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CHAPTER 1

AN EXTREMAL PROELEM IN THE CONSTRUCTION OF

BINARY MATRICES



1. Intruductiuﬁ
The problem is to construct a set of n tests, to test 3 set of
v items. The items can be combined, and a test applied on the combinat-
ion. A test reports positive if any of the items in the combination is

defective. If all the items which were combined together are g9o00d then

3 test conducted on the combination gives a negative result. The set up -

is assumed to be non-adaptive, in the sense that all the tests are
conducted simultaneously, and the results of all the tests are used to
discover the defective items. The purpose 1s to minimigse the number of
tests required, as it is always possible to individually test the items
requiring v tests.

A set of tests to achieve the above purpose is called 3 design.
Such dJdesigns have been considered 1in [13,£21. In C11 a property of a
design called detecting power 1is defined. A design is said to have det-
ecting power t, or DP(t) if it can correctly detect the presence of

upto t defective items. In the following we consider the problem for

designs having DP(2). In [2], it is shown that minimizing the number of
tests is equivalent to maximizing the number of rows of a binary matrix
with ©n columrs, having a certain property.

Here we take an algorithmic approach to the problem. The naive
alqorithm is outlined, and is shown 1o be inefficient. The algorithm
has been implemented,and becomes impractical to run even for 7 columns.
A bound on the maximum number of rows is established. A sufficient
condition for a binary matrix to have DP(2) is used to qet a heuristic

for the problem. A counting argument is used 1o get 3 reswult which puts
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a-boeund on the number of rows that can be included in a matrix, when
two other rows are present.
2. Definmitions

Define the wunion of two binary row vectors r and q 3s 3 row
vector p such that = component of p is 1, iff, the same component of
at least one of the vectors r 3and q 1is 1.

A binary matrix (on n columns), i.e, a matrix with entries from
the set (0,1} is said +to have DP(2), if it possesses the following
properties.

1. The null vector is not 3 row of the matrix.

2. The rows of the matrix are distinct.

3. Let q , r , 8 , t be any four row vectors of the matrix, such that
{g ,r Y} ¢:{s ,t Y. Then the wunion of q and r 18 diatinc@ from the
union of & and t.

Let £(n) denote the maximum possible number of rows of a binary
matrix on n columns having DP(2).

Two raw vectors sre said to share an 1 if there existis an colu-
mn such that both have anm 1 in that column.

If 2 row vector r shares all its 1’s with a row vector s then
we say that r is 3 subset of s.

Note 1! The identity matrix (n X n) has DP(2). This corrosponds to 2
design where each item is te:s'ad seperately.Hence n items can be tesieﬂ
by n tests.

Note 2: If a matrix has DP(2), then a matrix cobtained by interchanging

two rows, or interchanging two columns, also have DFP(2).
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Note 3: f(n+m) X £(n) + £(m). Since given designs for n and m it is

poseible to combine them as follows to get a design for fin+m).

“-——h-_——ﬂt-l——i_-——hﬂll—l-—-h

Where 0 denotes the null matrix. Also note that f(l) 1.

3. Results and Algorithms
The naive algorithm uses a recursive procedure to implement the follo-
wing idea. A matrix with 1 row has DP(2). Having a matrix with DP(2),
augment the matrix with a row not considered previously. Test the
resulting matrix for violation of BP(2) property. If the resulting
matrix has DP(2), then try to augment furthur, else try to augment the
old matrix with 3 new row. If all possible choices of row has been
considered, without increasing the si;e of the matrix; then we have 3
maximal solution. If furthur there does not exist any choice for any of
the rows such that the matrix can be augmented, then we have 3 maximum
solution. In implementing the algorithm the rows have been considered
to be binary numbers.

It is clear that the search space for the abave alqgorithm
consists of all possible n kit binary numbers. and to ascertain that a
solution is maximum, the algorithm bhas to consider all possible 1
selections from this search space, where i varies from 1 to f{n). This

clearly requires exponential time and wmwakes the algorithm a grossly

inefficient one.As 2 result it becomes impractical to run the algorithm
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even far n = 7. However, for n = 6, a design having 8 rows can be

constructed, and the value of f(06) 1is established as 8. This corrobora-

tes with 3 catalogue given in [21].

The naive algufithm has also been implemented with bounds on
the number of 1’s in 3 row. This does not improve the efficiency of the
algorithm significantly enough to yield better results.

Lemma 12 for n > 1, £(n-1) + 1 £ £(n) £ 2f£(n—-1)

Proof® The left hand inequality follows from note 3 of section 2 and

the fact that n = (n~-1) + 1.

Eor the right hand it is sufficient to show that any n column
matrix having DP(2) cannot be such .that 3 column has more than f(n-1)
1’s or more +han f(n-1) 0’s, so that the maximum possible size of any
column is 2f{(n-1). To see this suppose that 2 column has more than
f(n-1) 0’s. By note 2 of section 2, without loss of generality we can
assume that 3ll the 0’s in the column occur before any of the 175 1n
the column. Also we can assume that this column is the first column.lLet
the number of 0’s inl the column be p. Then if we leave out the first
column,and all rows after the p~th row,we have a matrix which satisfies
NP2y, and has n-1 columns., Thus fin-1) > p. But by assumtion p>fin-1).
This is a3 contradiction. Hence no column can have more than f(n-1) 0’s.
GSimilarly we can show that no calumn can have more than fi(n-1) 1l’'s.

Thus the proof of the lemma follows.
Lemma 25 If an n column binary matrix Having distinct rows, none of
which is the null row vector, has the following property, then 1t also

possesses DP(3).
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Suppose there are two TowWs having i and j l1’s.Then if i be less
thar or equal to j, the rows cannot share more than EﬁEJ 1s,
proof: First note that 1 and 2 of property DP(2) 1is trivially satisfi-
ed. So we have to show that ynder the above assumption the matrix also
satisfies 3 of property DP(2).

Let r be any row of the matrix, and let p , q be any two other
distinct rows of the matrix whose union we denote by x. Them T cannot
share all of its 1’s with X, i.e, I cannot be a subset of x. Let i,]j,k
he the number of 1's 1in r,p and q respectively. Now by the above prope-
rty, r shares at nmogt \i’—'—z'-_-l'_\l’a with p and also at most t—%l_\ 1’6 with q.
So r shares at most (i-1) 1’s with x. Hencer cannot be a subset of x.
Now if s be any other row of the matrix, the union of r and s cannot be
3 subset of x, amnd therefore cannot be equal to x. Hence the matrix
catisfies 3 of the DP(2) property.

Thus the matrix satisfies property DP(2).

Note 1: If we consider 3 graph whose nodes represent binary row vectors
of size n, and two nodes Aare connected if they satisfy the property of

the above lemma, then the row vectors represented by Aa clique in the
graph satisfles DP{2).

An alqorithm wusing tne above idea has been implemented. The
number of 1’s in any row 1s bounded and is supplied as an input to the
algorithm. To find a clique, 3 heuristic has beern used, since 3any exact
algorithm is bound to require exponential time, 3s the decisioh version
of the problem is known to be NP-complete. However using the heuristic

it has not been possible to get solutions better than the identity
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matrix. It seems that 2 better implementation of the above i1dea could

yield better results.

Lemma 3¢ Suppose two rows p and q share k 1’s and £ 0’s. Then there
are 2k+t row vectors such that including any of them alongwith both
p and g in a matrix will violate property DP(2).

Proof: Consider 3 row vector r such that it 3as a3 1 in a3 column 1if exa-
ctly one of p and q have 1 in that column. Else it can have either 0 or
l. Thus there are Zk*t possible choices for r, Let x denote r union p
and y denote r union gq. Then ¥ is equal to y, because 1f both p and g
have an 1 in a column then so dne; X and y. If both have 0 in a column
then x and y both have the digit that r has in that column. If exactly
one of p and q have an 1 in some column then both x and y have an 1 1in
that column. Hence equality of x and y follows. Therefore we cannot
include p,q and r in 3 mwatrix without violating the DP(2) property.

Hence the proof of the lemma follows.
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CHAPTER 2

CONSTRUCTION OF SYMMEIRIC

BALANCED SQUAKRES



l. Introduction

Construction of symmetric balanced squares are considered. The

gquare is an array of size n X n with entriss from the set {l,...,v’
having v elements. The square 1is to be symmetric satisfying the
following balance conditions.
1. Each of the v elements is present in each row either \EE.J or rﬁ_‘ times.
2. Each of the v elements 1is préﬁent t"{] or[{'f,timea in the entire array.
A symmetric balanced square described above is abbreviasted SBS(n,v).
An NBSt(n,v) is 3 nearly balanced symmetric square n X n filled with
v elements such that the first balance condition is satisfied and the
second is modified as follows. An unit may have frequency f-1,f, or f+]
where £ is lﬂorfé‘]accarding as which is odd. Such squares are considered
only in the case that 8BS(n,v) does not exist.

The feasibility conditions for the existence of such squares
have been derived inm C[l11. There they have also given construction
methods for squares whenever they are feasible. ‘The heart of the
algorithm 1is the case when n < V. When n = v 3 symmetric latin square
suffices. When n > v, then n is written as n = qv + r, 0{rdv, and using
8BS(v,v) and &SBS(r,v) if such a square is feasible or a near balanced
square NBS(r,v) if S$BS(r,v) is not feasible, they have shown how to
construct SBS(n,v).

Whern n ¢ v, and n is odd they use a l-factorization of K,to
qet an D(rn? ) algorithm to construct a SBS(n,v), 1f feasibie. However

when n < v, and n is even they use Hall’s matching theorem alongwith

Fulkerson’s Network Feasibility Flow Theorem to show the existence of



feasible 6SBS{(n,v)’s. The construction method requires time D(ﬁs) since

finding a max flow in 2 network with n vertices require time 0(n>).

Here their method for odd values of n 1is adapted to get an
D{n%) algorithm for even values of n. The technique 1is £a properly use
a l-factorization of K, , when n 1s even;h
2. Definitions
Ltet us define the frequency of a element to be the number of
times it occurs imn the square. By the second balance condition given

above, this is EEJ or F?:}. Hence it can be either odd or even.

The feasibilty conditions for the existnce of such a square as
derived in [11 are.

1. The number of elements with odd frequency must not exceed n. This 1s
because an element with odd frequency must occur at least once in the
diagonal, for the square to be symmetric.

2. The total number of elements v, to be placed in the square must be
less than or equal to ni{n+tl)/2, (where n is the size of the sqQuiare)
since this is the maximum number of elements that can be accomodated
in a3 symmetric square.

Let n be even, then a spanning subgraph of K., consisting of n/2
vertex disjoint edges, is called an l-factor of Ky, . A Jecomposition of
Ky into (n-1) disjoint l1-factors is defined as a l-factorization of Kp.

One method of obtaining 3 l-factorizationm which will be wused 1in

subsequent sections is as follows.

Let the vertices of K,,, be denoted by 0,...,2n-2,0¢. Define for
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i = l,...0y2n-1, the set of edges

8 = (@ i~1) (i-l+4j i-1-j 5 j = l,..-4n"1)
where each of the vertices i-1+j and i-1-j is expressed as one of the
numbers 0,...,2n~2 moduleo 2n-1. Clearly the collection {S 2i=1,..,2n-1%
ie a partition of edges of K, . , and the sum of subgraphs G induced by
8; is a l-factorization of K,,, . s

The above partition of Hzﬁ,uill be considered to be organized
35 a table as shown below.
Ex ¢ l-factorization of Kg .

(e Q) (6 1) (35 2) (4 3)

col) (0 2) (6 3) (5 4)
(c0 2) (1 3) (0 4) (6 3)

(2 3) (2 4) (1 5) (0 &)

(e 4) (3 3) (2 6) (1 O

(2 3) (4 6) (3 Q) (2 1)

(o) (5 0) (4 1) (3 2)

A near l-factorization of K., when n is even, is constructed
from 3 l-factorization of K,,, 3s follows. The vertex labelledoeo is left
out leaving 3 column of isolated vertices as the first column of the

factorization. From the resulting table all arcs having vertex n as one

af the vertices are removed. Also the isolated vertex n 1s removed. The

resulting table will be called a near l-factorization of Ky, and 1s used
as a reference table for the construction of the squares.

Ex: A rnear l-factorization of Kg :

(8 l] (7 2) (6 3) (5 4)
(Q 2) (B 3) (7 4) (6 D)
(1 3) (0 4) {8 §) (7 6)
(2 4) (1 5) (0 6) K8 7)i Figq 1: The boxed portions
(3 5) (2 6) (1 7y O B! indicate left out entries.

(4 6) (3 7) W BY (1 o
(5 7) T4 B3 (3 0) (2 1)

{6 8% (5 0) (4 1y (3 2)
(7 0) (6 1) (5 2) (4 3)

-Eﬂa:m:nﬁumnuh*c
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Note 12 In the +table for 2 near l-factorization of K, , the last row
contains n/2 arcs. Each of the other rows contain (n-2)/2 arcs
alonguwith an isolated vertex which occur 3s the leftmost element of a
row.
Note 2: Any arc (i j) in the factorization represent tﬁn cells of a
gquare array, namely (i j) and (j i). The vertex i represent the cell
(i i). We say an element is placed in the arc (i j}), iff, the corrospo-
nding cells in the array contain the element.
Note 3: We say a set of m arcs to be consecutive if either they are
consecutive arcs in the same row of the array of arcs, or are divided
between rows 35 consecutive arcs at the left most end of a row and the
right most end of a row.
Note 4% It is easy to note that any consecutive set of (n-2)/2 arcg 1in
the near l-factorization of K contains (n-2) distinct vertices of tne
corrosponding complete graph.
Note 5: Henceforth the following things will be assumed.

1. The isolated vertexiwill be referred to as arc (i i).

2. The near l1-factorization of K 4 described above will be
called the reference table.

3. n will be taken to be even and v to be qreater than n.

r
4. f will be taken to be t%rj.

3. Algorithms
Case 1. £ = n-1.
Let v = n+x , where x > Q.

Now & = (n-1)(n+x) + [x=(x-1)r)

12



f = n-1 , implies 0 < X - (x~1)n < v
% being an inted®r, we have x = 1.
So, an SBS{(n,n+l) has to

be

vie,

0 < x <1 + 1/7(n-1).

constructed.

This is easjily

achieved by considering a symmetric latin square of order n+l and then

by dropping any of the n+l rows and the same column from the square,viz

if we drop i~-th row then i-th coelumn get dropped.

The time taken i 0(n%).

Case 2 £ = n-2.

ns = (n-2)(n+x) + [2x -

(x-2)nl,

where v =

Now £f = n-2, implies 2 < x < 2 + x/(n~2)

Thus for n > 6, x = 2, and

for n = 4, x = 2,3,4 and

for n = 6, x = 2,3 and v

v

Let us first give SBS5(4,7),

SES(4,7)

1 4 % 6

4 2 1 7

@ 1 3 2

6 7 2 3
SBS(6,9)
9 § 2 6 3
" 8 6 3 7
2 6 8 7 4
6 3 7 9 1
3 7 4 1 9
g 4 1 5 2

For n 2 4, and v = n+d

ne = 4¢n-1) + (n=-2)(n-2)

Thus there are

W RY DN e e OO

v

e
ik

8

= n+2.
,7,8.
,gﬂ

5BS(4,8),

ntx, x > 0.

SES(6,9).

5B5(4,8)

Gy I» () e
~J N = £

elements

1 3

2 N ) R

o~

with

frequency

(n-=1) arnd (rn-2)



elements with frequency (n-2). The foliowing algorithm constructs an
SBS(n,rn+2) (n > 4) correctly.

Algorithm 13

Step 1l: Place element 1 in the leftmost arc of the last row, i.e, arc
(n~1 0). Also place 1 im ares (1 i), 1 < 1 < n-3.

Step 2: Place element 2 in the arcs of row l. Place element 3 in the
arcs of row n-1. Place element 4 in the 3arcs of row n.

Step 3: Place an element in the unused arcs of each of the other rows.
Also place an element in the remaining (n-2)/2 arcs of the last row.

Lemma 1 2 For n » 4, algarithm 1 correctly constructs an SBS(n,n+2d) 1in

U(nli.

Proof * The correctness follows from the note 2 and note 4 of sec 3,

L

the balance condition on £ being obvious.

The complexity follows from the fact that the reference table
has n(nt+l1)/2 entries orqganiged as vertices and arcs and each entry is
accessed exactly once in the construction process.

Ex: n =8, v = 10, £ = 6.
So 4 elements have frequency 7 and 6 elements have 8.

Using the reference table for n = 8 shown in fig~]l we qet the following

SBS(8B,10).

2 9 9 3 6 4 7 1
1 3 6 4 7 10 8

1 4 7 10 8 -

1 10 8 2 9

1 . 9 5

1 2 3

3 €

4

L4



Case 31 £ = n-3.

Let v = n+x, % » 0, then nz = (n~3){n+x) + 3n - xn + 3n.
Now £ = n~3 implies 3 £ X £ 3 + 9/(n-J).

Thus for n > 12, x = 3 and v = n+3.

For n =4 , v = 9,10.

SBS(4,9) | 5BS(4,10)
1 4 5 6 ) 1 5 6 7
A 2 7 8 5 2 8 9
s 7 3 3 6 8 3 10
6 8 9 3 7 9 10 4

For n = 6, v = 10,11,12

But SBS(6,11), and SBS(6,12) are not feasible.

SBS(6,10)

10 8 G 9 7 1

8 10 9 7 2 4

6 9 | 3 4 &

9 7 3 2 9 8

7 2 4 9 3 G

1 4 5 B 6 10

For n =8, v = 11,12
SBS(8,12)

2 7 3 9 4 11 5 12
7 3 9 4 10 g 12 &
3 9 4 10 5 12 6 1
9 4 190 6 11 7 1 8
4 10 S 11 7 1 8 2
11 5 12 7 1 8 2 9
9 12 6 1 8 2 190 3
12 6 1 8 2 9 3 11

The case S5ES(8,11) is described below.
For mn = 10, v = 13,14. But $B5(10,14) is not feasible.

15,16. But SBS(12,16) is not feasible.

rm
o
ﬂ
-
H
—r
t-J
-
<
it
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For n-z B, v = nt3 implies,

R = 9(n-2) + (n=6)(n-3).

Thus 9 elements have freguency (n-2) and (n-6) elements have frequency
(n-3).

For n > 8, the following algorithm will construct an SBS(n,nt3).
Alaorithm 25

Step 1: Place elements 1,2,3 in the arcs of rows 1,2,3 respectively,
leaving out the arcs (i i) in each row.

Step 2: Starting from the rightmost arc of 4-ih row, place elements
numbered 4 onwards, one by one, each in (n-2)/2 consecutive arcs.
Step 3: Place element (3+n/2) in arc (1 1), element (2+n/2) in arc
(2 2), element (1+n/2) in arc (0 0),

Lemma 2: The atove algorithm correctly constructs,an SBS(n,n+3) for
n 2 8 in time 0¢n” ).

Proof: The complexity consideration is similar to Leama 1.

The correctness is proved as follous.

Firet note that elements placed by step 2 have frequency either {n~-3)
or (n-2).

Now the 1l.c.m of n/2 and (n-2)/2 is their product. Each row contains
n/2 arcs and we place an element in (n-2)/2 consecutive arcs. Thus we
use up exactly (n-2)/2 rows to place n/2 elements.

Thus the total number of elements placed by the algorithm is 3 + n/d +
n/2 =n + 3, wusing up 3 + (A-2)/2 + (n-=-2)/2 = (n+l), i.e, all rows of
the reference table.

Also starting from the 4-th row, after placing n/2 elements numbered

4 ta 3 + n/2, we will have used up rows 4 to n/2 + 4.

16



The structure of rows n/2, n/2 + 1, n/2 + 2 15 as follows.

n/2~1 (n/2-2 n/2) Y (2 n—4) (1l n~3) {0 n~2) l}n n-lﬂ
n/2 (n/2-1 n/2+1) (3 -3y {{(2 n-2) (1l n~1) kO nﬂ
{n/2+1 2 ni» (1 0)

where the boxed arcs have been left out and the braces indicste how
alements 1+n/2, 2+n/2, 3+n/2 have been placed.

Thus in step 2 element 1+n/2 have not been placed anywhere in row 0 and
columr 0. Element 2+n/2 have not been placed anywhere in row 2 and
columrn 2. Element 3+n/2 hbave not been placed anywhere in row 1 and
calumn 1.

S0 step 3 does not violate the first balance condition on the square
and by rnote 4 of the previous section neither Joes step 2.

{Note that here \:—&] = 0)

Also after step 3 elements 1+n/2, 2+n/3, 3+n/d each have freguency n-2
in the square, since after step 2 each had frequency n-3 and step 3
increases the frequency by 1.

Also note that elements 1,2,3,4,n/2+4 and n+3 each have frequency (r-2)
in the sgquare. S0 9 elements have frequency (n-2) and hence (n-6)
have frequency (n-3), since 3 total of (n+3) elements nave been placed
by the algoarithm.

Thues the second balance condition on the square is also satisfied.
Symmetry of the square follows from rnote 2 of section 2.

This establishes the correctness of the algorithm.

Ex: n = 10, v = 13, £ = 7

17/



£
Q

9 plements have frequency 8 and 4 elements have frequency 7.

o (10 LI «c9 2> ¢ B 3) (7 4 (6 5
1 ¢ 0 230 3N <¢C9 4) (8 5 (7 6)
2 (1 3 0 AT P9 6) (8 7)
3 ¢(2 4) (1 5 0 6) {16 _2728¢ 92 8
4 (3 Sy (2 6 ¢1 7y (o0 8 [(10 9}
s ¢4 6) (3 7Yy (2 8 (1 9) 0 1I¢H
6 (5 7)Y (4 8 ¢3 9 {27170 1 0
7 (6 8 5 94103 0y 2 1
8 ( 7 9 L& 10 ¢S5 0 (4 1) (.3 2)
9B I0N (7 0) (6 1) (5 2) (4 3)
Molc9o 0 ¢8 1Y (7 2) (6 3 (5 4)

Fig~2 : Reference table for n = 10

Using the above reference table we get the following SB5(10,13)

b 7 2 9 3 10 4 12 9 13
8 9 3 10 4 12 2 13 G

7 10 4 11 5 13 6 1

o 11 6 13 7 1 8

6 14 7 1 8 2

7 1 8 2 %

8 2 9 3

10 3 11

il 4

12

Case 4. f < n-3

If SBS(n,v) is feasible then the following algorithm constructs one.
Algorithm 3.

Step 1: Calculate the number of positions to be filled on the diagonal
to accnuntlfnr the even parts. [Am even part of an element with freque-
ney £ is £~1 if £ is odd and is £ if £ is evenl. Occupy these diagonals
by necessarily placing elements with even frequency, taking care that
no vertex is repeated for the element placed using the diagonals and
the left most consecutive arcs of the last row.

Step 2: Place elements, one by one, starting from the right most end of

the first row, in the rdguired number of arcs, placing an element with

| 8



odd frequency if it has to be placed in the arc (i i),else 1t is placed
with even frequency. In placing elements we skip arcs (i i) that have
been used up in step 1l.

Lemma 3: Algorithm 3 correctly constructs a feasible S8BS(n,v) with
£f < n=-3 in time 0(n ).

Proof: Complexity follows as in lemma l.

Let 9 be f or f£f+1, depending on which is odd and let u be the
number of elementas with frequency g.

After step 1 exactly u arcs of the form (i i) are left unused,
Using up these arcs 1in step 2, implies that exactly u elements are
placed with odd frequency, 1i.e, with frequency 3. Since elements are
placed with frequencies f or £+1, and all entries of the reference
table have been used up, it follows that exactly (v-u) elements have
been placed with even frequency. Thus a2 total of v elements have been
placed by the 3algorithm.

Also since the frequencies of the placed elements are f or f+1,
the second balance condition is maintained. The first balance condition
follows from note 4 of section 2. And by rnote 2 of section 2 the square
constructed is symmetric.

Thus the algorithm is correct.

i

Ex: n = 10, v 17, £ = 3
Two elements have frequency 5 and 13 elements nave frequency 6.

Using the reference tabkle for n = 10 shown in fig-Z we get the

following 5BS(10,17).
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2 1l a 12 6 14 7 16 8 1
2 12 6 14 7 16 8 1 9

1 13 8 135 9 17 10 4

1 135 9 17 10 3 11

2 17 190 3 11 S

P 3 12 4 13

2 4 13 &

a2 5> 14

15 7

16

Note that element 1 has been placed im arcs (9 ©) and (8 ll) as well as
in diagonals (2 2) and (3 3). Also element 2 has been placed completely
irn the diagomal. These placings were done in step 1.

From the above discussionrn we get the following theorem.
Theorem l: For n even and v > n, an BSBS{(n,v), if feasible, can hbe
constructed in time 0O(n ).

The alqgorithm for constructing $SBS(n,v) for all values of n and
v, have been implemernted on the VAX 8650 system. The algorithm used nas
beern the one discussed im L1] with modifications as described above.

4, Keference

1. Dutta T.K. and Roy B.H. Construction of Symmetric Balanced Squares,

I.9.1I Technical Report No ASC/93/16, May “93.
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CHAFTEER 3

CONSTRUCTION OF NEARLY BALANCED UNIFORM REFPEATEI

MEASUREMENT DESIGNDS
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1. Introduction
In repeated measurement designs (RMD) each experimental unit is
exposed to a number 0f treatments applied sequentially over periods. If

there are p periods 0,...,p~1; t treatments 0,...,t-1; and n experimen-

tal wunits, then an RMDB(t,n,p) is an n X p array, say D = (du_) where
d;} denotes the treatment assigned to the i-th unit in the j-th period

i = l,uuayn and j = 0,...,p-1. An RMD is called uyniform if in each

period the same number of ynits is assigned to each treatment and on
each unit each treatment appears in the same number of periods.

The wunderlying wmodel is called circular if in each unit the
the residuals in the initial period are incurred from the last period.
Under the circular model an RMD is called nearly balanced if p < t, and

< p-1

the collection of ordered pairs {di} ,diikj ) 1 €1 < n, 0 < ]
(operation on the second suffix is modulo p), contains each ordered
pair of treatments, either once or not at all. Nearly balanced uniform
RMD{(t,n,p) will be abbreviated to NBURMD(t,n,p).

Here construction of NBURMD(L,t,p) is considered using the
method of differences and a proper difference vector. It is shown that
if p be odd, then for t = p+l and t = p+2, such vectors do not exist.
In all the other «cases proper difference vectors are defined.

2. Method of differences

Definition: Let &G be the group Zy. Consider the P-tuple P : E:"‘Ppﬂl y

where,
l. P/ ’s are distinct and P; € G, i = 0,...,p-1.
2. Define I = Pf-l - Pf y 1 = l,...,p, with PP ==Fb . Then DE’E are

also distinct .
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Then <{P+g : 9 € B} arranged in t rows, forms NBURMD(t,t,p). P will be
referred to as a difference vector.

Note 1: Henceforth P, will be considered to be F, .

Note 2: The existence of a difference vector is a sufficient conditior
for the existence of NBURMD(t,t,p’.

Note 3: Differences vectors cannot exist for t = p.

Note 4: After constructing a difference vector, it 1s passible to
construct a NBURMD(t,t,p) in p(t-1) number of steps. The constructions
given for difference vectors, whenever they exist, require p number of
steps. Thus whenever NBURMD(t,t,p) can be constructed by the method of

differences, the algorithm requires pt rumber of steps.
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