STUDIES ON ISOMORPHIC-REDUNDANCY AND TESTING OF
NON-SCAN SEQUENTIAL CIRCUITS

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE M. TECH(COMPUTER SCIENCE) DEOREE

OF

INDIAN STATISTICAL INSTITUTE

BY
JAYADEEP DAS
1992

ACKHOWLEDOEMENTS

1 am deeply indebted to my supervisor, Dr.Bhargab B.Bhattacharya
for his i1nvaluable guidance wilhoul which 1t would nolt have been
possible to complete Lhis dissertalion.

I thank my friends Rajan Gangadharan, M.Suresh, Ashulosh K.Jha

and Milind B.Kamble for 1Lheir consltanlt moral supporl and

encouragement. q

Javadeep Das.

CONTENTS

PART |

ABSTRACGCT

1 INTRODUCTION

2. PRELIMINARIES

3. THE BASIC APPRQACH

4. CONCLUSION

FART I

ABSTRACT

1. INTRODUCTION

2. PRELIMINARIES

COMBINATIONAL TEST GENERATION
FAULT—FREE STATE JUSTIFICATION

STATE DIFFERENTIATION

IMPLEMENTATION

N oo a o~ W

CONCLUSION

REFERENCES

5#-[\3"""

o B

22
27

30
33
35

36

PART |
STUDIES ON ISOMORPHIC—REDUNDANCY

 ABSTRACT.

Synthesizing a sequenltial circuit from Lthe description of

state transition graph (STG) involves tLhe steps of cstatle
minimizalion, stale assignmenl and logic opltimizatlion. One of tLhe
basic goals in synthesis of non-scan sequential circuit 1s to make
the circuil fully testable. Tesl sequences for all single stuck-—at
faults in the synthesized machine can be derived using test
generation alqgorithms on Lthe combinational logic blocks of the
machine. A circuil is said Lo be 100% testable if test vectors can
be generated for all the lines in the circuit wunder the single
stuck—at faull model. The presence of redundant faultls prevent the
circull from being fully 1Lestable. There are lwo classes of
redundant faults in a4 non—-scan sequential circuit, namely,

combinationally and sequentially redundant faulls.

This parl of Lhe dissertation deals with Lthe study of one
special class of sequential redundant faults (S5RFs}, called
isomorphic tfaults (Isomorph—-SRF)}. Such a faull causes the S7G of
the faultly machine to he 1isomorphic to that of the fault—-free

machine. No 1npul—-oculpul experiment can thus detect an isomorphic

fault. An open question in this context is whether there exists a
real sequential circuilt that 1is reduced and combinationally

irredundant, in which a single—stuck at faull creates an isomorphic

faully machine. This dissertalion settles this open questiaon which

shows tLhat such a machine indeed existis.

1
INTRODUCTION.

Combinationally redundani +aulls (CRFs) are due Lo ithe
presence of lines 1n Llhe logic circuil Thal do not conilribute Lo
the primary ouipul or Lhe next state funclions. Replacemenl oi
these lines by consltanis do not change Lhe funclional behaviour of
Lhe cambinalional lagic partl of the seqgquential circuitl.
Sequenlially redundant faults (SRF's), on the other hand, are
related to the temporal characteristics of the sequential circuit.
The faully behaviour of tLhe circuit in Lhe case of a 5RF,

propagales to Lhe nexl state 1lines, keeping the primary outlput

unchanged. Hence, a SRF is a faull Lhat cannol be detected by any
inpul sequence and is nol combhinationally redundant.

An 1somorphic SRF Lransforms Lhe original machine
isomorphically, i.e., the faully machine is equivalent o the good
machine 1n lhe sense lhal Lhe functional behaviour of both machines
remain same, bul the original machine gels transformed to a machine
wilth a differenl encoding of stales. Fig.1.1 and fig.1.2 show Lhe
STGs of a Lrue machine and faultly machine respectively.

AN 1somorphic faull under single stuck—al faull possibly
occurs very rarely. An open question 1n tﬁis area 1s the follwing

" Does Lhere exisl a sequential machine which is reduced and
combinalionally irredundant, but transformahle to an isomorghi.
faully machine under a stuck—al faull 7." This part of i
dissertation seltlles Lhe above problem by exploring an interestinyg

case, under which such an i1somorph—-5RF might occur.

M

TRUE MACHINE
Fig.1.1

/0 0/1

/1

FAULTY ISOMORPHIC MACHINE
Fig.1.2

2
" PRELIMINARIES.

A State Transition Graph (5TG)Y G is a 3—-tuple (V, E, W(E)),

where V 15 Lhe sel of verlices corresponding to Lthe sel of stales
S, E is the sel of edges where each edge joins v, to v if Lhere is
a primary inpul that causes Lhe finile-slate machine to evolve from
state vV, to state ”j and W(E) 1s the set of labels attached to each
_edge. each lahel carrying the informatlion of Lhe value of the inpul

thal caused the transition and the values of the primary oulpuls
corresponding to that transition. Each label is an ﬁrdered 4-tuple
<, &, &', o> where i is a minterm, over the primary inputs, ¢ and
s’ are minterms over the state variable, called the fan—-in and
fan—oul stales respecltively, and o is a minterm over the primary

outpuls.

An edge of a 5TG 1s said Lo be corrupted by a fault if
either the the fan—out stale or Lthe outpul label of this edge 1is
changed because of the existence of Lhe faull.

Sequentilly redundant faultls can he classified into three
categories.

1) Invalid state faulis: The fault does not corrupt any
fan—oul edge of a valid state in the STG, but does corrupt the
fan—outl edge of an invalid state.

2) Egquivalent state faultls: The fault causes only
interchange and/or crealtion of equivalent states in the state

transition graph of the finite—~state machine.

3) Isomorphic faults: The faull resulls in a faulty machine

that is isomorphic (with a different encoding) te the original

fault—Ffree machine.

Following examples illustrated in Fig 2.1 through Fig.2.5

will explain the SRFs.

The stale lransition graph of the finite-state machine is
shown in Fig.2.1. The states 010 and 110 are equivalent. Fig.Z2.2
shows the logic implementétiun of Lthe combinational part of tLhe
machine. The faull w1 (s—-a-0) changes the original STG to the one

shown in Fig.2.3. The corrupted edge is shown as a dotted 1line.
Since 010 and 110 are equivalent states, the fault w1 causes an
interchange of two eéquivalenil states of the machine.The fault wZ
(s—a—1) changes the machine to the one shown in Fig.2.4. The fault

creates an exlra state 111, which was originally an invalid state

and equivalent 1o the true state 110. Therefore, the faull is

sequenlially redundant, aok=is—imawi—as—inveaiid-stata Ll Fig.Z2.5
shows lhe occurrence of an isomorph SRF, where the state codes 001

and 000 have been swapped.

ORIGINAL FINITE STATE MACHINE.
Figlzl 1-

IN

NS 1 PS1
=

— 1

il
z
R

PET
llI NES3 PS3
Pae — 1 {D
ouT
TR

Fig.2.2. COMBINATIONAL LOGIC OF MACHINE OF FI1G.Z2.1

1/

Fig.2.3. FAULTY MACHINE WITH w1 S—-A-0 (EQUIVALENT SRF).

171

1/70
/

Fig.2.4. FAULTY MACHINE WITH wZ S5-A—1 F e =

1/ 1

10

170 000

0/0
D/0

171
Fig.2.5. FAULTY MACHINE WITH ISOMORPH SRF .

The isomorphic faulty machine given in Fig.2.5 isg
hypothetical, and does nol arise as a result of some real stuck-—al

fault in the circuit of Lthe faull {free machine.

Substantial work on synthesis of sequential machines wilh
an aim Lo eliminate SRFs have been done in ESD90]1 and CSD911.
Following sufficient conditions for elimination of isomarph~SRF are

well—-covered in LS5D90].

Lemmal: The Stuck—-at faults on the primary input (PI),
primary oulpul (PO), present state (PS) and nexl state (NS) lines

cannot produce a faully state transition graph G that 15

isomorphic to G.

Definition1: A multilevel network is inversion—parity
invariant if for any fault in the network, other than on the PI
lines, the parily of inversions is the same (either odd or even)
for all paths to the POs.

Obviously any two level network 15 inversion—parily
invariant. Also, networks Lhat are synthesized by algebraic
factorization from two—level networks are also inversion—parity

invariant.

Theoremi1: If the two level combinational circuit
implemenling the NS lines and output logic functions is prime and
irredundant, then any faull F in the circuil canmot produce a G

that 1s isomorphic toe G. Also, if a prime and irredundant

mullilevel circuil is synthesized such that it is inversion—-paritly

invariant, then any fault F in the circuit cannot produce a G that

15§ 1somorphic to G.
Outline of the proof : The circuil being inversion—-parity
invariant, it has the property that, faults on the intermediale

lines and outputs will produce a D or D at the outputs of the

network, uniformly for all test vectors that detect the fault. The

concept of the logic values D and D is given in [ROTH&661. The above

reason suffices lthe invalidalion of swapping of state codes under a

single fault condition. For example, a s—a—0 faultl might result in

the next state logic in the faulty machine producing state code 001
rather than 101, but the same faull could not also cause the next
stalte logic 1n the faulty machine to produce state code 101 rather
than 001. This is because, if a single fault produces a 0 at the
first bit position of the state code rather than 1, i.e, produces a
D, then the same faull cannotl produce a 1 at the same bit position
(NSL.) of the state code rather than a 0, i.e, a D. (R.E.D.).
DefinitionZ2s: A stale assignment of G’ is deemed 1o be
locally optimal with respect to a subset of states GI «c G, if
interchanging of codes of q9 <= GI does nol produce, after
aptimization, a logic implementation that is exactly the same as
the previoaus one, except wilh one less literal.
If a state assignmenlt of G 1s locally opltimal, with respect

to interchanging the codes of a subsel of statles G:’ then there

will be no swapping of stale codes involved in the set of states
(%, that will cause 1somorphism. This is because, Lhe isomorphism
produces a G which is a better implementatltion (afler optimization)
Lhan that of G (with at least one less line), and this contradicts

the fact that the initial state assignment for G= that produced G

locally opltimal under the exchange(s) of Lhe codes of statle (ﬂ

This is quite a strong result, but finding such an state assignment
1s ctompulalionally very expensive. In the next secltion, we will

find a case under which an isamorph SRF is actually possible.

3
THE BASIC APPROACH.

——-__—#_—_—-—___——_——ﬂ_—

To formulale an example wherein an isomarph—SRF occurs under
faulty condition, we start wilh a simple circuit with only two nexl
state lines. The corresponding S5TG of such a sequential circuit
will have a maximum of four states, oul of which two possible
states could be assigned codes '01° and *10°. 1f we can show thatl
under a single stuck—at fault, the nexl state logic changes in such
"4 way that the codes "01° and "10° gel swapped, as well as 1Llhe
output logic gels modified to corrupt all the fanoul edges of 1lhe
state codes '01" and "10" in such a way that ULhe STG under tLhe
faulty condition remains isomorphic to the true STG, then we are

daone.

If a fault swaps the two next state funclions Y1 and YE’
then the swapping of codes *01' and *10" 1s possible, whereas Lhe
codes "11" and '00' remain unaffected. Such type of swapping
function in irredundant combinational circuills, under stuck-al
faults, has been suggested in [SC721.

l Definition ¢ Two boolean functioms are said to he 1n
P-squivalence class if one can be tlransformed ta another by a
permutation (P} of two or more inpult variables.

Definition : A network is said to be p-redundant if 11 1is
possible Lo realize lhe same function by introducing some sltuck—al
faults and permuting some inpul lilerals.

The funciinn realized by the network of Fig.3.1 1s given by =

Y .= X, X Ko X, .+ X + MK (1)

1= KgRptRoXagTRaXa® XoXa™m %474

A stuck—-at zero (s—a—0) faultl at line k now changes tha YE

10

- where YE= x1x3+x2u3+xgx4+ KXt X X, (I1I)
In the figures, boxes represent logic gates. The disjunction

sign *," on a gate represents an "0OR" gate and the conjunction

sign 'A' on a gate represents an "AGND’ gate.

Fig.3.1. An interesting combinational circuit.

Clearly, Y1 and YE are 1n P-equivalence class, because by

permuting X and Mo in Y'I’ we gel YE' Similarly, a single stuck—at

fault is shown in Fig.3.2 (line k s5—a-0) which changes YE Lo Y1.
The circuits shown in Fig.3.1 and 3.2 have an interesting property.
They realize unate functions. Even though they have lines with

unequal parily, they are combinationally irredundant i.e., all

stuck—at faultls, single and multiple are detectable. However, tLlhey

are p—redundant which is a new kind of redundancy, as observed in

CSC221.

11

From Lhe above selup, we can approach 1o formulatle tLhe
example of occurrence of an: isomorph—SRF by realizing the next
state functions Y1 and YE by the networks given by Fig.3.1 and
Fig.3.2, where Y1 and YE are represenlted as functions
f(x1,x2,x3,x4) and F(x1,33,x2,x4} in (I and (11} respeciively,
where thefunction f(a,b,c,d) is given by =

f(a,b,c,d) = ab + ad + bc + hd + cd (I1I)

As funclions Y1 and YE are p—redundant, and under the same
stuck—at fault k (s—a—-0), they get interchanged and hence solve Lhe
purpose of next state funclions in our example. Now, tLhe output
function should be so formulated that the outlput label, in lhe case
of the true machine, for a particular primary inpul oa and tlrue
present state /3, should be equal to lhe outpul label of the faully
machine for the same input label o and present stale y, where y 15
the code for the state in the faulty STG, corresponding to lhe
state /@ in the true STG.

As shown earlier, the effect of the stuck—al faull i1in the
given network realizing the funclion f{a,b,c,d), 1isequivalenl 1o
interchanging the literals b and ¢ in the original funclion.
Exploring this information, we can realize the oulpul function Z as

I = F(x1,y1,y2,x4} (1IV)

If the output logic is implemented in such a way that, tlhe
fault which affeclts the next state funcltions V1and YE’ also affects
the output logiec in the same way, i.e., under faully condition [/
becomes equal to f{x1,y2,y1,x4}. Since the next state funclions Y1

and YE get swapped by the fault, the present stale value Y s¥o also

reverses after a delay of one ctlock—cycle. Hence, the faully value

12

gof the output label remains unchanged for the same input label and

swapped state code. This is the desired resull for a machine, under

faulty condition, to be isomorphic to the true machine.

Fig.3.3 shows the block diagram of a synchronous

sequential circuitl, which will behave in the above way. All the

three logic blocks realizing Y YE' Z get affected in the same

1!
way, by a single stuck—at faultlt, which will change the realized
functions lo p-equivalent functions as discussed earlier.

The circuit has been shown in Figq.3.4. Under fault—-free

condition Y1= x1xa+ x1x4+ x2x3+ x2x4+ x3x4
Y2= K1R3+ x1x4+ x2x3+ x2x4+ x334
and I = x

1Y 47 RqXgqt Y Yot Xyt Xa¥o

Under faully condition the functions realized are :

Y

1° Xq¥gT RyXgt XKoXat XX+ xox,

YE= x1x2+ x1x4+ x2x3+ xzx4+ x334

and Z = x¥ot X Mat Ya¥ot Xa¥.t xay,

A XX X

Fig.3.3. Block diagram of the legic circuit.
(v denoles a D flip—Fflop)

13

The above circuil i1s very simple, both structurally as well

as funclionally. The 1wo next—state functions and the oulput

function are unale boolean functions; moreover, lhe circuil 1s a
feed-forward type of sequential machine. It has four input lines,

one oulpul line and four stales.

I'
<

s
Y

| 3

e
=i

b

»®

Fig.32.4. An example of a sequential circuit.

(Line k 15 s—a—0)

14

Table-1
Jecimal equivalenl of 1npul x

Table—2
Jecimal equivalenl of 1npul x _x

STATE TABLE OF FAULTY MACHINE.

Table—3
Y4¥Ya

CODES OF CORRESPONDING STATES.

State tables of the true and the faultly machine are given
in Table—1 and Table—2 respecltively. Table—3 shows Lhe
curreapnndinq todes of the states of the machine. From Table—-1 it
15 clear that the fault-machine is reduced, i.e., no two states are
equivalent. Nolice that Table-2 is will be identical te Table—1

when the slates B and C are interchanged. Hence, the faully machine

under the effect of a single stuck-at fault(k®) becomes 1somorphlc

15

to Lhe fault—free machine. Furthermore, Lhe ctivrcuils realizing the

next stale funclions Y, and YE and the oulpul funclion Z are

1

combinationally 1rredundant. Thus LThe above circuil serves as an
example of a combinalionally—i1rredundantl, reduced segquential
machine, That has an isomorphic type of seguenlially redundant

single stuck—al faultl.

16

4
CONCLUSION.

The circuil shown earlier is the first example of an
isomorphic—redundant sequential machine ever reported in The
literature. Since the behaviour of the machine depends on the
starting state, a different state assignment perhaps would not
produce an isomorphic SRF under a single stuck—at fault. Though
certain sufficient conditions for non—-occurrence of isomorphic
faults have been found, vet 1Lhe necessary conditions for the
occurrence of an i1somorphic SRF are unknown. The approach descrihed
in this partl may be extended for the generalised case of multiple
nexl—stale codes swapping and appropriate modification of Lhe

corresponding output logic, to find oul cases for isomorphic SRFs.

17

~ PART |
TEST GENERATION FOR NON-SCAN SEQUENTIAL CRCUITE

ABSTRACT.

Test generation for sequential circuits has always been a
difficull problem. Early methods in tackling this problem involved
the use of bolh random and deterministic techniques. The popular
approach for enhancing the testability of sequential «circuits has
been Lhe scan design methodology.

In cantrast to 1lhe previous approaches, Lhe approach
implemented to generale Lest veclors for sequential circuits has
been decomposed inte three subproblems of combinational test

generation, fault—free statle Justificaltion and state

differentiation under faultly condition.

Circuil specifications conforming to the ISCAS—-*89

benchmark sequential circuils have been used for testing in the

tesl generation program.

18

1
INTRODUCTION.

——— e
Given a fault for which a tesl sequence has to be

generated, firsltl a combinational test vector 1is generated, that
propagales Lhe effecl of the fault to the next state 1lines or

primary oulpuls. The process of finding an input sequence which

takes the machine from the reset state to the fault excitation

state is called state justification. After the combinational test
vecltor is generated, a justification step is then performed, which

involves finding a Justification segquence for the state
currESpunding to Lthe generated test vector. This step is carried
oul efficienlly using a sequence of cube intersections on the
complele or partial ON/OFF—set representations of the next state
lines by implicilly searching the state space. Implicit searching
of stale space is done by Lhe use of PODEM algorithm [PG811. Thus a
faull—free justification sequence is found. 1If the effect of the
fault-free justificalion sequence, under faulty condition,
praopagates the effect of the fault to next state lines alone, then
the true—-faulty state pair produced by the test vector is found. A
diffentiation sequence under faully condition for this true—faulty
state pair 1is obtained using another sequence of cube
~intersections, this time using the ON/OFF-sel representations of
the primary oulpuils. A differentiating sequence for a pair of
states, S, and 5;, in a sequential circuit is a sequence of input
vectors, such that, if the sequence is applied to the circuit when
the circuil 1s initially in 51, the last wvector 1in the sequence

produces a different primary output if the circuit initially were

19

in statle SE' A test sequence for a fault 1is obtained by
concatenating the justification sequence, Uthe excilalion vectlor,
and the differentialion sequence. The approach followed is given 1in
CAG?1]. In the original work as given in [AG?1], faull—-free siate
differentiation has been suggested. In this implementation, stale

differentiation under the fault condition has been considered.

Empirical evidence has shown that over 994 of 1the real 1time, 1n

real circuits, a justification sequence, valid in a faull-free
machine, is also valid in the faulty machine or is in itself a test
sequence for the fault. The latter condition becomes lrue, when lhe

original justification sequence, propagales Lthe effeclt of the fauit

to one of the primary oulputl lines, under faully condition. In tlhe
unlikely event that a justification sequence is neither valid 1in
the faulty machine nor a test sequence iltself, lhe faull-free stale

justification approach has been i1mplemented.

20

2
PRELIMINARIES.

A state is a bit vector of length egqual 1o the number of
flip—flops in the sequential circuit. A state with only 0's and 1's
as bit values 1s called a minterm state. In general, a state is a
ctube, i.e., the valus in the differenl hit positions may he O, 1 or
x (dan't care). A cube state i1s a group of minterm states.

A slale 1s said to cover anolher state if the value of each
bit position in Lhe firsl stale is eilher an x or is equal 1to the
value of the corresponding bit puaitiqn in the second state.

The ON-ssl of a primary output or a next state 1line is the
complete sel of inpul values such that the primary outpul or next
stale line is 1. similarly the OFF-get of a primary output or a
next state line is Lhe complete sel of inpul values such that
Lthe primary oulpul or next state line is O. The set of cubes C, 1is
said to be a cover for a ON-sel 1f Lhe ON-setl Xon is a subset of C
and C does not intersecl the OFF-sel Xoff.

In a sequential circuit the fault may be combinationally
redundant aoar sequentially redundant. For a tombinationally
redundant faull, the effecl of Lhe faull cannet he propagaled to
Lthe primary oulpuls or next state lines, beginning with any state
and any inpult vecltor. A sequentially redundanl fault is a fault
which cannol be excited or whose effect cannot be propagated to Llhe
primary eutpuls using any sequence of inpul veclors starting from

Lthe resetlt state of the machine.

21

3
COMBINATIONAL TEST GENERATION.

Given a fault for which a test-sequence is to be generatled,
the first step in sequential teslt generaltion 1s Lo generatlte a
cambinational test vector for the faull. The circuil is considered
to be combinational wilh inpuls being the primary 1nputls and 1Lhe

present state lines and Lhe oulpuls being primary outpuls and next

staltle lines.

The most widely used algorithm +for combinational test
generation 1s lhe D—algorithm (DALGILROTHG66]1. This is a complele
algorithm i1n the sense Lhal il will generate a test for any logical
faullt 1f such a teslt exists. D-algorithm uses a five valued logic
(0, 1, %, D, D) to describe the behaviour of the «circuits wilh

faults. The value D designales a logic value 1 for a net in the

good circuil and a O for Lhe same nel in the failing circuit. D 1is
the complement of D and x represents a DONT-CARE. A difference 1in
behaviour between the good circuil and the failing circuit
propagates along a sensitized path. A test is generated when a
sensiltized path is buill from Lhe oulpul of 1LThe gate under testl
(GUT) Lo some primary oulpul (PO). Setting up of an sensilized palh
involves sellting all inputs to the gales Gi's on the path,

exceplt an i1nput on Lhe path Lo 1 for an AND/NAND gate and O for an

OR/NOR gate. This process 1is called the forward trace or error
propagation phase of the method. Finally, an inpul pattern is found

that realizes all lthe necessary gatle inpul values. This is done
by tracing backward from the inputs of Lhe gates on the sensitized

path 1o LThe primary 1inpuls of Uthe circuilt. This process 15

z2

called 1he backward 1Lrace or 1line justificaltion phase of 1lhe
melhod. Next, tThe implication 1s performed. The implicatlion
procedure specities all gates, i1npuls and oulpuls tThat will be
determined uniquely or implied by other line values in the currenl
primary input assignment. An inctonsistency occurs when Lhe value
implied on the line is differenl from Lthe value Lthat has already
been specified on tThe line. it an inconsistency QCccurs,
backtracking is performed Lo Lthe last point at which a choice
existed, all lines are resetlt to Ltheir values at this point, and one
starts again with the next choice. The 1implication operalion
completely traces such signal determination both forward and
backward through the circuit until the faully signal D or D is
propagated to a primary oulpul.

The D—algorithm has been pointed oul to be i1neffeclive for
the class of combinaltional circuils used Lo implement
error—correction—and-translation (ECAT) functions. ECAT-Lype
circuits are characterized by consisting of some number of X0OR
trees with reconvergence. In generating a test, D-algorithm creales
a decision structure 1in which there 1is more than one rthoice
availahle at each decision node. Through an implicit enumeratlion,
all alternatives al each decisiaon node are capable of being
examined. In ECAT-Lype circuils, corresponding %o a particular
assignment Lo i1nput nets of some i1ntermediate gales, lhe algorithm
may have to enumeralte inpul values exhaustively until the absence
of the justificaltion 1s confirmed, Lthus the algorithm backlracks

tediously many times until it changes the ariginal assignmenls at

the intermediate gates and tries again for justificatlion.

23

The PODEM (Path Oriented DEcision Making) test generation
algorithm CPG811 has been found lo he maore efficient than the DALG.
This is an implicii enumeration algorithm 1w whicth all possible
primary inpul palterns are implicitly, bul exhaustively examined as
tests for a given faull.

Implicit enumeration refers lo a subset of the branch and
bound algorithm designed specifically for search of an
n—dimensional state space. In Lhe test generation procedure using
PODEM, all primary inpuls (Pls) are initially at x. The implicit
enumeration process used in PODEM uses a decision Lree for 1lhe
branch and bound operations. An initial assignment (branching) of
either O or 1 on a PI is recorded as an unflagged node in the
decision tree. The decision tree is an ordered list of nodes witlh =
4) Each node idenitifying a currenl assignment of eilher a O or 1 to

one PI, and
2y The ordering reflects the relative sequence in which Lhe currenl
assignmenls were made.

Forward implications of the presenl Pl assignments 1s done
as in DALG. A node is flagged if the initial assignment has been
rejected and the alternative is being lried. Wwhen both assignment
choices at a node are rejected, 2hen the associated node is removed
and the predecessor node's currenl assignment is altered, 1 ¥
possible. The last Pl assignment made is rejected, if it can bhe
determined that no test can be generated wilh Ulhe assignments made
with the assigned PI's, regardless of the values that may be
assigned to the as yel unassigned PI's. The rejection of a Pl

assignment results in a ‘bounding’ of the decision tree.

24

A two-step procedure is used Lo choose a P1 and logic level
for initial assignmenl.
Step—1s The initial objeclive is determined— the objective 1is Lo
bring the tesl generalaor closer to its goal of propagaling a D or D
to a PO
Step—2: Given Llhe initial abhjective, a PL and the logic level 15 so
chosen that the chosen logic level assigned te Lbhe chosen Pl has a
good likelihood of helping towards meeling the initial objeclive.

An obiective is defimed by: 1)} a logic level O or 1 that 1is
referred Lo as the objective logic level, and Z2) an objective netl
which is the net at which the obieclive level is desired.

I+ the failing gate or gate under test (GUT) does not have a
D or D on its output, the initial objective iz direcled lowards

promoting setup for lhe gate. Once the GUT has been set up, Lhe

-—

initial objective is aimed at propagating a D or D on level of
logic closer to a PO than before. In PODEM, determination of
initial PI assignment, given an initial objective is known as back-
tracking. In DALG, since Lhe ascsiqument of values 1s allﬁwed to
internal lines, more than one choice 1is available at each internal
line or gate and backlracking could occur at each gale. In
contrast, the PODEM algorithm allows assigning of wvalues only 1o
PI*s. The values assigned to Pl's are then propagated toward
internal lines by the implication.

The backtracking procedure causes a palh 1o he traced f{rom
the objective net backwards to a primary input. Since the initial
PI assignment corresponds le making a decision at a node of the

decision tree, the algorithm has been named Path Oriented DEcision

25

making (PUDEM) test patlern generator. The following flowchart in

Fig.1 gives the high level descripltion of the algorithm.

Asslign a value to
an unassigned Pl.

—————————eereere e e—
Jetermine implications
of all Pls

Un—
tried

comb'n 1%, unltestahle
of vals NO
there

Yes

untried
combination
of values on

assigned Pls

2&

4
FAULT-FREE STATE JUSTIFICATION.

M i S ———— S,

The first step in test generation is the enumeratlion of

complete ON and OFF-sets of each of the next state lines (NSLs) and
POs of the sequential circuil. Cover enumeration has been done by
using the implementied PODEM-based enumeration algorithm. Since on
every bhacktrack PODEM sels an inpul line to a value different f{rom
what it had previously, the cover of the DN and OFF—-sels are
guaranteed to be single «cube containment minimal. Partial covers
ran also be extracted instead of complele covers in the case 1Lhe
CPU time or memory requrement becomes prohibitive.

State justification has been implemented as follows =

After the combinational test is generated with the help of
PODEM algorithm, the excitation veclor 1s examined to see 1f tihe
present state part of Lhe veclor covers the reset state. If 1t 1is
50, Lhen the fault can be excited from the reset state of the
machine. If not, then the excitation state is justified using a
backward justification algorithm as will be described laler.
Barkward justification is performed by firsil finding all the fan—in
states of the excitation state via repealed cube intersection. If
the reset state is a member of the set of fan—in states, then a
single vector Jjustificalion sequence is found. Otherwise, 1Lhe
process is repeated for some stale in the fan—-in of the state being
currently justified. Unce a justification sequence is found, 11 15
faull simulated to see if the required state 1s justified..1¥ so,
then the seguence is also valid in the fault machine. Otherwise,

some edge in the justificalion palh must have been corrupled and

27

only a part of the sequence may be enough to be wused as a
justification sequence. If the effect of the faull under tlesl has
heen propagated to the POs by the combinational 1test veclor, and
the excitation state is justifiable in the faully machine, then a
successful test has been generated. If however, Lhe effecl 1s
propagated to one of the next states only, tLhen the faultl-effecl 1is

propagaled to some PO by the state differenliation. If tLhe
excitaltion veclor cannolt be Jjustified under fault, then
justification of another excitation vector (found by PODEM), 1s
carried outl.

If justification of the state 51 is carried out, the entire
fan—in of 51 can be found out by cube intersections. If nocube 1s
found whiech covers the resel state, then a single veclor
justification segquence does not exist for any of the states 1n 51.
Thus an N-vector (N > 1) seqguence is found by heuristically
seleclting a group of states 52 which exist in the fan 1n 51 and
attempt is done to justify some stale 1in SE’ via a single vector
justification sequence. While selecting a stale it 1is so chosen
that it should not be covered by any of the states in the potenliail
justification path built so far, to prevent cycles during

justification. The procedure select_state does this heuristics as

given in the algorithm next.

28

The justificaltion algorithm in pseudo code is given below.
function justify state(state) {

1f (resel state covered by state) return (True):

l

fanins = universal cube;:

for (each PS line that is a 0 or 1) {

{

fanins = fanins y (ON or OFF sel of carresponding NS5 line)

}

1f (resel state covered by some state in fanins) return{(True):
Pis = NULL /# Potential justification sequence #/
while (Lhere are still cubes in fanins) ¢
fanin_state = select_state();
1f (fanin_stale 1s found) {
Pis = Pjs {J fanin_state;
Jusiify_state(fanin_state};
if (Justification sequence is found) return{True):

3

else {

Pis = Pjs — fanin_statle;

H

returni{False);

Fi1g9.Z2 Justification algorithm.

29

D
STATE ODIFFERENTIATION.

T T T T T ot ite tiuefaultv ciate pair (S, sh

After justification, the true—faully state pair (51, 51}
given by the tlesti veclor has to be differentiated. Some bil
pasitions in 52 and S: may be x (Don't care), which means that 1in
general, two group of states are to be differentiated. Gince
differentiation is carried out under faully condition, the ON and
OFF-sets of all the POs and next—stale lines (NSL.s) are extlracled
by the use of PODEM, with the stuck—at fault taken into account.
This is done only once, before 1lhe differentiation procedure 1is
called, for each stuck—at faull.

The procedure for single veclor differentiation 1s as
follows:

1} Pick a (new) oulpul line.

2) Inspecl the true ON-sel covers and faulty OFF—sel covers
of the outputl line and search for a primary inpul cpmbinatinn 1

which appears concatenated wilh Sg in the true ON—-sel and

.-I:l'

concatenated witlh 52 in the faulty OFF-set (or vice versa)l. If such
an input combinatien is found for some output line, then lthe stlale
differentiation sequence can be constructed. If not, a single
vector state differentiatien segquence cannol be found. Mulliple
vector differentiation can be searched in the fillowing fashion. N
ic the # vectors in the currenl sequence.

I N = 1;

4) Pick a next state line and attempt to find a primary

vector (as outlined in step 2, above), iN' that produces a 1 Q)

f

when croncatenated wilh Sﬁ and a 0 (1) when concatenated with SN.

30

Try another NSL if a vector cannolt be found for the picked one. If

an inpul combinalion cannol be found for any such NSL., then a state

differentiation segquence cannaot be found for (Sﬁ, 5;).
. : T i i
5) Find the stale pair (5N+1’ SN+1) given by Lhe fanoul
states of the primary veclor iN for the stale pair IBt, S;). N = N
+ 1. Altempl To find a single veclor propagation sequence for the
i t f
pair (BN+1’ BN+1)'

Pseudo code for differenting the states St and SJF is given
in Lhe nexl page. The funclion if_inpvec_concals_true ON_faulty OFF
returns a Ltrue tlag and an inpul vector if such an inpul vector is
found which when concatenated with Et produces a 1 in a given PO or
NSL and a 0 in the same line, when concatenated with SF. Otherwise
a false flag is returned. The funclion 1f_inpvec_true OFF_faulty_ ON
does the vice versa. Pds 15 the potential differentiating sequence
builtl sg far.

Once Lthe differentiation sequence is found out, the test

sequence 1is ablained concatenalting the justification sequence, Lhe

excitation vecltor, and lhe differentialtion sequence.

31

i f

function differentiate(s5”, 5) {

for (each PO line) <{

flag = if_inpvec_concals_true ON faulty OFF(s®, s¥);

if (flag) breaks:

flag = if_inpvec_cuncatﬁ_true_ﬂFF_faulty_ﬂN(St, Sf);

1f (flag) break;

h
1f !'{flag) <

for (each NGL)Y {

t f

flag = if_inpvec_concals_true UN_faulty OFF(S", S8);

if (flag) {

Pds = Pds + inpvec:

implyunderfault(&St, &SF):

f

) $

flag = differentiate(s’, &
if not{(flag) Pds = Pds — 1;

},

if not{flag) {

t f

flag = 1f_inpvec_concals_true ON _faulty OFF(S , S
if (flag) £

Pds = Pds + inpvec:

implyunderfault(&ﬁt, &Sf):

flag = differentiateist: Sf;;

if nol(flag) Pds = Pds — 1:

2
2
if (flag) break:
>
7
return (flagl;
2 Fig.3. State differentiation aigorithm.

32

&
MPLEMENTATION.

_____-._______——_——l—_—_-—___-__"--_-

a4 suitable data structure for representation of logir gales
which helps in both forward implication and hacktracking, has been
implemented in the tlesi generation algorithm. Eacth gale 15
represented by a recard struclure having the following fields.

1. no /# Gives the gate identification number 3/

2. id /% The identification code for the type of

logic gate, such as AND, DR, NOR elc. # /

3. val /% To store the logic value 0,1,x,D or D as

implied by the logic gate */

4. inps /# #% inpul lines that fan in lo the gale #/

5. ops /% # fanouts from lhe gate #*/

&. fanin Ct..inpsd /# @Gn array of integers of valid
entries upto the length of 1inps indicating Lhe
identification numbers of all the fan—in gales. */

7. fout C1..0psl /# On array of integers of valid
entries upto the length of ops indicating the
identification numbers of all the fan—oul gales. ¥/

As the gates are identified by a name {Character string) 1in
the ISCAS circuilt specification files, an array called ExtInliname
is used in the pragram which stores 1he external names and Lthe
corresponding internal names of the gates hecome the index of the
array at which the names are stored. The integer inernal name Jgives
the gate identification number. The record structures of the gales
are allaecated dynamically as the logic circull is constructed 1in

the parsing phase of the circultl specification file and an array of

33

pointers called gateptrC] is maintained to store Lhe pointers 1o
the structures allacated in the dynamic memory.

The basic steps of the test generalion algorithm are 3

1. Parse of input circuitl specification file and construct
of the combinational logic circuil.

2. Extract of the complete set of ON and OFF covers of each
PO and NSL and store them in the array OnQffsetll, by wusing the
POGDEM algoritlhm.

3. Generate a (new) tesl veclor using PODEM. If no (more’
test vector can bhe generated, exit with failure.

4. Find the justification sequence of the presenl state (P5H)

part of the combinational tlest veclor. Fault simulate the
justification sequence and see if the effect of the faull has bheen
propagated to one of the POs or NSLs. If not, golo step 2. If 1Lhe
effect of the faull has been propagated to NSLs only, then the lrue
and faulty state pairs are to be differenltialed, otherwise exil
with the current justification sequence as lthe tesl sequence.

5. If the ON and OFF—-sets of the POs and NSLs under the given
faulty condition has nol been generated, generate tlhem using the
PODEM algorithm and taking the stuck—alt faull inla consideralian.

&. Find a differentialting sequence under faully condition for
the true and faully state pair. If the pair of stales cannol be
differentiated goto step 3, otherwise exit wilh the concatenation
of the Jjustification sequence, Lthe excitation vecltor and Lhe

differentiating sequence as Lhe test vector of the faultl.

34

7
CONCLUSION.

The approach implemented for test generaltion 1s quile a

novel approach, as suqgested in LAG?1]. This method also identifies
Lthe presence of sequentially redundant faulls namely, unjusiifiable
faulls and undi ffereniiable faulls. If all the excitaltion slales
are unjustifiable, then 1the faull under 1tlesl 1is sequenlially
redundant. If for all possible combinalional tesis far l1he fault,
the true and the faulty stale pairs are nol differenliable, 1lhen
the faull is also sequentially redundant. Studies of Lhe

implemented algorithm on benchmark circuils 1s underway.

35

REFERENCES.

CAG?1]1 Abhijit Ghosh, Srinivas Devadas and A. Richard Newtlon,

“"Tesl generation and verification for highly sequential
circuits,” in IEEE Transactions on Computer Aided
Design, Vol. 10, No. 5, May 1991.

CPGE&11 P. Goel, "&n implicil enumeralion algorithm Lo generale
tesls for combinatlional logic circuits," IEEE Trans. on
Camputers, pp 215222, Mar 1981.

EROTHGGY J.. P. Rath, "Diagnosis of autnmata. failures: A
calculus and a method.," IBM J. Res. Developmentl, Vol
10, pp 278-2%91, July 1966.

C5C921 Susanta Chakraborty, Debesh K. Das, Bhargab -
Bhaltacharvya, “Lngital redundancies in irredundant
combinational circuits," (tog be published).
Address for correspondence: Dr. B. B. Bhattacharva,
Electronics Unit, Indian Slatistical Institlute,
203, B. T. Road, Calcutta-700 035, India.

[5D9201 Srinivas Devadas, et «al., “Irredundant Segquential

machines via optimal logic synthesis," IEEE Trans. on
CAD, Vol 9, No. 1, Jan 17290.

CS5D911 Srinivas Devadas, ©t al., " A unified approach to the

synthesis of Lthe fully testable sequential machines,”

IEEE Trans. on CAD, Vol 10, No. 1, Jan 909i.

36

10«

11

13

16,

. The following M«P@eRCSY IT year studebits STIVTSITT ey
submitted to the Dean's Office the copiles of'their disserta L2
for +the Librarv. These are being sent herewith.

2 mo e ' Title 1 lgsertation
Jayadeep Das Studies on Lgowerpnde-ioimdancy and Teshi?
of lon-Scan S-quentio., Ulvcults f
e Suregh {:fdﬁe Mdn cement schone Jor an Ldre

oloured Lulvigraph

ajan Gangadharan deuristic algorlithms Jor Jetermining
Feaslble Routing order in Konslicible
Yloorplans.
Me Devi Froasad Analysis of }ErmutaﬁiCS"'Por acuting

in Inltistase Intorcernccetion Detuvorkss

Filind Be.e Kagmble 5tud' 28 In short Circuit Fault Jdog n&siﬁ
of ultigtuge 1ntercclﬂ3cL¢0F L~+works.

Koushik Dasgupta some Studies on non Recvrsive svialuation

)

of Network Reliability.

Debashree Ghogh Location of Larzest Aey 3talircage
Polygon Among Point Cbstocles.

srani Sinha Lecation of Largest Icothetic £En Mty
Rectungle Awmon.: _Pbluﬁm_-ly Cricrted

Line Segments.
vevendra 3ingh Frocessing of Minger rrint Imagce.

sshutosh Eumar Jha Hecognition oi VWell Formod Handviritten .
Devnagari Characterg.

Jyotishmar Chatterjee A Software fo: laintaining a Ccrceptudd

Hlerarchy of ObJects v id in Lkuth-Mgﬁ
in a Natural Lunguage >rocessing 3vabe

For Bangla. |
Vuppala 3reenivas Game rlayin: Using osgport LDystems.

Hemanta Ranjan Panda Rule Based 'Sandhi Bicched! (de~euphon,
of Bengali.

Irasenjit Pal Gamera Calibration for Stereo Vision
Using Imaging Geometry

fahul Bhattacharyya Automatic Selection of 3 Structuring Elems
for Object bldSSlflCdthﬂ.ThIGu%ﬂ Morphm

Krishnendu Chakra- A Visual @bJ%Ct-REpT@EEHtatiOH Schneme.

borty

| (J = *‘Jhomﬂmri)
axecutive (fficer

