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Abstract

We consider matrices M with entries mij = m(λi, λj ) where λ1, . . . , λn are positive numbers and m is
a binary mean dominated by the geometric mean, and matrices W with entries wij = 1/m(λi, λj ) where
m is a binary mean that dominates the geometric mean. We show that these matrices are infinitely divisible
for several much-studied classes of means.
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1. Introduction

Let A = [aij ] and B = [bij ] be n × n positive semidefinite matrices. By the well-known the-
orem of Schur the Hadamard product A ◦ B = [aij bij ] is positive semidefinite. Thus for each
positive integer m, the mth Hadamard power A◦m = [am

ij ] is positive semidefinite.
Suppose A is positive semidefinite and all its entries aij are nonnegative. We say A is infinitely

divisible if for every real number r � 0 the matrix A◦r = [ar
ij ] is positive semidefinite. By Schur’s

theorem and continuity A is infinitely divisible if and only if every fractional Hadamard power
A◦1/m is positive semidefinite.
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It is easy to see that every 2 × 2 positive semidefinite matrix with nonnegative entries is
infinitely divisible. This is not always the case for matrices of order n > 2. We refer the reader
to some old papers [13,14] on infinitely divisible matrices and the recent work [2] where diverse
examples of such matrices are given.

The motivation for this paper stems from the following observation. Let λ1, . . . , λn be any
given positive numbers. Consider the matrices A whose entries are given by one of the following
rules:

aij = min(λi, λj ),

aij = 1

max(λi, λj )
,

aij = H(λi, λj ),

aij = 1

A(λi, λj )
,

aij = √
λiλj ,

where H(λi, λj ) is the harmonic mean of λi and λj , and A(λi, λj ) their arithmetic mean. Then
all these five matrices are infinitely divisible. How general is this phenomenon?

A binary operationmon positive numbers is called a mean if it satisfies the following conditions:

(i) m(a, b) = m(b, a).
(ii) min(a, b) � m(a, b) � max(a, b).

(iii) m(αa, αb) = αm(a, b) for all α > 0.
(iv) m(a, b) is an increasing function of a and b.
(v) m(a, b) is a continuous function of a and b.

Let λ1 < λ2 < · · · < λn be positive numbers and let m(a, b) be a mean. Suppose m(a, b) �√
ab for all a and b. Let M be the matrix with entries

mij = m(λi, λj ).

On the other hand, suppose
√

ab � m(a, b) for all a and b. Then let W be the matrix with entries

wij = 1

m(λi, λj )
.

Are the matrices M and W infinitely divisible? We will see that this is the case for several families
of means. However, the domination criterion vis-a-vis the geometric mean is not sufficient to
guarantee infinite divisibility of these matrices and we give an example to show that.

Some of the key ideas used here occur in our earlier work, especially in the papers of Bhatia
and Parthasarathy [6] and Hiai and Kosaki [10]. One of them is the use of “congruence trans-
formations”: if X is a diagonal matrix with positive diagonal entries then the two matrices C

and XCX are positive definite (infinitely divisible, respectively) at the same time. Another is
the use of positive definite functions. A (complex-valued) function f on R is said to be positive
definite if for all choices of n real numbers λ1, . . . , λn the n × n matrices [f (λi − λj )] are positive
semidefinite. We will say that f is infinitely divisible if for every r � 0 the function (f (x))r is
positive definite.

We will use a theorem of Roger Horn [12] on operator monotone functions. We refer the reader
to [1, Chapter V] for the theory of such functions. One of the key facts is that a (differentiable)
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function f : [0, ∞) → [0, ∞) is operator monotone if and only if for all choices of n positive
numbers λ1, . . . , λn, the n × n matrices[

f (λi) − f (λj )

λi − λj

]
(1)

are positive semidefinite. (If λi = λj , the difference quotient is taken to mean f ′(λi).) This was
proved by Loewner and the matrices in (1) are called Loewner matrices. Another theorem of
Loewner says that f is operator monotone if and only if it has an analytic continuation to a
mapping of the upper half-plane into itself. Horn [12] showed that this analytic continuation is
a one-to-one (also called univalent or schlicht) map if and only if all Loewner matrices (1) are
infinitely divisible.

The matrix E all whose entries are equal to one is called the flat matrix. This is clearly
infinitely divisible. Hence, if G(λi, λj ) represents the geometric mean of λi and λj , then the
matrices [G(λi, λj )] and [1/G(λi, λj )] both are infinitely divisible. As a consideration of 2 × 2
matrices shows, for no other mean can these two matrices be positive definite at the same time.

A matrix C whose entries are

cij = 1

λi + λj

,

is called a Cauchy matrix. This is an infinitely divisible matrix. See [2] for different proofs of this
fact. From this it follows that the matrix W with entries

wij = 1

A(λi, λj )
,

where A(·, ·) represents the arithmetic mean is infinitely divisible, as is the matrix M with entries

mij = H(λi, λj ),

where H represents the harmonic mean. This fact about Cauchy matrices will be used again in
the next section.

2. Examples

2.1. The logarithmic mean

The logarithmic mean L(a, b) is defined as

L(a, b) =
⎧⎨
⎩

a − b

log a − log b
(a /= b),

a (a = b).

We have
√

ab � L(a, b) � 1
2 (a + b), which is a refinement of the arithmetic–geometric mean

inequality. The matrix W with entries

wij = 1

L(λi, λj )
= log λi − log λj

λi − λj

(2)

is the Loewner matrix of the schlicht function log z mapping the upper half-plane into itself.
Hence, by the theorem of Horn [12] this matrix is infinitely divisible. We will see other proofs of
this fact later in this paper.
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Another representation for the mean L is given by the integral formula

1

L(a, b)
=
∫ ∞

0

dt

(t + a)(t + b)
.

For each t � 0, the matrix with entries

1

(t + λi)(t + λj )

is congruent to the flat matrix, and is thus positive definite (and infinitely divisible). It follows
immediately that the matrix (2) is positive definite.

It was observed in [6] that the positive definiteness of all matrices (2) is equivalent to the
function

f (x) = x

sinh x

being positive definite. The same argument now shows that this function is infinitely divisible.

2.2. The Heinz means

For 0 � ν � 1, the Heinz mean is defined as

Hν(a, b) = aνb1−ν + a1−νbν

2
.

For each pair (a, b) of positive numbers the function Hν(a, b) of ν is symmetric about the point
ν = 1/2 and attains its minimum value there. The minimum value is H1/2(a, b) = √

ab. The
maximum value is H0(a, b) = H1(a, b) = 1

2 (a + b). For 0 � ν � 1/2 let W be the matrix with
entries

wij = 1

Hν(λi, λj )
= 2

λν
i λ

1−ν
j + λ1−ν

i λν
j

= 2

λν
i

(
λ1−2ν

i + λ1−2ν
j

)
λν

j

.

Then W = XCX, where X is a positive diagonal matrix and C is a Cauchy matrix. Hence W is
infinitely divisible.

2.3. The binomial means

The binomial means, also called power means, are defined as

Bα(a, b) =
(

aα + bα

2

)1/α

, −∞ � α � ∞.

It is understood that

B0(a, b) = lim
α→0

Bα(a, b) = √
ab,

B∞(a, b) = lim
α→∞ Bα(a, b) = max(a, b),

B−∞(a, b) = lim
α→−∞ Bα(a, b) = min(a, b).
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For fixed a and b the function Bα(a, b) is increasing in α. Further

B−α(a, b) = ab

Bα(a, b)
. (3)

For α � 0 let W be the matrix with entries

wij = 1

Bα(λi, λj )
= 21/α(

λα
i + λα

j

)1/α
.

This matrix is infinitely divisible since every Cauchy matrix has that property. The relation (3)
then shows that for each α � 0 the matrix M with entries

mij = B−α(λi, λj )

is also infinitely divisible.

2.4. The Lehmer means

This family is defined as

Lp(a, b) = ap + bp

ap−1 + bp−1
, −∞ � p � ∞.

If p is a real number outside the interval [0, 1], then Lp(a, b) is not a monotone function of a

and b. So, for these values of p it is not a “mean” in the sense we have defined. However, the
considerations below are valid for all values of p.

The special values p = 0, 1/2, and 1 give the harmonic, geometric, and arithmetic means,
respectively. For fixed a and b, the function Lp(a, b) is an increasing function of p. We have

L∞(a, b) = lim
p→∞ Lp(a, b) = max(a, b),

L−∞(a, b) = lim
p→−∞ Lp(a, b) = min(a, b).

A small calculation shows that

L1−p(a, b) = ab

Lp(a, b)
. (4)

We will show that for each p � 1/2 the matrix W with entries

wij = 1

Lp(λi, λj )
= λ

p−1
i + λ

p−1
j

λ
p
i + λ

p
j

, (5)

is infinitely divisible.
First, observe that it is enough to prove this for p � 1, because that would say that every matrix

of the form[
λν

i + λν
j

λi + λj

]
, 0 < ν < 1, (6)

is infinitely divisible. If 1/2 � p � 1, we let r = 1 − p, and note that 0 � r � 1/2. The expres-
sion (5) in this case can be written as

wij = λ−r
i + λ−r

j

λ
p
i + λ

p
j

= 1

λr
i

λr
i + λr

j

λ
p
i + λ

p
j

1

λr
j

.
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Since r/p � 1, the infinite divisibility of this last matrix W follows from that of (6).
Observe further that if the matrices in (5) have been proved to be infinitely divisible for p � 1/2,

then the relation (4) can be used to show that for each p � 1/2, the matrix M with entries

mij = Lp(λi, λj )

is infinitely divisible. Thus we may restrict our attention to the matrices in (6).
Following the ideas in [6] we make the substitution λi = exi , and then write the entries of (6)

as

eνxi + eνxj

exi + exj
= eνxi/2

exi/2

eν(xi−xj )/2 + eν(xj −xi )/2

e(xi−xj )/2 + e(xj −xi )/2

eνxj /2

exj /2
.

Thus the matrix in (6) is infinitely divisible if and only if the matrix[
cosh ν(xi − xj )

cosh(xi − xj )

]
, 0 < ν < 1,

is infinitely divisible. This is equivalent to the statement of the following theorem:

Theorem 1. For 0 < ν < 1 the function

f (x) = cosh νx

cosh x

is infinitely divisible.

Proof. We will show that for a, b > 0 the function

cosh bx

cosh(a + b)x

is infinitely divisible. Using the identity

cosh(a + b)x = 2 cosh ax cosh bx − cosh(a − b)x

we obtain
cosh bx

cosh(a + b)x
= 1

2 cosh ax

1

1 − cosh(a−b)x
2 cosh ax cosh bx

. (7)

Let r be any real number in (0, 1). Then for |t | < 1 we have the power series expansion

1

(1 − t)r
=

∞∑
n=0

ant
n,

where the coefficients an are the nonnegative numbers given by a0 = 1 and

an = r(r + 1)(r + 2) · · · (r + m + 1)

m! , m > 1.

Hence we have from (7)(
cosh bx

cosh(a + b)x

)r

= 1

2r (cosh ax)r

∞∑
n=0

an

2n

coshn(a − b)x

coshn ax coshn bx
. (8)

We already know that the function 1/ cosh(x) is infinitely divisible. So the factor outside the sum-
mation in (8) is positive definite. We know also that for 0 � ν � 1, the function cosh(νx)/ cosh(x)



42 R. Bhatia, H. Kosaki / Linear Algebra and its Applications 424 (2007) 36–54

is positive definite. Consider each of the summands in (8). Depending on whether a � b or a � b,
one of

cosh(a − b)x

cosh ax
and

cosh(a − b)x

cosh bx

is positive definite. Hence, in either case

cosh(a − b)x

cosh ax cosh bx

is positive definite, and so are all its nth powers. Thus the series in (8) represents a positive definite
function for 0 < r < 1. This is enough to show that the function in (7) is infinitely divisible. �

2.5. Power difference means

This is not a standard terminology for the following family of means that are of interest and
have been studied in detail in [10,11]. For any real number p let

Kp(a, b) = p − 1

p

ap − bp

ap−1 − bp−1
.

It is understood that

Kp(a, a) = a.

For fixed a and b, the quantity Kp(a, b) is an increasing function of p. This family includes some
of the most familiar means:

K−∞(a, b) = min(a, b),

K−1(a, b) = 2

a−1 + b−1
, the harmonic mean,

K1/2(a, b) = √
ab, the geometric mean,

K1(a, b) = lim
p→1

Kp(a, b) = a − b

log a − log b
, the logarithmic mean,

K2(a, b) = a + b

2
, the arithmetic mean,

K∞(a, b) = max(a, b).

The analysis of these means is very similar to that of Lehmer means.
A small calculation shows that

K1−p(a, b) = ab

Kp(a, b)
, (9)

and as for Lehmer means it is enough to show that for p > 1, the matrix W with entries

wij = 1

Kp(λi, λj )
= p

p − 1

λ
p−1
i − λ

p−1
j

λ
p
i − λ

p
j

(10)

is infinitely divisible. (The reader can check that from this it follows that this matrix is infinitely
divisible also for 1/2 � p < 1; and then using the relation (9) one can see that for p � 1/2, the
matrix M with entries mij = Kp(λi, λj ) is infinitely divisible.)
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So consider the matrix (10) with p > 1. This is infinitely divisible if every matrix of the form[
λν

i − λν
j

λi − λj

]
, 0 < ν < 1, (11)

is infinitely divisible. We can prove this by appealing to Horn’s theorem cited earlier. Alternately,
we can follow our analysis in Section 2.5. Now the function cosh is replaced by sinh and we have
the following theorem in place of Theorem 1. We note that this theorem can be deduced from
Horn’s theorem on schlicht maps, but we give a direct proof akin to our proof of Theorem 1.

Theorem 2. For 0 < ν < 1 the function

g(x) = sinh νx

sinh x
(12)

is infinitely divisible.

Proof. Use the identity

sinh(a + b)x = 2 sinh ax cosh bx − sinh(a − b)x

to obtain
sinh ax

sinh(a + b)x
= 1

2 cosh bx

1

1 − sinh(a−b)x
2 sinh ax cosh bx

.

Let 0 � b � a and 0 < r < 1. We have the expansion(
sinh ax

sinh(a + b)x

)r

= 1

2r coshr bx

∞∑
n=0

an

2n

sinhn(a − b)x

sinhn ax coshn bx
. (13)

Compare this with (8). We know that the function sinh(νx)/ sinh(x) is positive definite for 0 <

ν < 1 (see [6]). Thus the argument used in the proof of Theorem 1 shows that (13) represents
a positive definite function. Since we assumed 0 � b � a, this shows that the function (12) is
infinitely divisible for 1/2 � ν � 1. But if ν is any number in (0, 1) we can choose a sequence

ν = ν0 < ν1 < ν2 < · · · < νm = 1

with νi/νi+1 � 1/2. Then

sinh νx

sinh x
=

m−1∏
i=0

sinh νix

sinh νi+1x

is infinitely divisible since each factor in the product has that property. �

Taking the limit ν ↓ 0 of the function sinh νx
ν sinh x

we get from Theorem 2 another proof of the fact
that the function x

sinh x
is infinitely divisible.

2.6. Stolarsky means

Another favourite family of mean theorists is the class of Stolarsky means defined for −∞ <

γ < ∞ as

Sγ (a, b) =
(

aγ − bγ

γ (a − b)

)1/(γ−1)

=
(

1

b − a

∫ b

a

tγ−1 dt

)1/(γ−1)

.
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For fixed a and b, Sγ (a, b) is an increasing function of γ . Some special values are

S2(a, b) = a + b

2
, the arithmetic mean,

S0(a, b) = a − b

log a − log b
, the logarithmic mean,

S−1(a, b) = √
ab, the geometric mean.

It is understood that

S1(a, b) = lim
γ→1

Sγ (a, b) = 1

e

(
aa

bb

)1/(a−b)

.

This is called the identric mean of a and b.
This family too leads to infinitely divisible matrices. Consider first the case γ > 1, and the

matrix W with entries

wij = 1

Sγ (λi, λj )
=
(

γ (λi − λj )

λ
γ

j − λ
γ

j

)1/(γ−1)

. (14)

From the result proved in Section 2.5 the matrix[
λi − λj

λ
γ

i − λ
γ

j

]

is infinitely divisible, and therefore so is the matrix W in (14). Next let 0 < γ < 1 and consider
the matrix W whose entries are

wij = 1

Sγ (λi, λj )
=
(

λ
γ

i − λ
γ

j

γ (λi − λj )

)1/(1−γ )

.

Again, by the infinite divisibility of (11) this matrix too has that property. Now consider the
case −1 < γ < 0. Then γ = −δ, where 0 < δ < 1. The matrix W with entries

wij = 1

Sγ (λi, λj )
=
(

λδ
i − λδ

j

δ(λi − λj )λ
δ
i λ

δ
j

)1/(δ+1)

, (15)

is a positive Hadamard power of a matrix of the form XLX, where X is a positive diagonal matrix
and L is a Loewner matrix of the form[

λδ
i − λδ

j

λi − λj

]
.

This matrix is infinitely divisible, and therefore so is the matrix W in (15).
Finally, let γ < −1. Then γ = −δ where δ > 1. Let M be the matrix with entries

mij = Sγ (λi, λj ) =
(

δλδ
i λ

δ
j (λi − λj )

λδ
i − λδ

j

)1/(δ+1)

.
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The arguments in the earlier cases can be applied again to show that this matrix is infinitely
divisible.

2.7. Heron means

The pattern established by our examples so far is broken by this family of means defined as

Fα(a, b) = (1 − α)
√

ab + α
a + b

2
, 0 � α � 1.

This is the linear interpolant between the geometric and the arithmetic means, and each member
of this family dominates the geometric mean. Let W be the matrix with entries

wij = 1

Fα(λi, λj )
= 2

α(λi + λj ) + 2(1 − α)
√

λiλj

. (16)

The question of positive definiteness of such matrices has been studied in [3]. Changing variables,
this reduces to the question: for what values of t is the matrix V with entries

vij = 1

λ2
i + λ2

j + tλiλj

(17)

infinitely divisible? It has been observed in [2] that V is infinitely divisible for −2 < t � 2. When
n = 2, the matrix V is known to be positive definite for all t > −2; hence it is infinitely divisible
as well. In general, however, a matrix of the form V need not be positive definite for t > 2 (see
[6]).

Returning to (16), we can conclude from the discussion above that the matrix W is infinitely
divisible for 1/2 � α � 1. However, when 0 < 1/2 < α not all such matrices are positive definite,
even though the mean Fα dominates the geometric mean.

As observed in [6], the positive definiteness of all matrices V of the form (17) for −2 < t � 2
is equivalent to the positive definiteness of the function

f (x) = 1

cosh x + t
, −1 < t � 1. (18)

The infinite divisibility of the matrices V shows that this function is, in fact, infinitely divisible.
We discuss this again in Section 3.

3. Further results and remarks

More theorems on positive definiteness and infinite divisibility can be obtained from the exam-
ples in Section 2. As in our earlier work, Schur’s theorem, congruence, positive definite functions,
and hyperbolic functions play an important role.

Theorem 3. The function

f (x) = x cosh ax

sinh x
(19)

is infinitely divisible for −1/2 � a � 1/2.

Proof. Making the substitution λi = exi , the matrix W in (2) may be written as

wij = xi − xj

exi − exj
= 1

exi/2

(xi − xj )/2

sinh(xi − xj )/2

1

exj /2
.
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So, the infinite divisibility of W implies that the function x/ sinh x is infinitely divisible. The
identity

x cosh ax

sinh x
= x/2

sinh x/2

cosh ax

cosh x/2

displays f (x) as the product of two functions, the first of which is infinitely divisible, and by
Theorem 1 so is the second, provided −1/2 � a � 1/2. �

In [6,16,9,10] the positive definiteness of functions like (19) was used to obtain inequalities
for norms of operators. The next corollary of Theorem 3 is a refinement of some of these. Here
||| · ||| stands for a unitarily invariant norm (see [1, Chapter IV] for instance).

Corollary. Let A and B be positive definite matrices and let X be any matrix. Then for 1/4 �
ν � 3/4 we have

1

2
|||AνXB1−ν + A1−νXBν ||| �

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
AtXB1−t dt

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ . (20)

Proof. As explained in [6,9], this inequality is a consequence of the positive definiteness of the
matrix V with entries

vij = λν
i λ

1−ν
j + λ1−ν

i λν
j

2

log λi − log λj

λi − λj

for 1/4 � ν � 3/4. Making the substitution λi = exi , a small calculation shows

vij = (xi − xj )/2 · cosh((2ν − 1)(xi − xj )/2)

sinh(xi − xj )/2
.

The positive definiteness of all such matrices is equivalent to the function (19) being positive
definite. �

To put the inequality (20) in perspective, let us recall the generalised Heinz inequality proved
by Bhatia and Davis [4]:

|||A1/2XB1/2||| � 1

2
|||AνXB1−ν + A1−νXBν ||| � 1

2
|||AX + XB|||

for 0 � ν � 1; and the operator arithmetic–logarithmic–geometric mean inequality proved by
Hiai and Kosaki [9]

|||A1/2XB1/2||| �
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1

0
AtXB1−t dt

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ � 1

2
|||AX + XB|||.

The inequality (20) is a refinement of these two.
The next two propositions are generalisations of Theorems 1 and 2, respectively.

Proposition 4. Let ν1, ν2, . . . , νn be nonnegative real numbers and suppose
∑n

i=1 νi � 1. Then
the function

f (x) =
∏n

i=1 cosh(νix)

cosh x



R. Bhatia, H. Kosaki / Linear Algebra and its Applications 424 (2007) 36–54 47

is infinitely divisible. In particular, if n and m are positive integers with n � m, then the function
coshm x/ cosh(nx) is infinitely divisible.

Proof. We use induction on n. The case n = 1 is covered by Theorem 1. Eq. (8) can be written
in another form as(

cosh ν1x

cosh x

)r

= 2−r

cosh(1 − ν1)x

∞∑
n=0

an

2n

coshn(1 − 2ν1)x

coshn(1 − ν1)x coshn ν1x
.

Multiply both sides of this equation by
(∏n

i=2 cosh νix
)r to get(∏n

i=1 cosh νix

cosh x

)r

= 2−r

(∏n
i=2 cosh νix

cosh(1 − ν1)x

)r ∞∑
n=0

an

2n

coshn(1 − 2ν1)x

coshn(1 − ν1)x coshn ν1x
.

Since
∑n

i=2 νi � 1 − ν1, the induction hypothesis implies that(∏n
i=2 cosh νix

cosh(1 − ν1)x

)r

is positive definite. The infinite divisibility of f can now be deduced by repeating the arguments
in Theorem 1. �

Proposition 5. Let ν0, ν1, . . . , νn be nonnegative real numbers. Suppose
∑n

i=0 νi � 1 and∑n
i=1 νi � 1/2. Then the function

f (x) = sinh ν0x
∏n

i=1 cosh νix

sinh x
(21)

is infinitely divisible.

Proof. The function f can be expressed as

f (x) = sinh ν0x

sinh
(
1 −∑n

i=1 νi

)
x

sinh
(
1 −∑n

i=1 νi

)
x
∏n

i=1 cosh νix

sinh x
.

The given conditions imply that ν0 � 1 −∑n
i=1 νi . So, by Theorem 2 the first factor in the product

above is infinitely divisible. So to prove the infinite divisibility of the function (21) we may, and
do, assume that ν0 = 1 −∑n

i=1 νi . Then, we have ν0 � 1/2 by the given conditions. As in the
proof of Theorem 2, we have instead of (13) the equality(

sinh ν0x

sinh x

)r

= 2−r

coshr (1 − ν0)x

∞∑
n=0

an

2n

sinhn(2ν0 − 1)x

sinhn ν0x coshn(1 − ν0)x
.

Hence(
sinh ν0x

∏n
i=1 cosh νix

sinh x

)r

= 2−r

(∏n
i=1 cosh νix

cosh(1 − ν0)x

)r ∞∑
n=0

an

2n

sinhn(2ν0 − 1)x

sinhn ν0x coshn(1 − ν0)x
.

The factor outside the summation is positive definite by Proposition 4. The function represented
by the infinite sum above is positive definite by the argument used for the sum in (13). Hence f

is infinitely divisible. �
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Remark. The requirements in Proposition 5 are optimal: it is known that if a, b � 0 and a + b �
1, then the function

sinh ax cosh bx

sinh x

is positive definite if and only if b � 1/2 (see [17]).
We observed in Section 2 that the function (18) is infinitely divisible. This may be concluded

also by a calculation of Fourier transforms that may have independent interest.

Proposition 6. The Fourier transform of the function

f (x) = 1

(cosh x + t)r
, −1 < t < 1, 0 < r < 1

is given by the formula

f̂ (ξ) = 2 sin �r

sinh �ξ

[∫ arccos t

0

sinh(αξ) dα

(cos α − t)r
+
∫ ∞

0

sin(αξ) dα

(cosh α − t)r

]
. (22)

Proof. We use the well-known integral

xr = sin �r

�

∫ ∞

0

x

x + λ

dλ

λ1−r
, x � 0

to write f as

f (x) = sin �r

�

∫ ∞

0

(cosh x + t)−1

(cosh x + t)−1 + λ

dλ

λ1−r

= sin �r

�

∫ ∞

0

1

λ(cosh x + t) + 1

dλ

λ1−r

= sin �r

�

∫ ∞

0

1

cosh x + t + 1
λ

dλ

λ2−r

= sin �r

�

[∫ 1
1−t

0

1

cosh x + t + 1
λ

dλ

λ2−r
+
∫ ∞

1
1−t

1

cosh x + t + 1
λ

dλ

λ2−r

]
. (23)

The quantity t + 1/λ appearing in the denominators decreases from ∞ to 1 as λ varies from 0
to 1/(1 − t), and it decreases from 1 to t as λ varies from 1/(1 − t) to ∞. Change variables by
putting

u = t + 1

λ

(
and hence du = −dλ

λ2
, λ = (u − t)−1

)
.

Then we obtain from (23)

f (x) = sin �r

�

[∫ ∞

1

1

cosh x + u

du

(u − t)r
+
∫ 1

t

1

cosh x + u

du

(u − t)r

]
. (24)

Using Fubini’s theorem we get from (24)

f̂ (ξ) = sin �r

�
[I1 + I2],
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where

I1 =
∫ ∞

1
ĝ(ξ)

du

(u − t)r
, I2 =

∫ 1

t

ĝ(ξ)
du

(u − t)r
. (25)

The Fourier transform of g is known (see, e.g., [5, Section 3]). When u > 1 we have

ĝ(ξ) = 2�√
u2 − 1

sin(ξ arccosh u)

sinh �ξ
.

Put this into (25) and then change the variable u to cosh α. This gives

I1 = 2�

sinh �ξ

∫ ∞

0

sin αξ

(cosh α − t)r
dα.

When −1 < u < 1 we have

ĝ(ξ) = 2�√
1 − u2

sinh(ξ arccos u)

sinh �ξ
.

Put this expression into (25) and then change the variable u to cos α. This gives

I2 = 2�

sinh �ξ

∫ arccos t

0

sinh αξ

(cos α − t)r
dα.

Putting everything together we get the formula (22). �

We claim that f̂ (ξ) � 0 for all ξ . Being the Fourier transform of the even function f (x), f̂ is
even. Hence it suffices to show that f̂ (ξ) � 0 for all ξ > 0. Consider, one by one, the quantities
occurring on the right hand side of (22). The factor outside the brackets is clearly positive. So is the
first of the two integrals. For fixed ξ and t , the function (cosh α − t)−r decreases monotonically
as α increases while sin αξ is oscillatory. Hence the second integral in (22) is also positive. Thus
f̂ (ξ) � 0.

It follows from Bochner’s theorem that the function f of Proposition 6 is positive definite.
Hence the function (18) is infinitely divisible.

We end this section with a few remarks and questions.
In the earlier works [6,11], several ratios of means have been studied and many matrices arising

from these have been proved to be positive definite. It seems most of them are also infinitely
divisible. Several more examples using computations with Fourier transforms will appear in the
paper by Kosaki [17]. In a recent paper Drissi [7] has shown that the function in (19) is positive
definite if and only if −1/2 � a � 1/2. His argument too is based on a calculation of Fourier
transforms.

Two general questions are suggested by our work. Let L± be the classes of all differentiable
functions from [0, ∞) into itself for which all matrices of the form[

f (λi) ± f (λj )

λi ± λj

]
are positive definite. Let M± be the classes consisting of those f for which all these matrices are
infinitely divisible.

The class L− is the Loewner class and consists of all operator monotone functions. Horn’s
theorem says that M− consists of those functions in L− whose analytic continuations map the
upper half-plane into itself univalently. It is known that L− ⊂ L+ (see [15] or [6]).
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Question 1. Is M− ⊂ M+?

Question 2. Are there any good characterisations of the classes L+ and M+? (The theroems of
Loewner and Horn give interesting descriptions of L− and M−, respectively.)

Appendix

We have the well-known formula∫ ∞

−∞
eixξ dx

coshr x
= 2r−1|�((r + iξ)/2)|2

�(r)
. (26)

See, e.g., [18, p. 33] and [11, p. 138]. On the other hand, putting t = 0 in (22) we see that this is
also equal to

2 sin �r

sinh �ξ

[∫ �/2

0

sinh αξ

cosr α
dα +

∫ ∞

0

sin αξ

coshr α
dα

]
. (27)

In this appendix, we clarify the relation between these two expressions.
We set

D =
{{z ∈ C; Re z > 0 and |Im z| < arccos t} if t ∈ [0, 1),

{z ∈ C; Re z > 0 and − �/2 < Im z < arccos t} if t ∈ (−1, 0).

Then, (cosh z − t)r (= exp(r log(cosh z − t)) makes sense as a (single-valued) holomorphic func-
tion on D: We note

cosh z − t = cosh a cos b − t + i sinh a sin b (for z = a + ib ∈ D).

(i) Case t � 0: Since cos b > t � 0, we have

Re(cosh z − t) = cosh a cos b − t � cos b − t > 0.

(ii) Case t < 0: For b ∈ (−�/2, �/2) we have cos b > 0 and hence Re(cos z − t) > 0 as above.
On the other hand, for b ∈ [�/2, arccos t) we have

Im(cosh z − t) = sinh a sin b > 0.

In either case the range of cosh z − s stays in C\(−∞, 0] so that log(cosh z − t) indeed makes
sense on D in the standard way.

Note cosh(i arccos t) − t = 0 but i arccos t /∈ D, and cosh z − t does not have a zero in D.
Therefore, (for a fixed real number ξ ) the function

f (z) = sin zξ

(cosh z − t)r

is holomorphic on D. We note that

| cosh(a + ib) − t |2 = (cosh a cos b − t)2 + (sinh a sin b)2

= sinh2 a + cos2 b − 2t cosh a cos b + t2. (28)
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Lemma A.1. For each t ∈ (−1, 1) and r ∈ (0, 1) we have∫ arccos t

0

sinh αξ

(cos α − t)r
dα +

∫ ∞

0

sin αξ

(cosh α − t)r
dα

=
∫ ∞

0

cosh(ξ arccos t) sin(ξs) + i sinh(ξ arccos t) cos(ξs)(
t (cosh s − 1) + i

√
1 − t2 sinh s

)r ds.

Proof. We fix an ε > 0 sufficiently small and a large N > 0. Let R (⊆ D) be the rectangular
region with vertices ε, N , N + i(arccos t − ε) and ε + i(arccos t − ε) so that ∂R is the contour
(oriented counterclock-wise) consisting of the four oriented edges

C1 : ε → N,

C2 : N → N + i(arccos t − ε),

C3 : N + i(arccos t − ε) → ε + i(arccos t − ε),

C4 : ε + i(arccos t − ε) → ε.

Cauchy’s theorem says

4∑
i=1

∫
Ci

f (z) dz =
∫

∂R

f (z) dz = 0, (29)

and we will let ε → 0 here.
From the definition we directly compute

∫
C3

f (z) dz = −
∫ N

ε

cosh((arccos t − ε)ξ) sin(ξs) + i sinh((arccos t − ε)ξ) cos(ξs)

(cosh s cos(arccos t − ε) − t + i sinh s sin(arccos t − ε))r
ds.

We use the dominated convergence theorem to see its behavior as ε → 0. The numerator of the
integrand obviously stays bounded, and we need to estimate the (reciprocal of the) denominator.
We have

∣∣ cosh s cos(arccos t − ε) − t + i sinh s sin(arccos t − ε)
∣∣2

= sinh2 s + (
cos2(arccos t − ε) − 2t cos(arccos t − ε) cosh s + t2)

� (1 − t2) sinh2 s.

Here, the first equality is a consequence of (28), and for the second inequality we note that the
difference of the two sides is

(
cos2(arccos t − ε) − 2t cos(arccos t − ε) cosh s + t2)+ t2 sinh2 s

= cos2(arccos t − ε) − 2t cosh s cos(arccos t − ε) + t2 cosh2 s

= (cos(arccos t − ε) − t cosh s)2 � 0.

Consequently, the modulus of the above integrand is majorized by a constant multiple of sinh−r s,
which is integrable over the interval [0, N ]. The dominated convergence theorem thus guarantees
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lim
ε→0

∫
C3

f (z) dz = −
∫ N

0

cosh(ξ arccos t) sin(ξs) + i sinh(ξ arccos t) cos(ξs)(
t (cosh s − 1) + i

√
1 − t2 sinh s

)r ds. (30)

Secondly, from the definition we have∫
C4

f (z) dz = −i
∫ arccos t−ε

0

sin(εξ) cosh(ξs) + i cos(εξ) sinh(ξs)

(cosh ε cos s − t + i sinh ε sin s)r
ds.

In this case, we estimate

| cosh ε cos s − t + i sinh ε sin s|2 = sinh2 ε + cos2 s − 2t cosh ε cos s + t2 � (cos s − t)2,

or equivalently,

sinh2 ε − 2t cos s(cosh ε − 1) = cosh2 ε − 2t cos s cosh ε + 2t cos s − 1 � 0.

Indeed, the quadratic polynomialg(X) = X2 − 2(t cos s)X + 2t cos s − 1 takes a minimum value
at X = t cos s (< 1 for s ∈ [0, arccos t]) and g(X) � g(1) = 0 for X = cosh ε � 1. Thus, the
integrand is majorized by a constant multiple of (cos s − t)−r . The integrability of this majorant
over the interval [0, arccos t] (together with the dominated convergence theorem again) yields

lim
ε→0

∫
C4

f (z) dz =
∫ arccos t

0

sinh sξ

(cos s − t)r
ds. (31)

We obviously have

lim
ε→0

∫
C1

f (z) dz =
∫ N

0

sin sξ

(cosh s − t)r
ds, (32)

and the sum of (30)–(32) and limε→0
∫
C2

f (z) dz is zero (due to (29)). Then, by letting N → ∞,
we get the result since limN→∞ of the last quantity disappears thanks to the obvious estimate∣∣ ∫

C2
f (z) dz

∣∣ = O(e−rN ) (based on (28)). �

When t = 0, Lemma A.1 says

∫ �/2

0

sinh αξ

cosr α
dα +

∫ ∞

0

sin αξ

coshr α
dα

=
∫ ∞

0

cosh(�ξ/2) sin(ξs) + i sinh(�ξ/2) cos(ξs)

(i sinh s)r
ds

= e−i�r/2
[

cosh(�ξ/2)

∫ ∞

0

sin ξs

sinhr s
ds + i sinh(�ξ/2)

∫ ∞

0

cos ξs

sinhr s
ds

]
(33)

thanks to (i sinh s)r = (ei�/2 sinh s)r = ei�r/2 sinhr s.

Lemma A.2.∫ ∞

0

sin ξs

sinhr s
ds = 2r−1|� ((r + iξ)/2) |2�(1 − r)

�
· cos(�r/2) sinh(�ξ/2),

∫ ∞

0

cos ξs

sinhr s
ds = 2r−1|� ((r + iξ)/2) |2�(1 − r)

�
· sin(�r/2) cosh(�ξ/2).
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With this lemma (whose proof is postponed) the quantity (33) is

e−i�r/2 sinh(�ξ/2) cosh(�ξ/2) × 2r−1|�((r + iξ)/2)|2�(1 − r)

�
× (cos(�r/2) + i sin(�r/2))

= sinh �ξ

2
× 2r−1|�((r + iξ)/2)|2�(1 − r)

�
.

Consequently, the quantity given by (27) is equal to

2 sin �r

sinh �ξ
× sinh �ξ

2
× 2r−1|�((r + iξ)/2)|2�(1 − r)

�

= sin �r�(1 − r)

�
× 2r−1|�((r + iξ)/2)|2,

which is exactly (26) since �(r)�(1 − r) = �/ sin �r .

Proof of Lemma A.2. We set t = − 1
2 × log(1 − x) so that

e−2t = 1 − x and sinh x = 1

2

(
1√

1 − x
− √

1 − x

)
= x

2
√

1 − x
.

Since dt = dx/2(1 − x), this change of variables gives us

∫ ∞

0

sin ξs

sinhr s
ds =

∫ 1

0

sin
(
− ξ

2 log(1 − x)
)

(
x/2

√
1 − x

)r dx

2(1 − x)

= 2r−1
∫ 1

0
(1 − x)

r
2 −1x−r sin

(
−ξ

2
log(1 − x)

)
dx

= 2r−1 Im

(∫ 1

0
(1 − x)

r
2 −1− iξ

2 x−r dx

)
,

∫ ∞

0

cos ξs

sinhr s
ds = 2r−1 Re

(∫ 1

0
(1 − x)

r
2 −1− iξ

2 x−r dx

)
.

With these expressions we get the lemma from the following:∫ 1

0
(1 − x)

r
2 −1− iξ

2 x−r dx

= B((r − iξ)/2, 1 − r) = � ((r − iξ)/2) �(1 − r)

�(1 − (r + iξ)/2)

= sin(�(r + iξ)/2)�((r + iξ)/2)�((r − iξ)/2)�(1 − r)

�

= |�((r + iξ)/2)|2�(1 − r)

�
× sin (�(r + iξ)/2),

where we have used the identities �(z)�(1 − z) = �/ sin �z and �(z̄) = �(z) (a consequence of
Schwarz’ reflection principle). �
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