INTRGDUCTION

fimalysis of survey data ﬁas, now a days, become a
ﬁery important management function since many surveys are
new being conducted by various organisations. These days,
surveys are cohducted regularly'by many organisations to
acquire up~to-date knowledge in different fields. Normally,
- the volume dF data collected through the surveys is stdpen=-
dous and conseqguently one has to make extensive use of com-

puters to process the data collected.

The job of computateéerised survey data processing
“involves two basic steps. The first step ensures that the
data entered are valid. This data validation involves loca-
ting both data entry errors and errors due to mistakes on

thea part of the investigator.

- The second step is that of summarising information
from the raw data through construction of various tables.
These two basic phases of survey data processing are called

scrutiny and tabulation respectively.

[Tradiﬁi&naliy, the job of suruey'data processing
S:E;g to comprise of writing tailor-made programs for both
scrutiny and tabulation. However, this was a time consu-
ming affalr since this approach called For.writing similar

programs several times. This time could be drasticallyﬁéﬁﬁ“ﬂut

down if a very high level language, specially suited for

,)‘f .- ": ;E“t HL ”“
AT R ad
R Nn. .
; r
.o A, s
t‘:\ i.#) -]‘3 i--i-:iil g-ﬁ S ig t
. "(f;, .

T .
N ﬁlirLr-h

scrutiny and tabulation, is designed. The Ubjectiue of this
dissertation was to design one such language and to imple-

ment it on a micro computer.

As already mentioned, the subject of analysis of
survey data 1s assuming more imporaance day by day. Conse-
guently, efforts weres made to develope tailor made packages
for scrutiny and tabulation of survey data. One very impor-
tant package for cross~tabulations, developed by the 'Inter-
natlonal Statistical Program Center (ISPC)' of the U.S. Bureai
of the Census, is CENTS. This pagkage was the result of s
substantial amount of research. ISPC deﬁélnpegﬂanuthef |

package_called CUEENTS,,alsa used for tabulaticn systems.

Later, these packagas_wgfe unifigﬁ.and a new, more
flexible and more portable packége called CENTS=4 was
developed. All the aforementidmed ﬂabkages, however, were
implemented on main frames puésibly becauéé they were deve-

loped before the PC boom.

AR L‘U; 'Wh.

Thus, though packages were seweilsble for ecrubiny
and tabulation of survey data, no well=known micro computer

based packages were available for these jobs.

This report contains a description of the language
déueiuped and its implementation details. The report cond
tains a total of four chapterss. .The contents of these

chapters are as fcllaws.- o

(1) The first chaptef contains general description of

| -thé-prnblem, the'way ﬁhé'ihﬁut data are described,
definitions of variables, expressions and constants
and also contains a short description of the parser

generator used to generate parsing=tables.

 (11) The second chapter contains a broad descrigtion;of
the scrutiny lanhguage. In this chapter thé:majmr

constructs of the scrutiny language has been des=
cribed. Also, the different semantic phécké imple-

* n eyl

mented has been discussed.

(iii) The third chapter contains a broacd des;:iption of
the tabulation language. He:e also the structure
of the lénguage has been discussed at length. Some
implementatinn details_aléa-has bean prmvided'in
this chapter. This was not given 1in the scrunity
section since the stepa'of”implementation are essen-

tially the same.

(iv) The fourth chapter-cnntainsla hypnthéfiQal data
description. A few scrutiny and tabulation'programs
have been @ritten with respect to this data descrip-
fion, tc illustrate the usage of the different
lanquage constructs.

Apart from these four chapters, a language manual

was alsoc prspared. The language manual contains detailed

description of the constructs alongwith illustrations.

However, this is supplied as a suppliment to the report.

It would be worthwhile to mention here that the

different modules of the entire software developed are =

(i) The data description module {common to both scrutiny

and tabulation program).

(ii) Parser generator module (common to both scrutity

and tabulation prﬁgram);

(iii) Code generator module (Sepsrate programs were deve-
loped for scrutiny and tabulation program. This

module includes the lexical analyzer and the parser).

(iv) Lonversion module to convert the generated inter-
mediate code to COBOL code (Seperate programs were

developed for tabulation and scrutiny languages).

A1l source programs and sample outputs, formats of
intermediate code and grammars have been attached as

annexures.

CHAPTER =~ 1

GENERAL DESCRIBTION

A« BANERJEL S. SUBRAMANIAM

BACKGROUND AND OBJECTIVE -

~The National Sémpie Sufvey Drganisatian.(NSSQ)

congucts surveys regularly'on'a'uériety of snciu;écnnmmic
aspacﬁéj. A diuision of tﬁia'nrgénisatiﬁn is completely
attﬁdhed:tn the processing of thelbﬁllectéd data wh ich
natt_.la'ral-iy :i..n;uo_lue's'exten-s.iue:-&h'w:i?af‘ computers. The
_aforemantiéned problem of being forced to-write similar
prﬁgrams Eime-and euer'again was also beihg féced hy. NS5O
officials and the package was being deueibpad.basically in

"this cortext.

The primary objective of the package was to design a
uérynﬁigh;lgvel language to fecilitate scrutiny and tabula-

tion of survey data and-to implement it on a micro-computer.

Thuugh the deuelnped package has a special reference
to NSSO data, it is not limited to that data only. In fact

this package can -be used for scrutlny and tabulatlan in

ganeral.

The package has been 1mplemented on the SN - PC‘
available at IS5] and ean bé\ﬂlrectly used by nther PC -
compatible micro computerse. Howeuer, 51nce the flnal output

of the software is a CDBDL-program, a CUBUL compiler is

needed to run it suecessfully.

APPROACH =

The job of designihﬁ'and'implementingwtﬁe--
nroposed languages was taken up in phases. To start with,
the basic constructs of the languages were designed. Also
the organisation of the input data géé_considered and con®
ventions of cnmmunicating1the data structures were developed.,
IWhile the basic constructs of the proposed languéges have
been described in detail in the respectiue ﬁhapters, the
or ganisation of the input data 1is described:in.thé‘ﬁext

gection.

The next step was to develope a parser genrator for
constructing the parsing tables. A SLR(1l) parser generator
wvas designede. The details of £he parser generafor is given
in a separate chapter. Finally parsefs wereEwritten to

generate intermediate code from the inputmprdgramf

paint gk - |
be the best way from thqAFiew cf execution time of the

Althnugh generating code in machine ianguage would

resulting module, it requires knowledgé about the operating
Gnd othuy datails . .
syatem_cnnuentiun for laadingﬁ‘ Then the second best is
gonerating in ageswbly, but no assembler is available in
out PCs. This forced us to go for COBOL language since it

is easily portable also.

DATA DESCRIPTION =

The input dataldescriptiﬂn forms the most vital part
of the entire softwars deualﬂped. Through the data descrip=
tion module, ths user specifies the input data file preaisely
and this description is used elscwhere in the progqrams for

compiling and executing the input programs

‘The input data are usuvally gathered 1n terms of
l¢rye logical records called schedules. The schedules

contain a large number of physical records of equal length-

These physical records are again grouped into several groups

represented by different level numbers. Physical'records
having the same level number have the same format and usually

these physical records represent items of similar nature.

Fach physical record again cuntain.éeUeral fields.
Theserfields are referred to as‘items'of tha'record,._ﬂs
already mentioned, several physical,racards.with the same
lasvel number are likely to bs present. Thus an_itam ih the
sbheduie can be uniquely represented as a triplet (i,j,k)

where
{ e~ lgvuel number
j aeamamy o itam'(Fiéld number)

k w===——3 ogccurrence

Each physical record of the input data file contaiﬁ
aﬁ identification fisld. This field indicates when_a par=
ticular logical record has been completely described.. The
location of the identification field is specified by .the

user at the data description stage.

The physical records are sorted by the identification
fields. The level numbers occur at a prefixed location of
the physical records. The lacatign of the level numbers
within a physical record is, therefore, known to the user
and it is communicated to the execution ﬁadule. Since the
formats for every leuel'are Known, afufun time the level
number is first read and the format is found and the data

are then read accordingly.

It has been already seen that a variable is uniguely
described as a triplet (i, j,k)s The third entry of the
triplet indicates the physical record number within the level
where the variable of interest is to be found. However, this.
third entry is rarely knownlta the user. Thus the user nor-
mally specifies the leueinnumber i and the field number Jo
The physical record number (also often referred to as the rouw
numbér)'is specifisd indirectly through certain conditionse.
Depending on the value of the spscified level number, physical
records are chosen. Then these records are scanned and when a
physical record is found to satisfy the specified condition,

the j=th field from that physical record is selected.

The different information provided by the user in the data

description module are =~

(i) The number mF.leuels in the schedule

(ii)- The location of identification fields == It has been
assumed that the location Df identification fields

~also would be the same for different ieﬁéls- Thouagh
it is possible to process the daté-euen mitgduf this
constraint, it has been added since'it is an uéﬁal
practice and therefore, dues.hqt imnﬁse'any.seriﬁus
restriction. .

(iii) The location of level number

(iv) The field descriptions of the items in different levels ~

Thishwill'bé descr ibed in the'Followingcmannér ;ﬂ

At first, the actual level number and the number of

. fields assmciatéd with this level could be described. Unce

the.nuhber of fields agsociated with a level is described,

each of the fields are described in a gréater detail. The
starting.chumn and the nﬁmbar of bytes to be assocliated

with sach field is described. Also the data type of the

fields are described. | .

(v) . Thé number of records placed in a pnysical rscord. The
necassity DF this arises due to the fact tHat the length
of physical records may be large (29. 127 characters 1in
case of NSSO - data), but-the}; may exiét levels requi=~

‘ring only 60 eharacters. In such cases, data for two

records may bs combined and stored in one physical recorc.

R
eGSR I

(vi) The item code(s) associated with a level. == Occa-

ssionally a level may have more than one item code
assoclated with itself. These should be dascribed
alongwith the level description.

(vii) The maximum number of occurrences of a level should

he described. This will be used at runtime to store

the physical recordse.

OTHER DETAILS

It has been already described that the variables of
the language are written in the (i, j, k) form and usually the
third co=-ordinate would be absent. The proposed language

can also accept numeric and non=-numeric constants.

The expressions of the language are formed by com-
bining variables and constants. As usual, an sesxpression may
be gither a single variable or a single constant or any combi=

nation of variables and constants connscted through usual

arithmetic operators.

Expressions may be combined through relational
operators to form logical expressions. Logical expressions
can agaln be connected through cohﬁectiues l1ike- AND or OR

and may be megated through NOT.

PARSER GENERATOR =

The parsar generator, though not directly used in
the compilation or conversion to COBOL prﬂCESS, forms a core
moduls of the entire studye. Ths input to the.parsar genegrator
is the grammar itself and the list of terminals and non-termi-
néls used in the grammar. :The program and its input=output

formats are given in annexures.

the logic of the program can be described briefly
as follows. The program generates a below-matrix with respect
to the grammatical gccurrences. The columns of this matrix
represent different grammatical occurrences. The columns
corrasponding to thesame grammar-symbol are pooled together
to form a NFA. This NFA is then esnverted to a DFA. The
rows of the DFA are sets and these are fhe different stack-
dymbol sets. Lonsidering this DFR as a matrix, a submatrix
having column headings as non terminals is taken out to obtain
the 'G0 TO' Table. From the remaining portion the parsing

table is obtained through usual method.

CHAPTER = 2

DESCRIPTION OF SCRUTINY LANGUAGE

S. SUBRAMANIAM

OBJECTIVE o

The primary objective of the scrutiny program is to
provide an 'sagy to understénﬁ‘ language through which the
user can write a variety of scrutiny tests. Scrutiny tests
are of utmost imﬁortance Siﬁce'they'are used to validate the
input data. Thus the quality of the scrunity determlnes the

quallty of the input data.

Usually, the designer of the questlohnlre 1ncorpa-
rates a uarlety GF-CrDSS“ChECkS in the questlunnlre s0 that,
at a later stage, consistencies can be chﬂ@k&ﬂ;@ﬁd-éUEﬂ lapses
on the part of the investigator could be determined. Also,
errurs,hay creep.in at the data entry stage, which the scru-

‘tiny programs should find and issue appropriate effﬁh*messages-

GENERAL DESCRIPTION

In this section a broad description of the scrutiny

larguage is presented. The most important.cﬂnstructs arg -

i) CHECK STATEMENT - The format for thls statement is =
CHECK <anglcal expr9551o€>'
- where logical éxpression can be one ofthe

followinmg

a) Direct comparison of two expressions.

b) Checking type of a variable such as numer ic, alphabéte{

c) Checking.mhether variable of a particular level
follow a specific sequence or not. (Serial number
checking) . .

d) Tallying total of a variable level~Wiss with the
supplied-tqtal.

e) Expressions formed by the above using connectives

CR and AND.

ii) SET MATCHING - The format for this statement is =

' —

CHECK INDEX FOR Var=name 1 ‘[EHERE Logical-exp |

o~

. Var=name 2

This check is needed when a set matching is required. A
spaecific situation could be a case where one level contailns
the details of all family membersand another level contains
only adult males of the family and the objective of the
test is to find whether all adult members in the sscond

level has accurred in the first level or not.

matching.

1ii) INTER LEVEL CHECKING =~

The format of this statement 1s =

_ # i
FOR VAR [_WHERE (lLogical expressio;?i
H, VAR | WHERE <<Loglcal expr9851aaP§

CHECK <Logical expressian>

-

“—1‘, $ o2 8
& —
An example of a situation wheré this check is perfﬂrmed_ia
the case where hkhe expenditure on an item.and thé ampunt
consumed are given in two different levels and the objécw
tive of the test is to divide the expenditure by amount to
get a price ﬁer unit which is compared with some reasonable
limits.. .
(iv) IE _=THEN -ELSE -

The format of this statement is =

IF <:Logical éxpreasimn)? THENM <5tatemen£>> |

- n N
ll.j | <;,¢t.;.,temeni?wi ceo s s

ELSE _{Etatemen§}[: <:statemen§2] PR

END IF

The objective of this test is to conduct certain checks
sub ject tu_certain.conditians. In cdse the condition

followsed by the keyword 'IF' is true, the checks followlng

the keyword 'THEN' are executed..

In case the 'else' cpticn is used, the condition following

"IF' would be tested and if it Fails; the 'else'® part would

be edecuted.

A 'Report'option is also available 1n the If - THEN =
FLSE construct. The idea behind using this option 1s to
report the success/failure of the main condition depending
on whether the option has been used in the THEN part or ELSE

part. The explicit form when this option 1s useo s =

1F <Logical expression> THEN REPORT
FLSE QStatement> }_ _‘.\/'Statementj |
ENDIF

OR

»

>

If <:Logical expressic€>“ THEN<:Statementf
o L \
Lfs\StatemenEiJ .o

ELSE REPORT

ENDIF

v) ASSIGNMENT STATEMENTS =

The format of this statement 1s -
identifier = expression {arithmetic)
Where identifier is a string of alpha=-numeric characters

starting with a letter. Embedded dols are also paermitted.

The assignement statement is used to store fregquently
used values and constants. This statement, when properly used
ig likely to saveexcution time by a large amount. The iden-

fifier can be used later in other expressions.

TECHNICAL DETAILS

Tﬁe-scrutiny program execltes a number of semantic
checks to ensure that the input file g-ing for tabulation
1s totally error-free. The different semantic cunecks
included in the scrutiny language are =

i) Chéck to ensure that the number of levels and
items are within sepecified range.

ii) When a level has variable cccurrence, all its
variables should be uéed only in the following
cases =
a) FOR statement
b) CHECK INDEX statement
c) Statement forchscking contipuity of

serial number
d) CHECK TOTALS Statement

e) As argument of built-in functions (SUM, COUNT,
AVG, MAX, MIN)

iii)

iv)

vi)

vii)

The WHERE eondition should invelve at least one
occurrence of a variable from the corresponding

level which precesds the WHERE candition.

The EHECK condition in the FOR statement should
involve at least one oﬁcurrence of a varilable
from any of the levels corresponding to loop

variables.

The levels corresponding to loop variables must

have variable occurrence.

The item code fields should have been defined in
the data description module for the levels involved

in the set matching.

Any identifier must be assigned before it is used

in an arithmetic statement.

CHAPTER - 3

B

DESCRIPTION OF TABULATION LANGUACGE

A. BANERJEELE

OBJECTIVE

The primary objective of the tabulafioh program
is to ﬁrouide an 'easy to understang' language through
~which & user can generate a variety of tables. Table
'generation is the basic process required to extruct infor-
mation from the raw data and therefore, both NSSO officials
and ocutsiders, who may like tao use the NSS—déta, are possible
users of thisitabulatian program. Since a substantial portion
cof these users ars not'prafessianal procgrammears, effogrts were

made to make the lahguagé as simple @s possible.

GENERAL DESCRIPTION

In this sectian, a broad descriptien of the tabula-
tion language is presented.
~ The tabulation language has two basic commands, namely,

TABULATE and ENUMERATE. The purpose of these two commands

are as follows =~

a) TABULATE = “fhis command forces a 'variable' to be

afdded toc a specific cell Gf the table being constructed.
Thé.cell-iéiwhich the 'variable' is added is determined
through other cmnsideratibhé speclified by the user as a part
of his tabulation program. The ‘'variable' represents some

uaiue to be computed from the input data. tor exampls, the

user may like to tabulate the total rice consumptiaon,
statewlse. In this case, the variable represents the total
rice consumption and the different states represent the
different cells of the tahie@

The user may choose to carry out a 'weighted tabulation' too.
In this caseg, the computed variable is multiplied 5y a sui-
table weight and this new variable is added to the appro=-
priate cell of the table.

(Syntax of TABULATE is - TRBULRTE.[EEIEHTE;L§u35> BY ccress)
/

) ENUMERATE =~ This command is basically same as the
'tabulate' command except that in.this.case 1 is added to
the appropriate cell instead of adding a 'variable'. 1In
case of weighted snumeration, the weight is added instead
ot the number 1.

\Syntax of ENMUMERATE is similar, but does not have the var.

The list followed by 'BY' is the list of classificatory

varlables.)

CELL -~ FIXATION

In this section, the method of finding the parti-
cular cell of the table, where the additian is to be mads,
is degcribed.

The cells are implicitly chosen by the user by specifying

the list using which the sélection is to be made. The list

isg wrltteﬁ after the Key=ward ‘BY* which -conveys tD the
crmpller that the llst of varlables following 'BY' are the
ones, to be used for selection of a specific cell -~ The
uarlables here has usual (i, j) representation with or
without a canditian.

o find the specific location of the cell, each one of these
variables are converted to their current value and conse-

quently the address is camputed.

5. I o e
e 1ﬂsralféédy indicated, the total area requircd t.
tsnierate the tables is essentially fixed by the range of the
varlables following the keyword 'BY'. /in example wauld
‘llustrate the point amply =

Let us consider the tabulation statement =
TRBULATE AVG (2,41 BY (3,50, 16,71

The meaning conveyed by this tabulation program is
that, for every schedule the average of the 4th item of the
2nd level (ie. level 2) would be computed. For the Same
schedule, the value of [?fﬁ,z} and [;,7,%] would also be

found. The values of f3,5,£] and TB,?,IE would determine

L

the cell to which the value of the average uf"[?,{] is to
be added. Depending on the ranges of these two variables,

the table size would vary. It is, therefore, imperative that

the user specifies the ranges of these variables.

The ranges of these classificatory variables are conveyed
to the compiler thtough the DIMENSION statement. The

DIMENSION statement has two basic formats

i) Var«name followed by range specifications where rafges

are of the fuorm - c¢const = const.

oT const
Example]
DIMENSION {3,5| (0 - 10, 11 = 20, 21 - 30)
txample 2

DIMENSION (3,51 (1, 2, 3, 4)

e

In the first case, during tabulaticn, the value dF the
classificatmry variable would be evaluated and then a teét
would be made to find the range to which it belongs. Corre-
spendingly, a value would be assigned to compute the cell
location. Thus, if in the example=l the chassificatory .
variable is found to have the value 1%, the value 2 would

be used to find the cell where the final addition is to

be made.

f;.

In the 2nd case also the problem og finding cell address

is resolved in a similar manner.

v
since lhe DIXENSION statement specifies the range
of variation for each variable the table size for each tabu=
lation is computed from the details given in the DIMENSION

statement. In cass of ENUMERATION also the structure and
usage of the DIMENSION statement is exactly same .

ASSOCIATED CONDITICNS

OFten_cartéin'bﬁnditianslare assceiated alongwith
the TRAEBULATION/ENUMERAGTION statements.e The objective of
these conditicns is to ensure thatlthﬁ TABULATION/ ENUMERATION
is carried nut for a schedule anly if the scheduls satisfies
certain proparties. HAs an example, ocneg may like to tabulate
the total income of houscholds, statewise and familysizoe-wise
only if the total income exceeds Rs-ZDDDD_per‘annum_(ie tha
interest may be to tabuldte'anly high or middié-iﬁcmme group
‘people). In this situation, a household having an income of
1esa'thah Rs.20000 per annum should be skipped. The condi-
tions associated with the TABULATION/ENUMERATION progam
sgrves thls purpose.

Tha assnelated cundikions are specified as a list cof

conditions starting with the keyword 'FOR'.

Thus the schedules which do nnt satisfy the conditions
listed after the keywonrd, 'FOR' are simply skipped.

The conditicns have usual lcgical expression format and
allows the use of simple arithmetic operators like +, =, *
and / . The usual relational cperators like =, { , 2, =
> =, <if7 are permitted. filso connectives like AND, OR and
negation (NOT) can be used to form the conditions. Unary

+ and = are alsoc allowed.

Conditional variables and conditiconmal funections -

i . '
In oxecuting the TABULATICON/CAUMERATION grogram,

one is froequentl: roouired tw.Finﬁ 2 variable sétiéfying"
Sumélcanditinn 5t uvaluate 2 functicn satlsfysing some
censtraints. 1t hos been aiready mentioned that scme of .

the levels appcar more than once. Whenever a level appéars
more than once, it usually describes similar things on diffe-
rent items. For example, a particular lﬁuél.af'a schedule
‘may be devoted to details of different kinds of faod items
produced by 2 household. Thus the level may havs entries

like the amgunt procuced, the amount sold, the profit made

and sc on. Naturally, this level would cccur more than once,
onge for every item produced by a household. Thus the leqei-
would allow an ‘'items code' to be safisfied,~thrﬂugh which

the commodity being describied by a particular physical reccrd_
would be knswn. Now, it may be a requirement to find the
amount cf milk produced by 2 householde The only way of

doing this is to check the item code cf all physicel records
of the concerned level and pick the one in which the item code
matches with the item cndo of milke. This type ~f a variable
selection is termed as & 'conditional variable'. Canditianal

functions' alsoc have a similar meaning.

The tabulation language permits use of conditicnal functicns
and conditional variable in all its clauses except the

DIMENSION clause = where it does not have & meaning.

THE FINAL STRUCTURE

the tabulation language may, thus be described as =

i) Every TABULATION/ENUMERATION statement must ctart with s

DIMENSION statement. The dimension of each classificatcry

variable must.be dec lared. However, the keyword DIMENSION

should be Mentinned only cnce.

Thus, while declaring DIMENSION of tuwno Uariableé, one

wuuid SpéciFy it as =

DIMENSION [5,?3 (10 - 20, 21 = 30)

']_:3,8] (0 - 10, 11 - 20, 21 = 40)

ii) The statement following DIMENSION must be a TRBULATE or
ENUMERATE statement. This statement must start with the
corresponding key-word. This key~word is eﬁﬁémﬁiéytﬂﬁ’?*ﬂﬂj

followed by the key=word WEIGHTED.

This is followed by either a variable or a function
of a variable or a conditional variable or a conditional

function, in case of TABULATE atatement. In case of ENUMERATE

statement, the key=word 'BY! is expected.

Thus, the different possible structures are -

a) TABULATE wvar~-name BY toe e

b) TABULATE WEIGHTED var-name BY «....

c) TABULATE fn. name var=name BY

d) TABULATE WEIGHTED fn. name var=name BY

e) TABULATE fn.name var~name WHERE (condition) BY

f) TABULATE WEIGHTED fnename var-name UHEHE (condition) BY
g) TABULATE var-name WHERE (condition) BY

N) TRBULATE WEIGHTED var-name WHERE (condition) BY

i) ENUMERATE BY

j) ENUMERATE WEIGHTED 8Y

iil) The keyword BY must hbe followed by.a list of variables.
fhese variables may be either simple variables or may be condi-
tional variables. A simple variable would be described

through the wsual (i, j) representatiocn. This would be used
when the classificatory variables helﬂng.ta a level having a
single occurrence. This may be the case when the classificatory
variables are state name, stratum name etc. Normally, such
variables are expected to be described in level nos»1l having

a single occurrence.

The conditional variables also can be used in more general
Cases, to pick up 2 specific variable from a level having more
than one occurrence. The conditional veriable would be

specified through the following structure -

Var-name WHERE (Caniitian)

When more than one classificatory variable is Used, these

varlables must be seperated by COMMas .

A point worth mentioning at this juncture is that,
the Dléssificétﬂry variables should bs specified in the same
order in which their dimension had be=n smecifieﬂ. This
restrictian had been imposed to fecilitate implemantétion

of the 1anguage.

iv) The list of classificatmry variable is focllowed by
an optional condition list, which must start with the Keywsrd
'FDR'.- In cése the condition-list is absent, the user must
terminate.the_list of classificatory variables by gither a

, '(semicalon) or by a . (dot).

The list should be terminated by a semicolon when the
current tabulatiﬂn'statement is not the last statement. In

case it is the last statement, the list should be terminatce!

by dot.

The keyword 'FOR' would he followed by a condition-
list. The conditions in the condition list, as already mgn-
ticned, has the structure of usual logical expression of high

level languages like BASIC.

The list of conditions should be terminated by a

semicolon or a dot, as the case may ba.

Implﬂmantatinn'df thé £ﬁnguage was a four=step

-procesé. Unce the béaic constructs of the languagé was
though of, a grammar was written to formelize the language.
fs a second step, a péraingifabié.was'obtainad'by $ubjé¢tingl
this_gtammétha a SLR(I) ﬁarSEr generator. htitﬁégthifjd_
step, a code gaﬁaratdr was deuelnpéd which included two main
modules namely the lexical analyzérﬁfu'auPply-tha tokens and
a syntax-analyzer and code genarataf'to'génerate an inter—
mediaté cods. _The Qrammar and:the format of the interme=
diate code are given in annexures 1 ahdIerespectively.-The
described grammar has many facilities but all of them were
nat'imﬁlaméﬁtad in the language designed. Howsver, the par-
| antit 2 _
sing table was generated for the sitive grammar and hencs
these extra features which are not part of ths language curr-
.ently can bs easlily incorﬂpﬂrated by writing the corresponding
reduction routines. These features were not incorporatsad in
thé language implemented since the chéncea of these Featufes'J
béing_uaedmara rather remots. Since the auailabla.time was
short, 1t wes decided to implement the MDstruséful.portion.

The fourth step of the process was to write the execution
moduls., At fifst it was decided to mfite the sxeaﬁtian mo du le
based on the generated intermediate code. The.idﬁa'in that .
case was to have routines fﬁr1£he differenttﬁﬁ‘cadﬁsi'whibh‘“ilgi

be called and there-by.the'execution would be psrformsd.

The main drawback in this method is.that; the
execution time is ueryfhigh. Sincé oné ﬂF?tha priMary users
of this language wou ld be NSSG where the Uolume nf the data
is extramely large, the EFF1c19ncy ie of utmust 1mpcrtance.
Thus it was decided to generate a EDBDL program from the
intermediate code. The entlre jab~of daesigneling and imple-
.menting the languhdé ?dr survey data £abulatinn wag thus

. completed in the four steps mentioned above.

A SHORT DESCRIPTION OF PROGRAMS =
m

Details of tﬁe parsér-generator program has already
been provided in thE'genefal section. In this section a brisf
-descriptian of fha_cnda gaﬁeration and gensration of €0BOL -

program from the intermesdiate code is presented,

ﬂs'alréady mentionad, fﬁe-cﬁde anbratnr'has'twn
"basic”mndﬁles - the lexical analyzer and. the code generator.
Tha,cnde generatarris.fhe_main module which'cglls the lexical

| analyzér_as & and when the néxt token is.neaﬁéd- The exact
o imﬁlamanfatinnlgéas to read-ﬁne lins of tﬁ&'saurca code from
tha inﬁﬁt program file.as a string'and send this gstring to the

.ilixical analyzsr- The 1exlcal analyZEr then extracts tokens

;??Wam this line and Keeps them in a buffer and transfers control

back to the parser. The pafaer?nﬂw takeé'the token one by
mn?’Frnm the buffer; consults the:parsing table and takeé
appropriate action. Whenever a reduction is ecalled for, code
1s generated if that reduction calls for a code generation.
When the token buffer is empty the lexical analyzg;Tiﬁ;called
agaln to read the next line of input;
- The parser pragram-ia_attached as an annexure for
further reference. .
The#pragram which genefates a COBOL prbéfam.Frnm
the code generated by the parser, works as follows.
This program uses as its input a few files created by
the parser; These files are the che”File'holdihg the gene-
rated code, the variable file holding the deSﬂriﬁtiDn of all
the variables encnuntered in the programe. The organisation

of the variable file is as follows -

The entries would be sets of size three ar four. The
first entry of the éet would equal the size of the set minus
one . The next entries would be the levsl entry, the item

number entry and so on. Thus the variable Eé, i] would be

represented in the variable file as - 2, 2, 7.

Another file used hy the generator and created e by
the parser is the range~file. This file stores the details
of DIMENSIONS specified by the user. This file stores the

numb&r of locations required for each variable and the upper

and lnwerllimit specified by the user in each class for
each variable. Alengwith the rangs file, an asscciated
file is maintained which points to the starting entry for

each tabulation/enumeration command.

The last file created by the parser and used by
the generator is the file of constants where the constants

encocuntered in the user program are storeds

The generator program reads these input-Files and
then converts the pSeudo codé into COBOl~code on a instruc-
timnwbyiinstructian basis. A few exampla.prdgrams, the code
generated and the gsnerated COBOL-program is proviqed in

the annexureaes.

CHRARTER = 4

EXAMPLE OF SCRUTINY AND TABULATION

LANGUAGE PROGRAMS

A« BANERJEE S. SUBRAMANIAM

USAGE OF THE LANGUAGES =

"-'in tﬁ1s secti0n-a;hypnthetical ihputVdath_h§§ been
déécfige& and a,féﬁ gscrutiny and tabulatiﬁn;pr&gnamq@méme
written'fn the prUpﬁsed lanquages.. The:problams arékfirst%
-prﬂsentad Uarbally and then programs wers writtanw$arwthe

- problems.

ESuppﬁse the sufuey-data consists uﬁ,thﬁ%ﬂ:ﬁﬁhic-_“
ﬁa;ta say details of age, income and qccupaiiﬂh*H?*pért'l:
details-df mnnth1y consumption and expenditure oft general
- food items.like ricé, wheat, milk and so nn'aé'péit 2 andi_ |
details of expenditure incurred on the aducatianaaf chlldren”
of the family as the third part. Lat us aaammﬂ thét ;:;fB

describes the educational expenditure 1ncurzaﬂ”byjaach;adult

YRCL
ptle of the family. L e
Let us further suppose that the data are available state-

wlsa, district-wise, village-wise and there are 5 states, at
AV PP

most B8 d&iesbimets for sach state and at mosgt 12 villages for

EaCh diﬁtfiﬂti

Let the actual layocut of the input file be as

follows =

1« Cols. 1 = State code

2. Cols. 2=3 = District cods

3. Lols. 4=5 = Uillagé'cadé
4. Cnlse 6«7 = Household number
S. Cols. 8 = Level.

It could be sasily noted that thesec eight columns represent
the gsame items in all physical record. In this particular

case, columns 1 to 7 represent tﬁa identification fields.

It could be also noted that, in this cass, a 'schedule' is
nothing but eccmpletes data for a household. As socon as the
houée-hpld number changes, one understands that.ohe_lugical
record (household) has been covered and the next logical
reccrd is being accessed. Thus, change from one schedule to
ancther brings about a change in the identification Fields-_

Suppose, the field description of the other items are =

Level 1 =

6. Cols-9-iﬂ - Serial number

7. 8915.11;12 - Age in completed years

8. Col. 13 = Sex

9. Lols.l4-18 - Monthly income (Rs.)

10. Cel. 19 - Occupation code
(1 ~ Self employed
2 ~ wgrkiﬁg in private sector
3 = Working in govt. sector

4 =« unemployad)

Level 2 =
6. Cols. 9=10 = item code
7. Cols. 11=15 - monthly consumption of item (Kgs)

8. Cols. l6~19 ~ amount spent on this_itém (Rss)

Level 3 -
6.; Cala-' 9-10 = serial number (as.inflg?el 1)
7. ULols. 11 - education ccdé
{ 1 - illeterate
2 - u&to.ﬁrimaryxleuel“”j
3 - uptu aecundéfy level
4 -~ upto graduate level
% = above graduate level)
8. Col 12 ~ marital stétus
.9. -Cals; l3-l4” - NO. mf children
- 10. Colse. 15=16 = nc. of schﬁnl-géing/cdilege-going children

11. Cols. 17-19 - mmnthly'expenditure'bn education

The above data deacrlptlan, though a hypothetical
 ;§53, is a typlcal example of structure of- survey data. A
;fEM scrutiny and tabulatlnh problems are now-verbally des-
cribed with raspec£-t0 this datéfdascription and the snlutionl
in fefhs of the proposed laﬁguagé ig alsu.ppgsentﬁdf_;

Examplesg of scguting problegms =~

1) - Check whether the serilal numbers appearing as item &
of Ieuel 1 'are continuous or not (ie check whether

the family membérs are given proper ssrial numbers or ﬁot)

Soln. CHECK cotumn f1,6| IS CONTINUOUS

2) Check whether all adult malkes appearing in level 1

also appear in level 3 or not. Assums sex code for

male is 1

Sgln. ~ MALE = 1

CHECK INDEX FOR {1} WHERE

\L, 8, *] = MALE

RND [j;’ 7’ *J >_ = 16!*
3
3) Check whether the number of children in lesvel 3

(item 9) is greater than or equal tuo the no. of school-

going children (item 10 of level 3) for all entries in

level 3.

. -

Soln. - FOR (3} creck 3, 9, *] > = 13, 10, %)

4) Check whether the total monthly income is qreater

than the total expenditure on sducation or not.

Soln. - CHECK sum ([1, 51) > sum (B, 11})

E x u ion mg =

1) Tabulate the total income (mnnthly) far.thqsewfamélies,
whose size is less than or equal to 8, state and dis- .

trict=wisce.

Soln. - DIMENSION [1, 1] (1, 2, 3, 4, S)
. [1’ 2.:(‘ (1, 2, 3, 4, 5, 6 7_1.“3").%
TABULATE suM (]1, 9]) 8v {1, 1], |1, 2}

FOR COUNT([1]) >= 8.

2) Tabulate milk cﬁhsumption of all those Familias,
'where'at least one persﬁn is self-employed, total family
income=-wise choosing the income ranges as 0~1000, 1001-5000,

5001-10000 and 10001 to 99999-_ Assume that 'item cods'
of milk = 10.

Soln. - DIMENSION |1, 97 (0-1000, 1001-5000, 5001-10000,

o 11001-99999}
TABULATE SUM (Ez, 7}) WHERE (i—@,éj = m)
sy |1, 9] '

FOR ((COUNT ({17) wHeRE ({1, 10] =1)=

