fixi+a+?X, 
... (6.1) 

s ui 

a = S au coupled with a p e pn : {p : 7Ti(p) ccf(xi)} is optimum in the class of 

jp-unbiased predictors, Godambe and Thompson (1977), with a view to choos 

ing a suitable p in ?i%, considered the absolute difference in magnitude of the 

average variances of a strategy under two models as a measure of robustness 

(or sensitiity) of the strategy to model-changes and showed that a,p e ?in : 

S S (mnj-TTv) (^-^)\ 

Di = 
&'(Yi)-ai-?xi, 

is minimum, is most robust wrt alternatives tj'b : &'(Yi) ^ at+?xt, variance, 

covariance remaining the same. Such a design can be approached by an 

appropriate stratification. They also extended the similar study to ratio 

predictor. 

Godambe (1982) considered the model C : 7j?(a)f ae A (3 0), an _V-dim. 
A 

interval, ? e B O 0), an interval in Rv Noting that (Tht, rrp \/f(x)) is opti 
A 

mal wrt r?0(0), he wanted to extend the optimality of Tth to the entire class 

G by choosing a 7rp\/f(x)?s.d. pQ for the prior y?(a) such that 

Epo[e(a,?)-e(0,0)f 
is very small. 

Such a choice endows both ccriterion^?robustness' and 'efficiency robust 

ness' to (p0, Tht) wrt alternative 7?fi(?). p0 can often be attained through appro 

priate stratifications. lachan and Francisco (1983) carried out some empirical 

investigations of relative efficiencies of some of these strategies. 
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7. Optimal prediction under balanced samples 

Mukhopadhyay and Bhattacharyya (1994) proved the following 
L 

results. We denote V(x) 
= S 

Sp^xi 
as V*t l(x), r/(80, ..., 8j ; Vnt j) as t/^j, 

Te 

&, V with proper suffix expectation and variance under the corresponding 

model. It follows from Theorem 2.2 that, T\ at S0(J), T\ at S0(J) are each 

BLUP of Y. Now 

?i^-A- Y) = S1 8i<r\x-8 ff S **+?-*+x? , 0 6 [0, 2]. 
1 ! \z' Xh ) S % 

8 s 

Thus 

Vi,J-i {T\~ Y | S*J)) = -?=?) s18i(rzxw= jfl(i, J-i) (say) W 

^-1(^-^1 W) = 
^-?) 

3- S ^orfrw-i) 
= Jf,(l, J-l)(say). /& * 1 

Since under S0(J), x- 
^ f [follows from (2.2) for v(x) 

= a;2, j 
= 

0], 

Thus 

Jfj-Jf^ -Sz^'s1?icrf[r<??-I'X</-1)]> 
0. ... (7.1) n i 

Again, under 7)0, j+1, for HT-predictor (HTP) THT = S ?, 

^(Tffr-ri^j)) 

= 
ifff(0,i+l). 

'MH(l,j+l)-M?l,j+l)=N Z?i(r%xsX<l-V-XW] 
... (7.2) i 

where s refers to 80(J). 

Now at S0(J), 

N xw = x i??-x)+s 4-?ss 4"1 
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Hence (7.2) simplifies to 

NJZ erf [ 
- 

x8(xs S a?-2-S a^-fS x{-x8 S 
x^)} 1 Ln 8 S 8 8 J 

= -N S *icrj[ac cov (a*, 4"2)+^ cov (a*, a^f < 0 if ?x 
= 0 ... (7.3) 

i 

where cov denotes sample covariance. Combining (7.1) and (7.3) we have 
A. 

Theorem 7.1. Under r?2tJ-v Tht at n-balance Sn(J) is a better strategy than 

TI at over-balance SQ(J) which in turn is a better strategy than T\ at balance 

So(J). 

It has been noted in section 2 that for a sample drawn by a 77ps-design 

the 7r-balanced properties are satisfied on expectation. This coupled with the 

results of Theorem 7.1 suggests that on an average, a HTP together with a nps 

design will provide a better strategy than the model-dependent optimal stra 

tegies T*2 based on an over-balanced sample and the ratio predictor T\ on balan 

ced sample under the general class of polynomial regression models 

7/ f 80, ..., Sj ; 2 8iO'^xi). This result provides some justification for use of a 

suitable design-based strategy in preference to model-dependent strategies 
and the role of design-based randomisation in survey sampling. 
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