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Abstract

We investigate the equivalence of quantum mixed states under local
unitary transformations. For a class of rank-two mixed states, a suffi-
cient and necessary condition of local equivalence is obtained by giving
a complete set of invariants under local unitary transformations, such
that two states in this class are locally equivalent if and only if all these
invariants have equal values for them.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

Quantum entanglement has been extensively investigated as a key physical resource to re-

alize quantum information tasks such as quantum cryptography, quantum teleportation and

quantum computation [1]. Due the fact that the properties of entanglement for multipartite

quantum systems remain invariant under local unitary transformations on the subsystems,

the entanglement can be characterized in principle by all the invariants under local unitary

transformations. For instance, the trace norms of realigned or partial transposed density

matrices in entanglement measure and separability criteria are some of these invariants [2].

Therefore a complete set of invariants gives rise to the classification of the quantum states

under local unitary transformations. Two quantum states are locally equivalent if and only

if all these invariants have equal values for these states.

There have been many results on calculation of invariants [3, 4] related to the equivalence

of quantum states under local unitary transformations, e.g. for general two-qubit systems

[5], three-qubit states [6, 7], some generic mixed states [8, 9, 10], some classes of tripartite

pure and mixed states [11]. However till now we still have no operational criteria to judge
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the equivalence for two general bipartite mixed states under local unitary transformations.

In this letter we investigate the local equivalence under local unitary transformations for a

class of rank-two bipartite mixed quantum states in arbitrary dimensions, and present an

operational criterion.

Let H1 and H2 be m and n-dimensional complex Hilbert spaces, with |eα〉, α = 1, ..., m,

and |fβ〉, β = 1, ..., n, m ≤ n, as orthonormal bases. Let ρ1 and ρ2 be two bipartite density

matrices defined on H1⊗H2 with rank r(ρ1) = r(ρ2) = 2. ρ1 and ρ2 are said to be equivalent

under local unitary transformations if there exist unitary operators U1 on H1 and U2 on H2

such that

ρ2 = (U1 ⊗ U2)ρ1(U1 ⊗ U2)
†, (1)

where † stands for transpose and conjugation.

As ρ1 and ρ2 are rank-two density matrices, they have the following decompositions

according to their eigenvalues and eigenvectors:

ρi =
2
∑

α=1

λi
α|νi

α〉〈νi
α|, i = 1, 2,

where λi
α and |νi

α〉, α = 1, 2, are the nonzero eigenvalues and eigenvectors of the density

matrix ρi respectively,
∑2

α=1 λ
i
α = 1. |νi

α〉 has generally the form

|νi
1〉 =

m
∑

α=1

n
∑

β=1

ai
αβ|eα〉 ⊗ |fβ〉, |νi

2〉 =
m
∑

α=1

n
∑

β=1

biαβ |eα〉 ⊗ |fβ〉,

where ai
αβ , b

i
αβ ∈ C,

∑

αβ a
i
αβa

i∗
αβ =

∑

αβ b
i
αβb

i∗
αβ = 1, i = 1, 2, ∗ denotes complex conjugation.

Let Ai and Bi denote the m × n matrices with entries a
(i)
αβ and b

(i)
αβ respectively. We

consider the necessary and sufficient conditions of equivalence under local unitary transfor-

mations for a class of rank-two states satisfying the following conditions:

A†
iAi = B†

iBi, AiA
†
i = BiB

†
i for i = 1, 2. (2)

[Theorem] The density matrices ρ1 and ρ2 are equivalent under local unitary transfor-

mations if and only if the following hold:

(i) Tr(ρ2
1) = Tr(ρ2

2);

(ii) Tr((A1B
†
1)

α) = Tr((A2B
†
2)

α), ∀ α = 1, ..., m;

(iii) r(A1) = r(A2), r(B1) = r(B2), r((B
†
1A1)

α) = r((B†
2A2)

α), ∀ α = 1, ..., m.

[Proof] It is straightforward to see that (i)-(iii) above hold if ρ1 and ρ2 are equivalent

under local unitary transformations, in the sense of eq.(1).

We prove the converse. Two pairs of (m × n) matrices, (A,B) and (C,D), are called

contragrediently equivalent if A = SCT−1, B = TDS−1 for some invertible matrices S
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and T . It is shown in [12] that the pairs (A,B) and (C,D) are contragrediently equivalent

if and only if AB is similar to CD and r(A) = r(C), r(B) = r(D), r(BA)α = r(DC)α,

r(AB)α = r(CD)α for all α = 1, ..., m.

Therefore from the conditions (ii) and (iii) we have that the pairs (A1, B
†
1) and (A2, B

†
2)

are contragrediently equivalent and there are invertible (but not necessarily unitary) matri-

ces S and T such that

SA2 = A1T, TB−1
2 = B−1

1 S. (3)

Eq. (3) can be rewritten as,

(

0 T
S 0

)(

0 A2

B†
2 0

)

=

(

0 B†
1

A1 0

)(

0 T
S 0

)

.

By assumption (2), the matrices W1 :=

(

0 A2

B†
2 0

)

and W2 :=

(

0 B†
1

A1 0

)

are normal.

If two normal matrices M , N and an invertible matrix X satisfy XMX−1 = N , then one

has UXMU †
X = N , where X = UX |X| is the polar decomposition of X and UX is unitary

[13]. Therefore from the observation that the unitary part of the polar decomposition in
(

0 S
T 0

)

is nothing but

(

0 US

UT 0

)

, we have

(

0 UT

US 0

)(

0 A2

B†
2 0

)

=

(

0 B†
1

A1 0

)(

0 UT

US 0

)

,

which is equivalent to

A2 = U †
SA1UT , B2 = U †

SB1UT .

Here US and UT are unitary (as S, T are invertible). The condition (i) and Tr(ρ1) =

Tr(ρ2) = 1 together imply that the density matrices ρ1 and ρ2 have the same eigenvalues.

Therefore ρ2 = (U1 ⊗ U2)ρ1(U1 ⊗ U2)
†, where U1 = U †

S, U2 = (UT )t (t denoting transpose).

2

The Theorem gives a sufficient and necessary condition for local equivalence of two rank-

two mixed states satisfying (2). The class of quantum states satisfying (2) is not trivial.

As a simple example, we consider the two-qubit systems. In this case A and B are 2 × 2

matrices. It is easily verified that the following matrices satisfy the required conditions,

A(θ) =
1√
2

(

cos θ sin θ
− sin θ cos θ

)

, B(γ) =
1√
2

(

cos γ sin γ
sin γ − cos γ

)

.

Hence the rank-two density matrix ρ = λ|ψ〉〈ψ|+(1−λ)|φ〉〈φ|, where |ψ〉 =
∑2

α,β=1 aαβ(θ)|eα〉⊗
|fβ〉, |φ〉 =

∑2
α,β=1 bαβ(γ)|eα〉 ⊗ |fβ〉, belongs to the class we are concerning. From the theo-

rem we have that ρ and ρ′ = λ|ψ′〉〈ψ′|+(1−λ)|φ′〉〈φ′| with |ψ′〉 =
∑2

α,β=1 aαβ(θ′)|eα〉⊗ |fβ〉,
|φ′〉 =

∑2
α,β=1 bαβ(γ′)|eα〉 ⊗ |fβ〉, are equivalent under local unitary transformations.

3



Here the concurrence C(|ψ〉) = C(|φ〉) = 1. Both pure states |ψ〉 and |φ〉 are maximally

entangled. In the special case θ = 0 (resp. γ = 0), |ψ〉 (resp. |φ〉) is reduced to one of the Bell

bases |ψ〉 = (|00〉 + |11〉)/
√

2 (resp. |φ〉 = (|00〉 − |11〉)/
√

2). These states are equivalent

under local unitary transformations. Nevertheless, generally ρ and ρ′ are not equivalent

under local unitary transformations even if |ψ〉 (resp. |φ〉) is equivalent to |ψ′〉 (resp. |φ′〉)
under local unitary transformations, unless the same local unitary transformations transform

|ψ〉 to |ψ′〉 and |φ〉 to |φ′〉 simultaneously.

Generally a rank-two state can be written as ρ = λ|ν1〉〈ν1| + (1 − λ)|ν2〉〈ν2|, 0 < λ <

1. The normalized vectors |ν1〉 and |ν2〉 are given by the m × n matrices (A)αβ = aαβ

and (B)αβ = bαβ respectively, |ν1〉 =
∑

αβ aαβ |eα〉 ⊗ |fβ〉, |ν2〉 =
∑

αβ bαβ |eα〉 ⊗ |fβ〉, with

Tr(AA†) = Tr(BB†) = 1 due to normalization. Let us consider the general forms of a pair

of matrices A and B such that the conditions A†A = BB† and AA† = BB† are satisfied.

Since A†A = B†B, we can write down singular value decomposition of A and B as

follows:

A = U∆V †, B = U ′∆V ′†,

where U , U ′ and V , V ′ are unitary matrices and ∆ is a diagonal matrix with nonnegative

entries. Furthermore, the condition A†A = B†B implies V ′†V∆2 = ∆2V ′†V . Thus, V ′†V

commutes with ∆. Similarly from AA† = BB† we conclude that U ′†U also commutes with

∆. Hence we have

B = U ′∆V ′† = UU †U ′∆V ′†V V † = UΓ∆V †, (4)

where Γ = (U ′†U)†V ′†V is unitary and commutes with ∆. Therefore the pair (A,B) can be

transformed into the pair (∆,Γ∆). We call (∆,Γ∆) the canonical form of the pair (A,B).

If the diagonal matrix ∆ is of the form diag(d1, ..., d1, d2, ..., d2, ..., dk, ..., dk), where di is

repeated with multiplicity mi, then Γ must have the block diagonal form diag(Γ1, ...,Γk),

where Γi, i = 1, ..., k, are mi ×mi unitary matrices.

In fact, if we have another pair of matrices A′ and B′, associated with the eigenvectors

|ν ′1〉 and |ν ′2〉 of another rank-two density matrix in the class considered, with canonical form

(∆′,Γ′∆′), then |ν ′1〉, |ν ′2〉 and |ν1〉, |ν2〉 are equivalent under local unitary transformations if

and only if ∆ = ∆′ and wiΓiw
†
i = Γ′

i for some unitary matrix wi, i = 1, ..., k.

Therefore under the local unitary transformation ρ → (U ⊗V ∗)ρ(U ⊗V ∗)†, a rank-two

mixed state in our class has the standard form: ρ = λ|µ1〉〈µ1|+(1−λ)|µ2〉〈µ2|, where |µ1〉 =
∑

α dα|eα〉 ⊗ |fα〉, |µ2〉 =
∑

αβ(Γ∆)αβ |eα〉 ⊗ |fβ〉. In particular, if all the singular values are

distinct, then two such density matrices are equivalent under local unitary transformation

if and if they have exactly the same standard form.

We have investigated the equivalence under local unitary transformations for a class of

rank-two bipartite mixed quantum states. A complete set of invariants has been presented
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such that any two of these states are locally equivalent if and only if all these invariants

have equal values for these related density matrices.

Our method can be applied to another classification of quantum states, defined by local

operations and classical communication (LOCC). Two states have the same kind of entan-

glement if they can be obtained from each other by LOCC with nonzero probability [14].

There have been many results for bipartite and multipartite pure states for their equiva-

lence under SLOCC [15, 16, 17]. In [15] Dür et al showed that for pure three-qubit states

there are six different classes of entanglement under SLOCC. Verstraete et al considered the

entanglement of four-qubit case under SLOCC and concluded that there exist nine families

of states corresponding to nine different ways of entanglement [16]. Nevertheless for mixed

states few is known yet.

Corresponding to pure states, we say that ρ1 and ρ2 are equivalent under SLOCC if

there exist invertible (but not necessarily unitary) matrices P and Q such that

ρ2 = (P ⊗Q)ρ1(P ⊗Q)†. (5)

[Proposition] The density matrices ρ1 and ρ2, with B1 and B2 nonsingular, are equivalent

under SLOCC if the following hold:

(i) Tr(ρ2
1) = Tr(ρ2

2);

(ii) Tr((A1B
−1
1 )α) = Tr((A2B

−1
2 )α), ∀ α = 1, ..., m;

(iii) r(A1) = r(A2), r(B1) = r(B2), r((B
−1
1 A1)

α) = r((B−1
2 A2)

α), ∀ α = 1, ..., m.

[Proof] From the conditions (ii) and (iii) we have that the pairs (A1, B
−1
1 ) and (A2, B

−1
2 )

are contragrediently equivalent. Hence there are invertible (but not necessarily unitary)

matrices S and T such that SA2 = A1T , TB−1
2 = B−1

1 S.

That is, we have A2 = S−1A1T, B2 = S−1B1T . Accounting to the condition (i) which

implies that the density matrices ρ1 and ρ2 have the same eigenvalues, the above relations

give rise to the equivalence of ρ1 and ρ2 under SLOCC. 2

The classification of quantum states under local operations is of significance in quan-

tum information processing. We have presented some criteria for the equivalence of some

bipartite mixed states in arbitrary dimensions. Our results can be generalized to the case

of multipartite states by considering bipartite decompositions. In terms of the method used

in [11], our equivalence criteria for bipartite mixed states can be also used to study the

equivalence of tripartite pure states.
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