LOCATION OF LARGEST ISOTHETIC EMPTY RECTANGLE

AMONG ARBITRARILY ORIENTED LINE SEGMENTS

A dissertation gubmitted in partial fulfilment of the

requirements for the M.Tech. (Computer Science)
degree of the Indian Statistical Institute

By

ARANI SINHA

under the gupervision of

DR. BHARGAB B. BHATTACHARYA
and

MR. SUBHAS C. NANDY

JULY 1992
INDIAN STATISTICAL INSTITUTE

¢U3 B.T. ROAD, CALCUTTA - 700 035

ACKNOWLEDGEMENTS

I am very grateful to my guide,Dr. Bhargab. B.
Bhattacharya whe introduced me to the interegting fieid
of computational geometry. 1 would also like to thank

Mr. Subhas C. Nandy for his constant help and guidance during
the course of this digsertation. Lagt but not the least, it
is & pleagure to thank my friends Debashree Ghosh and

Kaushik Dasgupta for their moral support and encouragement .

Arani Sinha

LOCATION OF LARGEST ISOTHETIC EMPTY RECTANGLE

AMONG ARBITRARILY ORIENTED LINE SEGMENTS

Abstract:

In this d;asartatinn, we consgider the following problem of
computational geometry which has direct application to VLSI layout
design : given a set of arbitrarily oriented nqnwintersecting line
segments In a rectangular floor, identify an isothetic empty
rectangle of maximum area. An algorithm has been proposed for this
problem which uses a novel data structure called lilne-search-tree.
The time complexity of our algorithm 1is 0(n21ﬂ23n) and uses

O(nlogn) space.

Keywords

Computational geometry, VLSI layout, maximum empty rectangle,

line aweep paradigm, computational complexity.

1. INTRODUCTION

Computational geometry involving isothetic rectangles plays an
important role in computer-aided design, for example, VLSI layout
design, operations research, computer graphics to name a few. An
isothetic rectangle is one whose sides arse parallel to the co-
ordinate axes. Many algorithms now exist which recognize the
largest empty rectangle in a floor with some randomly distributed
point defecta. The problem was first introduced by Naamad et.al.
{l] and an algorithm was suggested with time complexity O(min (nz,
Rlogn)), where n is the number of points and R is the number of
isothetic maximal-empty rectangles(MER) present on the floorplan.
This complexity was later improved to (R + nlogzn) [2] and then to
(R + nlogn) [3). The algorithms given in (4] and [5] locate the
maximum area empty rectangle without enumerating ali MER's with
time complexity O(nlogsn) and O(nloazn) respectively. The problem
of finding all maximal empty rec¢tangles in an ensemblement of non-
overlapping isothetic polygonal obstacles was sgstudied in [6] a&and
an algorithm was proposed with time complexity C{(R + nlogn). In
this dissertation, we have relaxed the constraint of having
isothetic obstacles. Here we propose an algorithm for finding an
empty isothetic rectangle of maximum area in an agsgemblage of
arbitrarily-oriented non-intersecting straight line segments as
obatacles. The time and space complexities of the algorithm are

O(nzlngsn) and O(nlogn) respectively.

2. MAXIMUM EMPTY RECTANGLES: OBSERVATION AND CONCEPTS

Let us assume that a set of arbitrarily oriented straight line
segments called "gticks” be distributed in a two-dimensional,
igothetic rectangular floor. The four boundary 1linea of the
floorplan are also considered as sticks. Without any 1loss of
generality, the bottom left corner of the floorplan is considered
to be the origin of the co-ordinate system. Unlike the scenario
tor points and isothetic polygons as obstacles, in this case, the
zoncept of the maximal empty rectangle, as we shall show shortly,.
ls not the same. Here, we define a sort of "pseudo~ maximal empty

rectangles” to facilitate our search strategy.

-onvention: Henceforth an MER will be denoted as Ri{(a,b)(c,d)]
vhere (a,b) is the top-left corner and (c,d) is the bottom-right

-orner.

Jefinition: A stick is a straight line segment Ll[(al,bl)(cl,dl)]
with 31 >= dy. Throughout our discussion we shall assume the
aquation of the stick Li[(ai,bi)(ci,di)] la y = m;.x + K;, where
m; i8 the slope of the stick and K; 18 its intercept on the y-

AXis.

Jefinition: A stick is said to be a support of a rectangle if it
:ouches the rectangle at its boundary.A support may be of two
¥Ypes:

1. touching a corner of an rectangle, called a flexible

support. It is 80 called becauge the corner of the rectangle can
lie anywhere on the stick.

2. touching a side of an rectangle called a fixed support. It
is 80 <called becauge the position of +the s8ide touching this

support becomes fixed.

Fig. 1 shows the two Kindg of supports.

o _ | L .
fixed suFPort Fle.x':b|e SU\DPOVt’

Fig. 1

Definition: A rectangle supported by a given set of sticks is said
to be paseudo—-maximal and empty if no smpty rectangle of larger
8ize 1s posgsible with the same set of supporting gticks.
Henceforth we ghall refer to a pseudo-maximal 1i1sothetic empty

rectangle by the term maximal ewmpty rectangle (MER).

Ue first investigate the nature of rectangles supported only by

two flexible supports 1.e. by sticks Ly, and L, at two opposite

corners(Fig. 2).

s 4’ Rz
A k

4, | |

|

|

Ax Axrr
t,

— 1T Y=

. R L
2,My

Fig. 2
The absolute values of the gradient of the lines Ly and L; are my

and my respectively. Let x arm (y_arm) denote the horizontal
(vertical) side of an arbitrary rectangle touching Ly and L,.
Congider now three rectangles labelled Ry, R;, Ry a8 Iin Fig. 2 .
Their areas can be evaluated as follows:

Area of the rectangle Ry

Let the length of the X _arm be x and the length of the y_arm of
this rectangle be y.

Then, A(Rq) = x.¥y.

Area of the rectangle R,

Let the y arm be displaced by a distance Ax in the x_direction,x

remaining constant.

il

Then, ty/Ax = my or ty mq.AX%

and t,/Ax m, oOr to, = my.0x.

Then, A(Ry) = x.(y + my.Ax - m,.0x)

Area of the rectangle Ry

Again keeping the length of the x_arm equal to x,the y_arm 1is
.Elhiftad by a distance of Ax.

Then, A(R3) = x.(y + 2.mq.Ax - Z.mz.&x)

Hﬂnce, A(Rl) - A(Rz) = x.(ml - mz).bx.

H

Again, A(R3) - A(R3) x.(mqg - mp) . Ax.
Therefore,if A(Ry) 18 2 (=,<) A(R,), then accordingly A(R,) »
(=l<) A(R3)-

This leads to the following 1lemma:

Lemma 1: If my » mp > 0 ,then area of the rectangles of sgame
vwidth increases asg the top-left corner slides upward along L. [t
ma > my > 0 then the area of the rectangles of same width
increases as the top-left corner slides downward along Li(see (fig
3). Hence,

Observation 1: The area of the rectangles 18 monotonically
increasing in one of the directions for the given pair of
sticks,depending on their slopes and relative positions.

Now, the maximum of these monotonically increasing rectangles

touches the endpoints of one of the sticks,depending on their

lengths,slopesa and relative positions.

Obitrvatian 2: The rectangle touching an extreme point of one of
the s8ticks can be further extended in one o0f the dotted

directions(Follows from Obs. 1. See Fig. 3).

Filg. 2
Obviously, no MER can be defined by one support.
The other possible cagses where an MER c¢an have only two supports,
shown in Fig. 4, along with Observation 2 lead to the following
conclusion:

Lemma 2: No MER can be supported only by two or fewer sticks.

S S } .
y S
- - < .l_ : é E J

Fig. 4
Observation 4: The MER’s with two flexible supports have at leas!
another support,either fixed or flexible.
Fig 5a and 5b show the gituations where
1: one more fixed support suffices.

2: one more flexible support guffices.

Fig. b5a Fig. 5b
Definition: The minimum wet of supporting sticks for an TIIER 1s

one such that if one member of the set 18 removad, the rematinling

sticks cannot define the same MEK.

Definition: An allowable combination of supporting sticks 1s one

which is8 & superset of the the minimum get.

If an MER is defined by four fixed supports on four gides, the
MER ig unique and determining it is trivial. For determination ot
MER's with at least one flexible support, methods similar to thoge
described below in Results 1 to 5 will be uged.

Note that the number of rectangles having at least one flexible
fiupport is infinite. Thig is the rationale behind defining
"pseudo-maximal empty rectangles”.

In each of Results 1 to 5, the following method 1s used:

A variable point (x,y) is chosen on any one flexible support and
an arbitrary rectangle is drawn with a corner on (x,y) which
gﬁnuches the minimum set of supporting set of supporting sticks for

%%hi MER. An expression for this area of this rectangle 18 found.

This expression is a quadratic in x and hag one maximum value. The
position of the maximum area rectangle 18 found by differentiation
of the expresgsion.

Over and above the minimum set of gupporting sticks, position of

other saticks could impose additional constraints on the MER and

they are also considered.

Resultl: Consider the set of rectangles with one flexible support

e

Ll[(al,bl)(cl,dl)] at the top left corner and two fixed supports
at points (pP1,d41) &and (pp,4972) on the sides adjacent to the
opposite corner(Fig 6a). Let (x,y) on Ly be the top left corner of
an arbitrary rectangle. The bottom right corner is (py,4p).The

area of this rectangle 1is

A{x) = (pq - xX){y - 4az)

|l

(pq x)(my.X+Kq~ Qq2) (1)

The conditions c1 <= x <£=pyr , qqy <=y <= by are to be
satigsfied, to ensure that the MER ig supported by Ll and two fixed
gupports. lf the value 0f xX corresgponding to the maximum area does

not satisfy the canditiunifjnu MER is reported.
|

L'//(ﬂlj "

(ci,d)

Fig. 6a

Let L3((a3,b3)(c3,d3)] be a stick which could be a fixed support

at the top or at the left side of the rectangles as shown in Fig

6b andL/fi/C. /L5 L/
/
/
.‘E“F;T}q‘) LV CF'i ,;‘:‘l-z.)
{ J i
7077.‘,‘:[2) /CF’:.J, A2)
Fig. éb Fig. 6c¢

if (xa,yo) on Ly is such that A(xgy) is maximum and ygq ? d - (for
Fig 6éb), then an HER[(ml.d3 +k1,d3}(p1,q2)] ig reported. The MR
for Fig 6b can be similarly determined if the c¢congtraint 13
violated.
Result 2: Consider the set of rectangles with two flexible
supporta,Ll[(al,bl)(cl,dl)] and Lz[(az,bz)(cz,dz)] lying at twoO
ad jacent corners and cne fixed support at the point (pz,qzj on
the oppogsite edge (Fig.7a). Let the point {xl.yij on Ly b b h e

top-left corner of an arbitrary recltangle.

Miﬂ(b‘)b‘z‘) th_,:lbi) CGZ_:b?:)
Max(@,,d — L2
I o bt a (Cz;dl)

thﬁ)

- ““K LR ’
/(Pz,w)l ((A=kal/m2, Q)

10

Then the top-right corner i1g point ((ylukg)/mz,ylj on L, and the
bottom-right corner 18 ((yy-ki)/my,qy). Hence, the area of the

rectangle 18

H

A{x) ((yq1-kgp)/my -x4)(¥1 - qp)

li

(((my.xq9+kKy;-ko)/mp)-x4)(my.xy+k1~-qp) (2).

The conditions Xq {= P and max[dqy,d,] <= yq <= min[by,b,] being
satisfied.

Constraints may be imposed by gsticks as shown in Fig 7b, 7<¢ and
7d. Here too, as in Result 1, a suitable MER touching the sticks

is reported.

Fig. 7b Fig. 7c Fig. 7d

Regult 3: Consider the et of rectangleg with Ll[(al,bl)(cl,dl)]

- and Lz[(az,bz)(cz,dz)] as the flexible supports at the top-left

and the bottom-right corners(Fig 8a).

Let m4 D> ms. Thus by Lemma 1,the area of any rectangle bounded bt
these supports increases as the top-left corner slides upwards
along Lj. As a result, if there is a fixed support on the top at
point(p,q) then the point ((qhkljfml,qJ on Ll 18 the top left

corner o¢of all rectangles possible. Let (x,y) on L, be the bottom

11

right corner of an arbitrary rectangle. The area of this rectangle

18
A(x) = (x - (a-kq)/m{)(g-Yy)
= (x—(Q“kl)/ml)(Q“mz-X“ng 3.
:ﬂ"ka/mu q’) @by CQ.JE31>
) L L
(Pa)
Gy A

d '

Gt é.@)

Jb > =2, 2
/éfziv; - /‘{ e

Cf_',z_)d2> Ccljd2>

Fig 8a Fiaw 8b
The condition (q - ky)/my, <= x <= aj being gsatisfied, failing
which no MER is reported.
The case where a fixed support is praesent on the right side 1s
handled similarly(Fig 8b).
In this case too, sticks shown in Fig 8c and 8d may 1impose

constraints on the MER.A sulitable MER is reported 1n each casge.

— ot

Fig. 8¢ Fig. 8d

12

Result 4: Consider the set of rectangles with Li{(ay,by)(cqy,dq)],

Lz[(az.sz(cz.dz)], L3[(a3.b3)(c3.d3)] as the top-left, top-right
and bottom-right flexible supports.(Fig 9%a)
If mqy 2> m3 then, by Lemma 1,the area of an arbitrary rectangle

increases as its top-left corner slides upwards along Ly.

L, L,
C"l;m/ \{\C“ 2,72)

/{;/Cxafyzb

Choose a point (xl,yl) on Ly as the top-left corner of an

Fig. 9%a

arbitrary rectangle. Then the top-right corner i (xz.yzj OI; L 5
will be given by x2=(y—k2)!m2 and y, = y¥y4. The bottom-right corner
is (x3.y3) on L3 where X3 * Xo and yj5 = m.xq +ky. Hence, the area

A(x) = (x5 - x13(yq3 - ¥3)

il

(((m1-31+k1“k2)/m2‘x1).((ml.x1+k1)ﬁ(m1_xl+k1~
Ko).{mg/my)-kq)

the conditions max[dy,d,] <= y, <= min{by,bs] and d4 < = Y3 <= by
i1s to be satigfied.

The sticks imposing constraints may be positioned as shown in Fig

9b 9¢ 9d and %9e.An MER is reported in each case.

13

Fig. 9%9b * Fig. 9c Fig. 9d Fig. 9Ye

Reeult 5: Consider the set of rectangles formed by four flexible

supports Li[(ai'bi)(ci'di)]- i=1..4 at four vornersg (Fig 10 a).

(Yo — \qf_"u) 1}'/ \%\Lz

| L
L(_, = 7@‘;’)’) 4\ J/L 3

(%3, 95

Fig. 10a Fig. 10D
Let my > mq (the other case being similar). Let (x,y) on L3 be the
‘bottom right corner of an arbitrary ractangle.The top right corner
is (xl.yl) on Lz where Xy, = X and the top left corner 1i8 (X2,¥7)
on L4 where y,; = yl.The bottom left corner 1is (x3,y3)mn Lg where
X3 = X3. To ensure that the rectangle so formed is empty, we need

to gsatisfy (to prevent erroneous reportings asg shown in Fig 10 b

14

the constraint yg3 < = ¥y
i.e,. (mqulj(mz.x+k2*k1)+k4 = mj3.XxX+kj
or, x 0= ((k3 ~ kqjml - (ko - kljmqj/(ml.m3 - mz.md)
The area of the rectangle is
(x - x,)(yy - ¥)
= (x - (mz.x + kz - kl)/ml)(mz,x t+ ks - y) (5)
The conditions are similar those in result 4.
There could be sticks imposing constraints on the four gides, the

MER’s are then suitably reported.

It can be shown that the area of all MER's with at least one
corner on a flexible support can be calculated by using a method

analogous to Result 1 through 5.

3. MER RECOGNITION

. ekl L ————

The basic idea is to consider all sets of sticks which could be

supports of an MER. To this end, certain concepts are introduced.

Visibility

Definition: A stick L is left-vigsible (right-vigsible) from a point
(p,.qa) if a horizontal ray drawn from (p,q) to the left (right)
first hits L.

Clearly, two sticks can be supports of the same MER if they are

visible from each other.

15

Observation b: If gradient of stick L is pogitive,then no MER is
possible with top right corner on L. Similarly, for a gtick with

negative gradient, no MER with top left corner on L is possible

(Fig 11).

SR T T S Sl alee s e i el eI W BN ey O ey

b . U S —

e——~———a

Fig. 11
To capture the visibility information, a vigibility 1list 1is

constructed.

Definition: A visibility list consists of the get of and points of
all sticks stored in decreasing order of their y-co-ordinates. The
following information is stored with each end-point:
Case 1: The point is the top end point of a stick
Case 1.1: m > 0: Store the end points of the right visible
stick.
Cagse 1.2: m < 0: Store the end points of the left visible stick.
Case 1.3: m = infinity: Store the end points of both left
vigible and right visible sticks.

This is a consequence of Obs. 5.

16

Cagse 2: The point is the bottom end point of a stick
Store the end points of both the right visibls and laft
vigible gsticks.

No gseparate action is to be taken for horizontal sticks.

Construction of the visibility list:

For each end point of a stick, the required left and/or right
vigibile stick can be found by considering each of the other
sticks, in O0(n) time. Thus the visibility list is constructed 1n

0(n2) time.

The algorithm wuses the line sweep technique [7]. The evenlt
points, i.e. the points at which the sweep line stops are the end

points of the sticks. At each event point, a w@search @gpace i8

generated.

- Search Space

A search space is a 2-d region where restricted search for a

gtick is carried out and ig denoted by a 6—-tuple
(¢,t, TR, TL,BL,BR].

TR may be a fixed point or a line segment (a agtick or part of
it) én which the top right corner of the MER in this 2-d regton
might lie. In the latter case, TR is called flexible and 14
guffixed by an asterisk(*). TL ig similarly defined for top left

corner. BL and BR are also similarly defined for the bottom left

17

and bottom right corners respectively, except that they can only
be flexible.

The symbol "8 denotes the span of search and is given by the
distance between two vertical straight lines pasgsing through the
bottom end points of TL and TR. The search for a gstick 1g confined
wvithin this span.

The symbeol "t” denotes the height below which the search 1s
to be carried out.

Uhen the search space is initiated, BL and BR contain null
values. As search progresses they may contain non-null values and
this will be discussed during a description of the algorithm.

There can be 16 types of search spaces, depending on whether one
or both of BL and BR are null or not and whether TL and TR are

fixed or flexible.

The 16 types of search spacses are shown below (Fig 12). Types 1
through 4 are the only search spaces possible when both BL and BR
are null: types 5 through 8 are the only types pogsible with BL
defined; types 9 through 12 are the only ones that arige when only
iBR ig defined and finally types 13 through 16 <c¢ome 1into the
picture when both of BL and BR are non-null. Note that BR and BL

cannot be fixed.

N / / .

Typel Tyf:e Z Ty pe 5 ’I}Peé

Fig. 12

18

e B

Type § Type 6 Type 7 Ty pe @
j / - :
Type 5 " Tk 1O Type I Type 12
Type 13 Type Ih Type 1S Type 16
Fig. 12

Determination of an MER from a search space

A gset of 8 parameters C1,C2,C3,C4,51,52,53.59 is obtained from
a search space as discussed in the algorithm. C;,C,,C3,Cyq are the
flexible supports at the top right, top left, bottom lgft and
bottom right ;ornars. 31,52.53,54 are fixed supports at top, left,
bottom and right sides of the MER. One or more of these 8
parameters may be undefined for certain search spaces. In. this

framework, the MER can be found using one of Results 1 through 5

as shown in the table below.

19

" A]
} of flexible Rasult to
sticks defined be uged

. - - _ = e riem - e g

1 1

2(adjacent) Va

2(opposite) 3

3 4

4 5 J
¥ i -

Now, we consider the feollowing Lemma:
Lemwma 3: The number of allowable combinations o©of supporting

stickg ig finite.

Proof: Fig. 13 shows the et of all poggible supports for an IIER.

%

b3

Ft'a_ I3
Since the number of all posgible combinations of the supporting
atickes 19 ZB. and the get of allowable combinaticneg of gticks is a

subset of the get of all possible combinations, the number of

allowable combination of sgsupporting sticks is finitse.

el

4.ALGORITHM DESCRIPTION

As mentioned earlier, the algorithm is based on the line sweep
technique. There are 4 passes, one pass each for a north-south
sweep, a south-north sweep, a west-east sweep and an east-west
sweep. The previous definitions and concepts have been developed
for the north-south sweep and we describe the same. The other

sweeps are similar.

The top and bottom end points of all sticks are processed 1in
decreasing order of their y-co-ordinates.
The algorithm consists of two processings for each stick:

i+ the -ons, initiated from the top of a stick 1is called top

processing and

2. the ‘other, initiated frem the bottom of a stick is called

bottom processing.

Initiation of search_space

Initiation of a search space for top processing of a stick Lj

vith slope greater than 0, is discussed here. An analogous

situation arises if the slope of the stick is less than 0. If the

8tick is vertical, two search spaces are initiated in succession,

one for the right visible stick and another for the left visible

stick.

The wvisibility list contains information pertaining to the

right visible stick L, for the top end point p of Ly. An x-axis

parallel straight 1line is drawn from p to the right which

21

intersects Lz at point gq. A search space 18 initiated with TL -

Ly, TR = the part of L, below point g, s = [cy,¢0), t = by, BL =

Of the parameters to be obtained from this search space,two are

assigned values at this astage, €y = Lo; €y = Ly.

For formation of a ssarch space for bottom processing of a
gtick L, the right and the left vigible sticks for the bottom end
“point p of L, say Ly and L,, are obtained from the visibility
list. Suppose the horizontal straight 1line drawn through p
intersects Ly and L, at points q and r respectively.For the search
space lnitiated in this case, TL = the part of Lq below the point
q; TR = the part of L, below the point r, s = [cy,cs], t = d, BL =

0, BR

0.

Also, at this stage, C; = L,p; Cp = Ly; 594 = L.
The point p is called the refarancalpoint of the search spaco
and is preserved. The significance of this point will be discussed

later

‘Finding the gsticks that intersect the search space
With the search space initiated by top or bottom processing,
an appropriate data structure, discussed later, 18 s8searched to

find a stick Ly that intersects the span s of the search space at

the maximum y-coordinate below the height t.

The position of L3 can lead to three situations as shown 1in

Fig 14.

22

I

| K'The MEK

: L an this

] : regfon s to _be'

| . reporled using

L - - ‘ ﬂ\\\ 4 Result 2.

Fig. 14a
/ 1 /
! : : An MER ; The search
j! l | iﬂ IU'II*SF { SPOG& (5
r | region s t uFdat&d-
3 | ref:arﬁd. ‘
-L-\“ — . :
\ —— e —— , __t
Fig. 14b Fig. l4c

In the situation shown in Figld(a), the parametaer 53 ig set to L3
-ind the MER is found using Result 2.

In the second situation (Fig 14b), TL is updated so that that the
X-coordinate of the bottom end point of TL and the x-coordinate of
the top end point of BL are the same. BL and Cy are both set equal
to L3. 8 is changed to the new gpan, t is set to the y-co-ordinate
of the top end point of BL. An MER is also found by Result 3.

In the third situation (Fig 14c), BL is set equal to the part of
Ly lying to the right of the vertical line drawn through the
bottom end point of L. C3 1is set to Ly. t is set to the y-co-

ordinate of the top end point of BL.

VAKX

The search space now is of the type shown in Fig 15.

-ry \I‘R*

NN

Fig. 15

In the new search space, the search is for a stick Lg- This

might lead to four cases as shown in Fig 16.

S VS

|
|
:
I ¥
K t .
i Smmh f MER. N ‘tr;is
below The : rr:?m:jmd
. o
dotled line, | P 4
|
- I
e]
Fig. 16b

MER in this Search below
ton 1S the dotted
_____\ ,] e or'tec:".' \—\ """"" 4 llhe .
Fig. 1é6d

24

In the first situation shown, as Lp lies to the left of BL,
another stick is searched in the same search space which might lie
to the right of BL. |
In the second gituation, as only Cqy, C, and Cy are defined, the
MER is found using Result 4.

In the third situation, Sy 18 set to Ly and the MER is found
uging Result 4.

In the fourth situation, BR will be defined as a segment of L g
and TR and BL may have to be updated such that the x-co-ordinate
of the bottom end point of TR and that of top end point of BR are
equal to the minimum of the two and the Y co-ordinates of the
bottom end points of BL and BR are equal to maximum of the two. t
is set to the y-co-ordinate of the top end point of BR. If TR is
updated, then 8 is changéd to the new span. The sgituation is

depicted in Fig 17.

e

Bl\.#\ Xa*

Fig. 17

The search for a stick Lg "with the new search gpace can lead

to one of the four situations as shown in Fig. 18.

25

ﬁujfﬂfk
| ' thﬁ?
]1%ﬁ0ﬂ45
~ raPoﬂkdn
/5
Fig. 18a
Search
below The
\ / dotﬁi‘d ana.
s
Fig. 18c
In the first two cases,

resulting MER can be found by Result 4.

L5 lies to the right of BR,

search

fourth case,

for

€1,C2.C3.Cy

An MER
l'ﬂ -t}'ll.% ‘
region 1$
mPortﬁd-

Seauch
below The

\ /dcr'flrid line,
1is

Fig. 18d

are defined and the

In the third case, since

with the same search space, continue

& s8tick which might lie to the left of BR. In the

a similar action ig taken.

There may be several MER's whose top is constrained by the same

fixed support(i.e.

whose other supports vary.

26

their top edges are at the same height) but

Fig 1% shows a set of such MER's.

ference point
e

, N

N

L

l

| f

1 f

Y Z
Fig. 19

Consider the situation depicted in Fig. 19. Draw a vertical

line Y passing through the top end point of Ly. Once MER Ry has
been generated, no other MER can be formed which has L as a fixed
support and part of which lies to the left of Y. The search space
ig thus split into two parts, the one to the left of Y 1is
rejected, the one to the right of Y touches the reference point
and should be further examined. A new search space i formed which
descends from the same height but which reflects this change. At
this point, the set of 8 parameters are accordingly adjusted e.g.
in this case C,; is set to null and C5 is set to L. For a similar

reason, once R, has been reported the search space ias split along

Z passing through the bottom end point of Ly and the paraméters
are suitably adjusted.

Such reduction of search space is called gplitting.

Search space initiation, splitting and MER generation will be

discussed in details in the appendix.

27

Suppose bottom processing of stick Ly is to be done. Draw a
vertical straight line X from the bottom end point of Ll to the
bottom boundary of the floor,

Observation 6: If a stick Ly intersects X and all search spaces
with Ly and touching the reference point have been generated, then
any #8tick not yet considered cannot form a search space with the

reference point.

Clear from Fig. ZU.I reference ‘:aint

L, cannot fotm
on MER 'tbut-h""’ﬁ
the reference point

-
1
i
i
I
I
I
(
}
I
I
I
|
Li\\
| %
X
Fig. 20
Now, we prove the following lemma.
Lemma 4: A search space can be gsplit at mosgt O(n) times.
Proof: To prove this lemma, the following facts are considered.

1. Any line which lieg outgide the span or above the height of the

search space presently considered, will never 1ntercept a search
gpace formed from the present one, in future, by splitting.

2. During the splitting process, a gplit may occur at the top end
point of a sgstick and another split may occur at the bottom end

point of the same stick, generating different search spaces.

Since there are n sticks, there can be atmost 2Zn splittings

and hence the number of times the a search space can be split 1is

O(n).

h:ft 3 K2 15 5L¢4moﬁt6dﬂpml

Fig. 21
Top processing finds out IMNER’'s whose top left and top right
corners lie on flexible supports. There may be a clags of MER’s
whose top left and top right corners lie on the same flexible
supports (see Fig 21). But of this class, all but one should have
at least one fixed support and these MER’'s can be detected during

bottom processing of this fixed support in one of the four sweeps.

Therefore,

Obgservation 7: Provided that splitting 1s dones during bottom

processing, it is not required during top procegsing.

Observation B8: MER’g which have more than one fixed support,
will be detected during bottom processing of all these fixed
supports 1in the corresgponding sweeps. Hence, an MER may be

reported more than once.

29

Now, we prove the following theorem:
Theorem: All MER's are reported by the MER recognition algorithm,
Proof: Suppose there exists an MER M which has not been reported.
[f one side of M touches an end point of some stick then M must
have been reported during bottom processing of that stick in one
of the passes.

If M has been defined with 3 or more «corners on flexible
gsupports, then it has been reported during top procegsging of one
of these supports. Otherwise, the implication is that there Is a

stick L, as shown in Fig. 22, in which case M is not an MER.

Hence, the theorem is proved by contradiction.

Y E——

/

Fig. 22

5. RECOGNITION OF THE TOPMOST STICK WITHIN THE SEARCH SPACE

The MER generation method is based on recognisgsing the gstick which

intersects the span of the search space at a maximum height. In
this section we introduce a data structure and an algorithm based
on this data structure which efficiently determines such a stick.
The complexity of this search with regpect to a given search space

i8 also mentioned.

30

Data structure :Line search tree

The 8et of X-coordinates of the end polints of the sticks 19
partitioned into two equal parts by a gulitable median finding
algorithm. Suppose the partitionirig 1s along a vertical line Y
whose equation is X = x.
The 1line Y divides the set of lines into three parts VI'VE and

V3.(See Fig 23).The sget Vl (resp. V3J containg the lines both of

whoge end pointsg lie to the left(resp. right) of Y.The sget V,

£
e

contains the remaining lines which have the left end point to the

left of Y and the right end point to the right of Y.

The root of the line gsearch tree may be empty(for an empty point
set) or may contain the following fields:

(i) discriminant value x
(11) L_TREE: a pointer to an associated structure for the left

= d

polints of sticks in Vz.

31

(iii) R TREE: a pointer to an associated structure for the right
end points of stickse in V,.
(iv) L PTR: a pointer to the root of the lines saarch tree for

the set Vl.

(v) R_PTR: a pointer to the root of the line search tree for

the set Va.

Observation 9: Since the number of end points 18 even,
|V1 | = |V3 I .
So the tree is weight balanced and the length of the path f(rom
the rcecot to a leaf can be 0O{(log n) in the worst case. The worsgst

case situation 1g attained if each partition line i1ntersects

atmost one gtick along the path,

Ageociated structure of a nods

As already discussed, each node of the line-gsearch tree
contains two asscciated EtructurasF L-TREE and R-TREE. We shall
diacgss the structure of R_TREEHGf a node. L-TREE can be similarly
congtructed,.

Construct a balanced search tree with the x-coordinates of

the right end points of all stickg in Vz. Each node (v) of this
tree contains the folleowing information,
(i) Discriminant : The x value which guides the search path:
(ii1i) STICK : The stick, the x-coordinate of whoge right end point
is xX;

(iii) L-LINK : Pointer to the root of the left subtree:

32

T ——re—

(iv) R-LINK : Pointer to the root of the right subtree:

(v) Y-TREE : A balanced binary tree on the y coordinates of the
right end points of the gsticks that are stored iIn
the tree rooted at node x,.

(vi) INT-TREE : Consider a vertical line L, at the point x. The
sticks 1in VZ whoge endpoints are in the right
subtree of node v cut L _. With the ordinates of
these points of intersection, this binary tree

18 congtructed.

The significance of Y-TREE and INT-TREE will be discussed when

we shall explain the search gtrategy.

Search strategy
Given &a s8earch apace with gpan 8 = [al,a2] and t = b, the
method of finding the stick which hits the search sgspace first is

described below.

Initially, associate two more boolean fields [1lb,rb] with the
s8earch apace. The field 1b (resp rb) = 1 indicates that the left
(reap right) bound of the span of the search space lies along a
partition line of the line-search tree. Otherwise it contains the

value O(see Fig. 24).

X
"
&

Kﬂa‘l Klal_ x-; QI)Q_-_x'x:ﬂxﬁ x=q2

R

>

-—'"_mﬂ_-_-'_

T e ey ey peme e il Pk Csbe—

F:j. 24, b= rbel bzl rbzO
33

Two global locations (1)Max 1 [(a,b)(c,d)] and (2) MAX are
maintained to retain information about the stick which has hit the
search space at the highest point till the present. Max 1 contains
the end points of such a stick and MAX the y-coordinate of highest
point on the stick which lies inside the span of the search space.

The s8earch is initiated with the horizontal span [al.az] at a

height b from the root of the line search tree.

Search in the main tree
At the time of processing a node v of the line search tree, the
tollowing situations may arise.
Case 1:The entire horizontal span 1lies to the right of the
digcriminant value x of v. In this case the right
associated structure and the right subtree of v are to be

processged. The need to process the right subtree is

obvious.The right associated structure ig processed due to
the fact that a stick in the get Vz corregponding to the

partition 1line of node v may hit the span of the sgearch

space first.(See Fig 25).
}

! L) | search SPaC3
—
This Sstick in :
Vo 15 Such that ! B
s right end Ft' | — o ﬂ;f:k:'ck 0 V|
hits the Sl::aﬂ :
first. o
Xzx
Fig. 25

34

Case 2:The entire horizontal span [al,azj lies to the left to x.In
this case the 1left subtree and the left agsociated
structure of node v are to be considered for the search.

Case 3:The discriminant x gplits the span 1nto two parts. Herae,

two situations may arise.

Case 3.1: Both 1b and rb aggociated with the sgpan cuntain 1
which implies that the apan isg boundad to the left
and right. In this case, all the 8ticks stored iIn
the 1line-search tree rooted at thisg node and lying
entirely below the height of the search space (b)
are to be considered. Of these, the one whogs top
end point is at a maximum height will hit the span
firast and can be found from the Y-TREE correaponding
to the root node of both the agssociated structﬁrea
of the node v. Let Max-y be the y-coordinate of the
top ond point of the stick which hits the span
first. Then Max-y 18 compared with the global
location MAX and if it is found to be greater,it
replaces the o0ld value in MAX. Algo,the stick
asgocilated with it is stored in the location Ha#hL.

Case 3.2: The horizontal span is unbounded to the left or to

the right or both. In thig situation, sgplit the span

into two partg.

35

(a) [al,x].tha 1b value of this span is the same ag
that of [al.az] and the rb value 1g 1.
{b) [x.aZ]. thé ro value of this gspan is the same as
that of {al.az] and the 1b value ig 1.
Search the 1left associated structure and the left
subtree of node v with the gpan [al.x]. Search the right
associated structure and the right subtree of node v

with the span [x.az].

Search in the associated structure of a node
Lot [al,az] be the horizontal gpan initiated at height b

which falls to the right of the discriminant value x corresponding
to node v of the line-search tree. It is observed from Fig 25 that
the sticks corresponding to the points in ths right asscociated
gtructure may hit the window first.

Consider the right associated structure of node v. Trace down
the search tree to find a node whose discriminant lies in the span
[a4,37].

Case 1: There is no guch node (i.e. all the sticks whose right end
points are in the tree have right end points to the left

of al), then ignore node v and proceed gsearching 1in the

line search tree.

Case 2: Let u be the node found.Then, all nodes which lie on the
path from the root of the associated structure to node u
are to be considered. Let w be such a node. If the search

path goes to the right from node w, then 1gnore the Left

36

subtree of node w. If the search path geoes to the leftl
from node w, than“;he gticks which crossa the vertical
line X = x, where x is the discriminant of node w,
and intersect the span [al.azj below height b are to be
congidered. Of these, the one that intersects the span at
a maximum height is to found. This is done by searching
the INT-TREE corresponding to node w. The highest point
of intersectiun of the span with the s8tick found, 1Is
compared with the global location MAX to decide whether
the s8tick is to be retained or not. The point of
intersection of the gtick (STICK) corresponding to the
node u with the sapan [ai.azl ig also computed to <check
whether this stick hite the span at a maximum height.
From node u, two search paths, L-path and R-path to the
left oend point of the span (a4) and right end point of the

*
gpan (az) are considered. Congider a node v 1lying on L-

path. [If the search path from v moves te the

right,ignore the left subtree rocted at v*.If the search
path moveg to the left then consider the right end point
of STICK corresponding to v* and check whether it hits the

span first. Also, all the sticks whose top end polnt 1is

below b and whose right end point is stored in the right

subtree of v*, are considered and the cne whose right end

point has the maximum Yy-coordinate is sgelected by

searching Y-TREE of the root of the right subtree. The y-

37

coordinate of the right end point of the selected stick 1is
compared with the location MAX, and the stick is retained,

if necegsary.

For vt lying on the R-path, recall that searching

the right associated structure is being described. If the

o

gsearch path goes to the right, the STICK of node v and

x

Y TREE of the root of the left subtree of v is to Dbe

searched. 1f the search path goes to the left, then the

X

STICK and the INT _TREE associated with node v are to be

considered,

6. ALGORITH ER

ey e o e L L

Input: A set of arbitrarily orisnted, non-interascting 1ins
segments 1n & rectangular floor.
Output: The maximum empty isothetic rectangular area in this

floor.

Algorithm: The algorithm consists of four identical aweeps --
a north-south sweep, one from east to wegt, another
from west to east and finally a south to north

gweep. For each sgweep the following two data

structures are constructed:
(i) The visibility list.

{(i1) The line search tree.

38

1. North-South sweep

For each point in the vigibility list do

(i) Determine the visible sticks from this
point from the visibility list.

(ii) Initiate a search space with the sticks so
found.

(iii) Search the line search tree for a s8tick
that intercepts the search apace at a
maximum height. If BL & BR is null, go to
step (iv).When BL and/or BR is non-
null, it might so happen that the highest
point of a satick within the apan does not
intercept the interval, then go to step
{iv). Elge go to (111).

(iv) Raeport the MER using one ¢f Results 1
through bH.

(v) If the end point is a bottom end point
and a new search space can be formed by
splitting from the current one which
touches the reference point then form

thhe new search space and go to {(111)
endfor. |

2. FEagst-Weat Sweep.

3. West-East Sweep.
4, South-North Sweep.

5., Df the MER’s 8o repeorted, find out the maximum.

39

7. COMPLEXITY ANALYSIS

Time Complexity

Consider &a atick L. qu the top end point of L, one S8earch
space is generated and 1is not split. At the time of
procegsging its bottom end point, a search space 18 generated and
it ig split by the gticks that hit it. Thus, by lemma 4, the total
number of search sgpaces generated from the end point of L. can be
atmogt O(n). This implies that the total number of search spaces
that are to be proceased for a stick is 0(n) in worst case. The
satick that intersects the span of a search space at a maximum
height is obtailned from the line-search tree. Thus the complexity

of the algorithm depends on the search time of the line-search

tree for each search space.

Our algorithm suggests that for each search space at moast 0O(logn)
nodes of the line-serach tree are to be checked. For each node (v)
in the path of traversal, the asgociated gstructure(s) igs(are) to
ba visited. An associated structure 18 alsoc a balanced search tree
and its height is O(logk,) in égfst cage where k, is the number of
sticks in the set V, corresponding to the partition line of node v
of the line-gsearch tree. Thus the number of nodes visited in thig
asgociated structure is O(logk,). In each node of the assaciated

structure, the s8tick which hits the search space a4t a maximuiy

height can be obtained from either INT-TREE or Y-TREE by O(logk,)

40

»

comparisons. Thus the worst case total time complexity of
procegsing & single search space 18 U(IOEBH) [since k, < n]. As we
have mentioned earlier, the total number of search spacea to be
procesgssed can be O(nz) in worst case. So, the total time complexity of

the algorithm is D(nz 10g3n).

Space Complexity

Regarding space complexity, first of all, it is to be noted that a

gtick is present in exactly one node of the line-gearch tree.

Suppose the node v of the line search tree is associated with Kky
sticks. Thus each of the two aggociated gtructures, one to the
left and one to the right, will have k, nodes. Again each of the
k, sticks is present in O(logk,,) nodes of the asgociated

structure. Thisg indicates that the total size 0of +the associated

structures corresponding to node v is 0O(k, logkv). Thusg the total
P
space required for this data structure 1is ZE(kv logkv). where p 18

V|
the total number of nodes in the line-search tree. It 18 easy to
see that this space complexity is much less than O(nlogn). Thus

the worst case space complexity of our algorithm ig O(nlognj).

41

8. CONCLUSION

The problem of this digssertation was to find a largest empty
isothetic rectangular region within a set of randomly distributed
line segment obstacles of arbitrary orientation. Introducing the
concept of pseudo-maximal rectangles, we regtrict our seatrch to
these rectangles.lWe have not been able to give an upper bound for
the number of such rectangles.The time complexity of the algorithm
developed is O(nzlog3nj and the space complexity is Q(nlogn }.The
problem has several applications in VLSI layout design and

operations reearch.

42

APPENDIX

Heré. we will consider three representative cases and show MER

generation and aearch space formatlon by eplitting in each case.

Let us agssume that the reference point is given by (c,d).

Also that the perpendicular line from (c,d) to the bottom boundary
is denoted by X.

A 9plit search space ias generated only during bottom processing.

The initial MER generation being same for both top and bottom

processing, we will assume that bottom processing ig being done
and show the formation of newer gearch spaces, always working

under the assumption that the last encountered stick doeg not

intersect X.

1: Processing search spaces of types 1 through 4

Only the processing of type 4 search space will be

described. Processing of the other types are similar.

Processing a type 4 search space

Suppose the type 4 search space is given by [8=[cl,c2],t=b,TR*=

4

bZ2.Cl = .2

[(aZ,bZ)(cZ,dZ)],TL*=[(al,bi)(cl,dl)],ﬂ,ﬂ] where bl

C2

L1. 51 may or may not be defined, depending on whether the

s8earch s8pace ig initiated during bottom processing or top

processing.

lLet L3[(a3,b3)(c3,d3))] be the new stick intercepted within thais

span (Fig 1.1).

|
S+ \”
L2
)
(Chdl) l (Cg', dl)
: (A ,bs)
| /—3
|
Fig 1.1

Cage 1:L3 lieg to the right of X.
Caae 1.1:m3 > 0.

Case 1.1.1:a3 <= a2 (Fig 1.2)}.

63 = L3. As C1 and C2 are the only flexible stickg deflned, arl

MER is obtained using Result 2.
Generate the type 11 search space

[a=(c1,a3].t=b3,TR=(a3,b1),TL*,D,BR*:[(a3,b3](03,d3)]].
!

. L

i
[
|

H

l

L]

e e e e e

e Sple ting occuls

|
1
t
X

Fig 1.2

.

Case 1.1.2:a2 < a3 <= ¢2 (Fig 1.33.

Set 53 L3 and generate an MER by Result 2.

Generate the type 12 search space
[g=(cl,a3),t=b3,TR*=[(a2,bl)(a3d3,a3.m3+k3)],TL*,0,

BR*=[(a3,b3)(c3,d3)].

I

; e Spliting occurs
X ' along This lne
1

Case 1.1.3:a3 > c2.(Fig 1.4)

Generate the type 12 search space [s,t,TR*,TL*,0,
BR*=[(c2,c2.m3+k3)(c3,d3)].

In this case, no MER is reported.

e ey mey e, Sgl AR A - N

(c2, G- mb*k-'u")

Cage 1.2: m3 < 0.
Case 1.2.1: a3 <= a2 (Fig 1.5)
53 = L3. Determine MER using Result 2.

Generate the type 3 search space

[s=(cl,a3),t, TR=(a3,b),TL*,0,01].

Case 1.2.2:

r—l-'--'—'—'———-—"'——--

a3 > a2(fig 1.6).

53 = L3.

< The MEK
[i i S |
reqion 15
. €5
| re.Fort?.d.
S |
Splitl;rlnﬂ occurs

m!onﬁ Hs line.

Determine MER using Resgsult 2.

Generate the type 4 search space [s=(cl,al),t,

TR*= [(al.b)(a3.a3.m2+k2)].TL*.U,U].
I
i ‘\<(O5 iy m2+k'2>
Y
b
|
l |
! | region 1S repor |
' ~ — |
{
I
| ;éﬂéﬁﬂrdLn CKKlLN§4QIOOﬂ
Fig >1(,_6 tus line .
L3 lieg to the left of X.

Case 2:

Exactly similar to Case 1.

2: Procegsing search spaces of typeg 5 through 12

For types 5 through 12, only precessing type 8 search gpace will

be described. Processing the rest are similar.

Processing type 8 search space
A type 8 search sgpace 18 gliven by [s=(cl,c2),t=b3,TR*-

[(a2,b2)(c2,d2)],TL*=[(al,bl)}(cl,dl)],BL*=[{(a3,b3)(c3,d3)}] where
bl = b2 and cl = a3.

Let LA((a4,b4)(cd,d4)] be the new stick intercepted (Fig. Z.1).

L2, C4 ;)Ll. C3 = LJ.
(ﬂu i I cc;'z’bl)

(a,dz)

Here, Cl

(& dy

(ﬂ 'b*rb'5

] SR ¢- THY -
the x-co-ordinalR CCy, d) L."\CQ, Ay}
OF thes Pﬁiﬁt 'S

(by-K3)/ma

Casg 1: b4 > d3 and (b4-ki3)/mld <= ad <= ci.
Case 1.1: L4 lies to the right of X.

Case 1,1.1: ad <= a2, md » O(Fig 2.2)}.

i

I

' %’ﬁwzthR w1ﬂu5
: l r{gﬂh?lS H#mW
i

|

¥

i

L__Sphﬁw§L¢¢¢urs

<5 [ine

afﬂﬂa

b]

‘—— -----

X.ml.’
3
I
l
!
|
I'--.

S3 L4. Report an MER using Result 4 as only 2

flexible supports are obtained.
Generate a type 15 search space [8 = ([c¢l1,ad4],t,TR =
(ad,bl), TL* = [(al,bl){((b4-k3)/m3,(bd-k3)(ml/m3)+ki)],

BL* [(b4-k3)/m3,b4)(c3,d3)], BR*= [(ad,bd)(cdd,dqd)]]

if (b4d-k3)/m3 <= a3, otherwise generate a type 13
gearch space with the same set of tuple as above
replacing only TL by ((bd4-k3)/m3, b1l).

Case 1.1.2: a§4 <= a2, md < 0 (fig. 2.3).

region i$ repor

ted

—#-H.ﬁ$-ﬂ-‘

'-'--—--

The MER is reported as in previous cage.

If (b3-k3)/m3 <= a3 then generate a type 7 search space
[s={cl,a4]),t,TR =(a4,b1),TL* =((al.bl)((b4~k3)/m3, (b4-
k3)i3(ml/m3)+k1)],BL*=[{(b4-KkK3)/wm3,b4)(c3,d3)},0] otherwige
generate a type b search space with all parametars
remaining s8same excepting TL which is equal to ((b4-

k3)/m3,bl).

Came 1.1.3: ad > a2z, md4d < 0 (fig 2.4).
| |

- o4
: CIC OIS
! '
] I \
1 | , . : .
‘ : w— The MER 10 this regien 1s
{ ' ﬂﬁhmﬂhd
! P
i |
! !
' Lo 4y alona
: K_ﬁ—-s?hﬂutjcpc¢UJ$
R b1 this line
i — —
J
X L,
Fig 2.4

L o

The MER is reported as above.

If (b4-k3)/m3 <= 33 then generate a type 8 search space
(s={cl,ad],t,TR* ={(a2,b2)(ad,ad4 . m2+k2)],TL* =((al,bl)
((b4-k3)/m3,(bd-k3))(ml/m3)+k1)],BL*={(b4-k3)/m3,bd)
generated

(¢3,d3)],0) otherwisgse type 6 search space is

which has the same set of tuples except that TL |is

given by ((b4-k3)/m3,bd).

Case 1.1.4: a4 > a2, md > O(Fig. 2.5).
i

Let z = max(d3,d4).

The HER is reported as above.

Generate a type 16 search space given by [s = (cl,ad),t,TR* =
[(a2,b2)(ad.m2+k2)], TL*, BL* = [(a3,b3)((z-k3)/m3,z)],BR* -
[(ad,b4)((z-kq)/md,z)].

Case 1.1.5: ad > c2, m4 > O(Fig 2.6).

No MER s senemfﬂd
because thé&re may be
I a stick tn This region.
'

i
'
|
!
i
! ’
' |
| 1
. |
: ?
1 i
. |
|
|

“Se————l L"l
Fig 2.% '

No MER la reported this cage.

]|

Generate a type 16 gearch sapace given by [, ¢ b4, TR*,

TL*, BL*= [(a3,b3)((2-k3)/m3,z)],

BR* = [(c2,c2.md+k4)((d3-kd4)/m4,d3)]].
For the following 6 cases assume *hat a3 < al.
Case 1.2: L4 lies to the left of X.

Case 1.2.1: a4 < al, m4 > O(Fig. 2.7).

|
« MER ' this @aion is reported.

gpl;th;‘iﬁ occurs
along This line

The MER is reported as above.
Generate a type 4 search gpacwe given by [s = [ad,cl],t, TR?*,
TL* = [(al,bl)(ad,ad.m2+k2)],0,0].

Cage 1.2.2: ad < al,md < D(Fig. Z2.8).

-

“-MER in this reg;cm

ek ey mmm e fen gy s Ay et ATE e el

gp“ { 'S rgFortcd
QCCUrs s :
ﬁﬂﬂﬁ9 S |
this Ivne \ YT y
‘
X
Fig 2.8

The MER is reported as above.
Generate a tvpe 8 search space given by {8 = [ad,cd],t,

TR* TL*¥ = [(al,bl)(ad,ad.ml+kl)],BL*= [(ad,bd)(cd,dd)].

Case 1.2.3: a4 > al, m4 > O(Fig. 2.%9).
' |

{ f ﬂ\\\&
: ?

! | !

: : !

I i !

l t 1

! : |

! t !
! |

I ' 1

t ' '

—.--_-';"""":"-— ______ _:
X
Fig 2.9

The MER ig reported as above.

Generate a type 2 search space given by [8=[ad,cl]},L,TR?*,

TL = (ad4,b2),0,01.

Caas 1.2.4: &4 »= al, md « 0O0(Fig 2.107).

The MER is reported asg above.

GCenerate a type 6 search space given by [8 = [ad,c2],
t, TR*, TL = (ad4,b2),BR* = {ad,bd)(cd,dd)},0].

Case 1.2.5: a4 < al, a4 < a3, md4 > 0O (Fig. 2.11).

N\

'
!
f
I
i
|
'
[
J

- el e gy el R e S G i)

ﬂ—r_____

Generate an MER by Rsult 4.
Form a&a type 8 search space [8 = (ad,c2),t, TR* TL* =

[(al,bl)(ad.m2+k2)],BL*=[(ad,ad.m3+k3)(c3,d3),0].

10

Cage 1.2.6: ad < al, a4 < a3, m§d < 0 (Fig 2.12).

“—_—_-——F-—-—-"

Fig 2.12
Generate MER as above.
Form a type 8 search space [8 = [ad,c2],t,TR?*, TL* =
f(al,bl){(ad,ad.m2+k2)], BL* = [(ad,bd)(cd,d4)],0].
For the following two cases assume that al}l < a3.

Case 1.2.7: al < ad < a3, md > 0 (Fig 2.13).

l

l
!
]
!
l
i
|
]

4 T e ey e m—— mma by ey

X o e e e

Fig 2.13
Use Result 4 for reporting MER.

Generate a type 6 search space [s = [ad,c2],t, TR*,TL

(ad,b2), BL* = [(ad,ad.m3+k3)(c3,d3},0].

11

Case 1.2.8: al < a4 < a3, m4 < O (fig. 2.14).

:
i
[
[
i
I
t
l
|
I
l
|
!
X

Fig 2.14
Use Result 4 for reporting MER.

Generate a type 5 search space (8 = [ad4,c2],t,TR*,

TL = (a4,b2), BL* [(ad,bd)(cd,d4)),0].

Case 2: a4 < d3 (Fig. 2.15).

;5 re. PGI’EA

R TR

this line

§ R

In this case Y denotes the iine along which splitting

occurs.
Case 3: L4 is sjtuated to the left of L3 (Fig 2.16).

Another stick 18 searched until the si1itualion 19 like

the one mentioned in Case 1 or Case 2.

12

Fig 2.16

3: Processing search spaces of types 13 through 16

For types 13 through 16, only processing type 16 gearch sgpace will

be described. Processing the rest are similar.

Procegasing the type 16 search space

—_—

The type 16 search space is given by [s=[cl,c2],t = bl, TR * =—

[(a2,b2)(c2,d2)], TL* = {(al,bl)(ecl,dl)], BL* = [(a3,b3)(c3,d3)],

1
I

{(ad,bd4)(cd,d4)] where bl = bZ2; d3 d4; ¢l a3l and <2 -

)

BR*
ad (Fig. 3.1)

Assume that a2 < ¢cd4 < c2 and cl < ¢3 < a2. Other situations may

arise when c2 < ¢4 < a2 or al < c¢c3 < cl.
(al, b1> a2, b2)

C‘:—I:do C‘:hdZ)

:
|
;
:
|
'
:
X

Case 1: L5 lies to the right of X.

Case 1.1: m5 > 0.
Case 1.1.1: ab > a2 and a3 < (bd - ka)/méy (Fig.3.2).

!
!
!
l
!
I
!
1
1
!
]
!

ey W= g sl ey ey S

il

¢t = L2, Cz = L1, C3~= L3, C4 = L4, 83 = L5.Report MER

using Result 5.

lLet z = max(d3,db)}.
((b5-k3)/m3,ad),t,

Generate the type 16 search space [s
TR*=[(a2,b2)(ab.m2+k2)], TL* = [(al,bl)((bB-k3)/m3F

((b5-k3)(ml/m3)+kl1}]},BL* = ({{bH-k3)/m3,b5)((z-k3)/m3,2)],
BR*= [{a5,b5)(c5, (z- k5)/mb,z)]].

Cagse 1.1.2: ab <= a2 (Fig. 3.3).

b I R e —

[

I
-1—--—--—-#.#—-1-'—-—-—11

I

i

Report MER using Result 5.
Generate the type 15 search space given by [s=(cl,ab),

(ab,bl), TL*, BLA={(a3,b3){((z-k3)/m3,z2)],

H

t, TR

ys

e
J
1

[(ab,bb)(z-kb5)/mb,2z)]].
Case 1.2: mbh < D.

Case 1.2.1: a2 < ab <= ¢2 (Fig. 3.4).

Fig 3.4
Report MER using Result 5.
Generate the type 8 search space given by [{s = (ci,ab),
t, TR* = [(a2,b2)(a5.m3+k3)]),TL* ,BL*,0].

Case 1.2.3:ab <= a2 (Fig. 3.

Report MER using Result 5.

15

Generate the type 15 search space given by [s=[(c¢cl,ab],t,

TR = (ab5,bl),TLA = [(al,bl)((b5-k3)/m3, (b5~

K3)(ml/m3)+kl1),BL* = [((b5-k3)/m3,b5)(c3,d3)],TR*
{ (ab,bb)(ch5,d5)].
Case 2: L5 lies to the left of X.
This is gsimilar to Case 1.
Cagse 3: ab < max(d3,d4)(Fig. 3.6)

In this caae,raplitting occurs along Y1 and Y2.

'
!
!
[
|
i
t

' i
Y, X\ Y
ls
Fig. 3.6

Case 4: L5 lies outside the search space (Fig 3.7).

Another stick is searched until the situation becomeg like

the one mentinnpd in one of the previous cases.

kil

Fig 3.7

16

9. REFERENCES:

el S ™ —

1. Naamad, A., Lee, D.T. and Hsu, .L., "0On the maximum empty
rectangle problem”, Diagcrete Applied Mathematics, Vol. 8, 19684,

pp. 267-277.

2. Atallah, M.J., and Frederickson, G.N., "A note on finding the
maximum empty rectangle”, Digcrete Applied Math., Vol. 13, pp 87-

91, 1%986.

3. Orlowski, M, ” A new algorithm for largest empty rectangle

problem”, Algorithmica, Vol. 5, pp. 65-73, 19%0.

4. Chazelle, B., Drysdale, R.L. and Lee, D.T., "Computing the
largest empty rectangle”, SIAM Journal of Computing, Vol. 15,

1986, pp. 300-315.

5. Aggarwal, A. and Suri, §., "Fast algorithm for computing the
largeat empty rectangle”, Proc. 3rd Annual ACH Symposium on

Computational Geometry”, 1987, pp. 278-2%90.

6. Nandy, S.C., Bhattacharya, B.B. and Ray, S., "Efficient

algorithms for identifying all maximal isothetic empty rectangles

in VLSI layout design”, Proc. FSTTCS - 10, 1990, pp. 255-269.

7.Preparata, F.P., and Shamos, M.L.,"”Computational Geometry: An

Introduction”,Springer Verlag,NY, 1984 ,pp 352-355.

