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Abstract
If A is a real symmetric matrix and P is an orthogonal projection

onto a hyperplane, then we derive a formula for the Moore-Penrose
inverse of PAP . As an application, we obtain a formula for the Moore-
Penrose inverse of a Euclidean distance matrix (EDM) which gener-
alizes formulae for the inverse of a EDM in the literature. To an
invertible spherical EDM, we associate a Laplacian matrix (which we
define as a positive semidefinite n× n matrix of rank n− 1 and with
zero row sums) and prove some properties. Known results for distance
matrices of trees are derived as special cases. In particular, we obtain
a formula due to Graham and Lovász for the inverse of the distance
marix of a tree. It is shown that if D is a nonsingular EDM and L is
the associated Laplacian, then D−1−L is nonsingular and has a non-
negative inverse. Finally, infinitely divisible matrices are constructed
using EDMs.

1 Introduction and Preliminaries

A real symmetric n×n matrix D is called a Euclidean distance matrix (EDM)
if there exist points p1, p2, . . . , pn ∈ Rk such that

dij = (pi − pj)
′
(pi − pj), i, j = 1, 2, . . . , n.

∗This author was supported by the National Board for Higher Mathematics, funded by
Department of Atomic Energy, Government of India.
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(As usual, the transpose of a matrix A is denoted A′.) EDMs have a wide
literature and applications. For details, we refer to Schoenberg [14], Gower
[7], Johnson and Tarazaga [12] and the references therein. In [15], Styan and
Subak-Sharpe discuss electrical network theory through EDMs. They obtain
an expression for the inverse of a EDM and give physical interpretations in
terms of networks.

Let
1 = (1, 1, ..., 1)

′
,

be the vector of all ones in Rn. Schoenberg [14] showed that a nonnegative
symmetric matrix D with zero diagonal is a EDM if and only if

F := −1

2
(I − 11′

n
)D(I − 11′

n
)

is positive semidefinite (p.s.d.). If F = XX ′ is a decomposition of F then
the rows of X give coordinates of points that generate D. In [15], it is shown
that if D is an invertible EDM then

D−1 = −Y + uu′,

where u is a nonzero vector in Rn and Y is the symmetric matrix satisfying
the conditions (1) Y is p.s.d., (2) rank(Y ) = n− 1, and (3) 1′Y = 0. It can
be shown that Y is the Moore-Penrose inverse, F †, of F . (The definition of
Moore-Penrose inverse is given later in this section.) It is easy to see that
P := I − 11′

n
is the orthogonal projection onto the hyperplane {1}⊥.

Motivated by these results, we find a formula for the Moore-Penrose in-
verse of PAP where A is any symmetric matrix and P is the orthogonal
projection onto the hyperplane {a}⊥, where a ∈ Rn is in the column space
of A, satisfying a′A†a 6= 0. If D is a EDM, Gower [8] proved that 1 is in
the column space of D and 1′D†1 ≥ 0. When 1′D†1 > 0, Gower [8] showed
that there exists a sphere of radius 1′D†1 such that D is the EDM of points
on the sphere. If such a sphere exists then we will say that D is a spherical
EDM. We give an expression for the Moore-penrose inverse of a spherical
EDM. This generalizes the result proved by Styan and Subak-Sharpe [15].
We define the notion of a Laplacian matrix for nonsingular spherical EDMs
which satisfy 1′D−11 > 0 and prove various properties in connection with
EDMs. For nonspherical EDMs, we get an expression for the Moore-Penrose
inverse by choosing the orthogonal projection onto the hyperplane {D1}⊥.
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Distance matrices of trees have a close interconnection with EDMs. A
tree is a connected acyclic graph. The (i, j)-element of the distance matrix
of a tree is the length of the shortest path between vertices i and j of the
tree. Distance matrices of trees are special cases of nonsingular spherical
EDMs. In [9], Graham and Lovász obtained a significant formula for the
inverse of the distance matrix of a tree. The inverse is expressed as a sum of
the Laplacian matrix of the tree and a matrix of rank one. By specializing
our results to distance matrices of trees we derive the Graham and Lovász
formula and also a well-known formula for the determinant of the distance
matrix of a tree due to Graham and Pollack [10].

In Section 5 we show that if D is a nonsingular EDM and L is any
Laplacian matrix, then D−1−L is a nonsingular matrix and has a nonnegative
inverse.

The last section brings out some connections between EDMs and infinitely
divisible matrices. In particular, we construct examples of infinitely divisible
matrices based on EDMs.

We now introduce some definitions.

Definition 1.1 Let A be a real n× n matrix. Then H is called a g-inverse
of A if AHA = A. If HAH = H then we say that H is an outer-inverse of
A.

Definition 1.2 Let A ∈ Rn×n. Then Moore-Penrose inverse of A is a
matrix A† satisfying the equations: AA†A = A, A†AA† = A†, (AA†)′ = AA†

and (A†A)′ = A†A.

It is well-known that Moore-Penrose inverse of a matrix exists and is
unique. For basic properties of the Moore-Penrose inverse, see [4]. We use
R(A) to denote the column space of a matrix A. For y ∈ Rn, let Diag(y)
denote the diagonal matrix with y1, y2, . . . , yn along the diagonal. If X is an
n× n matrix, let diag(X) = (x11, . . . , xnn)′.

A symmetric n × n matrix A is called a conditionally negative definite
(c.n.d.) matrix if for all x ∈ {1}⊥, x

′
Ax ≤ 0. It is known that a EDM is

c.n.d., see [14]. Thus an n × n EDM is negative semidefinite on an n − 1
dimensional subspace. Hence every EDM has exactly one positive eigenvalue.
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2 A formula involving the Moore-Penrose in-

verse

Let a be a nonzero vector in Rn. We now derive a formula for the Moore-
Penrose inverse of PAP , where P := I− aa′

a′a
and A is a real symmetric matrix

of order n. We first prove a preliminary result.

Lemma 2.1 Let A be a symmetric n× n matrix and let a ∈ Rn be a vector

such that β = a′A†a 6= 0. If P := I − aa
′

a′a
is the orthogonal projection onto

the hyperplane {a}⊥, then

T = A† − (A†a)(a′A†)

β

is an outer inverse of K = PAP ; that is, T satisfies TKT = T .

Proof. We claim that TP = PT = T . Let v ∈ Rn. Then v = v1 + v2

where v1 ∈ span(a) and v2 ∈ {a}⊥. Since P is an orthogonal projection onto
{a}⊥, then Pv = v2. Thus, TPv = Tv2. Now Tv1 = 0 and hence Tv = Tv2.
This shows that TP = T . Since T is symmetric, TP = PT . This proves our
claim. Now, we need to show that TAT = T . We note that,

TAT = (A† − (A†a)(a′A†)

β
)A(A† − (A†a)(a′A†)

β
)

= (A†A− A†aa′A†A

β
)(A† − (A†a)(a′A†)

β
)

= A† − (A†a)(a′A†)

β
− (A†a)(a′A†)

β
+

(A†a)(a′A†)

β
= T.

This completes the proof. 2

Theorem 2.1 Let A be a symmetric n × n matrix and let a ∈ R(A) be a

vector such that β := a′A†a 6= 0. If P := I − aa
′

a′a
is the orthogonal projection

onto the hyperplane {a}⊥, then

T := A† − (A†a)(a′A†)

β

is the Moore-Penrose inverse of K = PAP .
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Proof. We claim that PAA† is symmetric. Since a ∈ R(A), there
exists w ∈ Rn such that Aw = a. Now we have

PAA† = (I − aa′

a′a
)AA†

= AA† − (Aw)(w′AAA†)

a′a

= AA† − (Aw)(w′A)

a′a
.

Thus PAA† is symmetric. We claim that B = PA(A†a)(a′A†) = 0. Note that
A†a = A†Aw. Therefore B = PA(A†Aw)(w′AA†). Since AA†Aw = Aw = a
and Pa = 0 it follows that B = 0. We now prove that KT = TK. We see
that

KT = PAPT

= PAT (as PT = TP = T ) (1)

= PAA† − B

β

= PAA†. (2)

Since PAA† is symmetric, as already noted, we get KT = TK. By Lemma
2.1, T is an outer inverse of K. It remains to show that T is a g-inverse of
K. Now,

KTK = KTPAP

= KTAP

= PAA†AP

= PAP

= K.

This completes the proof. 2

3 Spherical Euclidean distance matrices

Let D be a EDM. Gower [8] proved that DD†1 = 1 , 1′D†1 ≥ 0 and D is
spherical if and only if 1′D†1 > 0. Hence 1 ∈ R(D). Let β := 1′D†1. Using
Theorem 2.1 we get the following result:
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Theorem 3.1 Let D be a spherical EDM and let P := I − 1
n
11′. If G :=

−1
2
PDP , then setting u = D†1,

D† = −1

2
G† +

1

β
uu′. (3)

Continuing with the notation of Theorem 3.1, Schoenberg [14] proved
that G is p.s.d. and

D = diag(G)11′ + 11′diag(G)− 2G. (4)

From (3) we deduce,

−1

2
G†DG† = G†. (5)

We now consider the case when D is spherical and nonsingular. In this
case, let us define L† := −1

2
PDP . Clearly 1′L† = 0 and L† is p.s.d. Since D

is nonsingular and P is of rank n−1, we see that rank(L†)= n−1. Therefore
1′L = 0, L is p.s.d. and rank(L) = n − 1. These observations motivate the
next definition.

Definition 3.1 Let L be a symmetric n× n matrix. Then we say that L is
a Laplacian matrix if L is p.s.d. with rank n− 1 and has row sums zero.

We remark that a conventional Laplacian has nonpositive, integer off-
diagonal entries but we do not require this property here. We now prove the
following result:

Theorem 3.2 Let D be a spherical, nonsingular EDM. Then there exists a
unique Laplacian matrix L satisfying

D−1 = −1

2
L +

uu′

β
, (6)

where u = D−11, β = 1′D−11.

Proof. We only need to show that the Laplacian associated with D is
unique, as (6) follows from Theorem 3.1 and the definition of the Laplacian.
Let z := D−11. Suppose, D−1 = −1

2
L+uu

′
= −1

2
M +vv′. Then, z = uu′1 =

vv′1. Since rank(uu′)=1, and z ∈ R(uu′), then z = βu for a nonzero β. Thus,
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uu′ = k2zz′ for some nonzero k. Similarly, vv′ = c2zz′. Since uu′1 = vv′1,
then c2 = k2. Therefore, uu′ = vv′ and hence L = M . 2

The above result was obtained, in a different form, in Styan and Subak-
Sharpe [15].

For a matrix A, we denote by A(i, j) the submatrix obtained by deleting
row i and column j of A. The matrix A(i, i) is denoted A(i). We now deduce
some simple properties of the Laplacian.

Proposition 3.1 Let D be a spherical EDM and let L be the corresponding
Laplacian. Then

1. −1
2
LDL = L

2. For i 6= j ∈ {1, 2, ..., n}, dij = det(L(i,j))

det(L(i))
.

Proof. The first equation follows from (5). We now prove the second
equation. We first claim that if L is a Laplacian matrix, then for any two
g-inverses of L, say, S = (sij) and T = (tij),

sii + sjj − sij − sji = tii + tjj − tij − tji, for all i 6= j.

Let x be the column vector with xi = 1 and xj = −1 and with its remain-
ing coordinates zero. Clearly, 1′x = 0. Thus x belongs to the orthogonal
complement of the null space of L, which is the same as R(L) and hence
there exists a vector y ∈ Rn such that Ly = x. It is easy to see that
x′Sx = y′Ly = sii + sjj − sij − sji and x′Tx = y′Ly = tii + tjj − tij − tji.
This proves our claim. Let H be the n × n matrix with H(i) = L(i)−1 and
each entry in row and column i equal to zero. The matrix H depends on i
but we suppress this in the notation. Note that for all j, hii = hij = hji = 0

and for j 6= i, hjj = det(L(i,j))

det(L(i))
. It is easily verified that H is a g-inverse of L.

Thus, hii + hjj − hij − hji = det(L(i,j))

det(L(i))
. Now the result follows from the first

equation and the above claim. 2

We now find an expression for the determinant of a spherical, nonsingular
EDM. If A is a symmetric matrix with 1′A = 0, then all the cofactors of A
are equal. We call this common cofactor value of A as the common cofactor.
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Theorem 3.3 Let D be a nonsingular spherical EDM and let L be the cor-
responding Laplacian. If γ is the common cofactor of L and α = 1′D−11
then,

det(D−1) = (−1

2
)n−1 γ

α
. (7)

Proof. The proof follows from (6) and the multilinearity of the deter-
minant. 2

We now consider non-spherical EDMs. In this case 1′D†1 = 0. Hence
Theorem 3.2 is not true. However by choosing the orthogonal projection
P1 := I − uu′

u′u
, where u = D1, we get the following result.

Theorem 3.4 Let D be a nonspherical EDM and let β := 1′D1. If K :=
−1

2
P1DP1 where P1 := I − uu′

u′u
, and u = D1, then

D† = −1

2
K† +

1

β
11′. (8)

Proof. Let K1 := P1DP1. By Theorem 2.1, we have

K†
1 = D† − 1

β
11′.

Now,

K† = (−1

2
K1)

†

= −2K1
†

= −2(D† − 1

β
11′).

Therefore,

D† = −1

2
K† +

1

β
11′

and the proof is complete. 2

Continuing with the notation of Theorem 3.4, let u = D1 and U =
Diag(u). From (8) we have

UD−1U = −1

2
UK†U +

1

β
U11′U. (9)
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Put H := UK†U . Then,

UD−1U = −1

2
H +

1

β
U11′U. (10)

Since 1′H = 0, then all the cofactors of H are equal. Let γ1 be the common
cofactor of H. Using (10) and the multilinearity of the determinant we see
that

det(D−1) =
1

Πn
i=1u

2
i

(−1

2
)n−1γ1β.

Thus, using the notation introduced above, we have the following theorem.

Theorem 3.5 Let D be a nonsingular nonspherical EDM. Then

det(D−1) =
1

Πn
i=1u

2
i

(−1

2
)n−1βγ1,

where β := 1′D1, u = D1, γ1 is the common cofactor of H := UK†U and
U := Diag(u).

4 Distance matrices of trees

Let T = (V, E) denote a tree with the set of vertices V and the set of edges
E . We assume that V = {1, 2, ..., n}, and the edges are unordered pairs (i, k),
i 6= k. To each edge (i, k) we assign a number wik = 1 if i 6= k and (i, k) is
an edge of T , i, k ∈ V . If i 6= k and (i, k) is not an edge of T then we define
wik = 0. The Laplacian is then the matrix

L =


∑

k w1k −w12 −w13 ... −w1n

−w21
∑

k w2k −w23 ... −w2n

... ... ... ... ...
−wn1 −wn2 −wn3 ...

∑
k wnk

 .

Clearly the row sums of L are zero. It is well-known that L is p.s.d. with
rank n−1. The distance matrix E of T is an n×n matrix with the (i, j)-entry
equal to the distance (i.e. the length of the shortest path) between vertices
i and j. In this section, we obtain the results due to Graham and Lovász [9]
and Graham and Pollack [10] as special cases of our earlier results.
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Several relations between L and E are known. By induction it can be
easily shown that

−LEL

2
= L. (11)

We now obtain the Graham and Lovász formula.

Theorem 4.1 Let T be a tree on n vertices with Laplacian L and distance
matrix E. Let δi denote the degree of the vertex i, i = 1, 2, ..., n and let
δ = (δ1, ..., δn) and λ := (2− δ1, ..., 2− δn). Then

E−1 = −1

2
L +

1

2(n− 1)
λλ′.

Proof. From (11) we get the following equation, noting that P =
LL† = I − 11′

n
:

−1

2
PEP = L†. (12)

By Theorem 3.2,

E−1 = −1

2
L +

(E−11)(1′E−1)

1′E−11
. (13)

It is easy to verify, by induction on n, that

Eλ = (n− 1)1 and 1′λ = 2, (14)

and hence
λ

′
Eλ = 2(n− 1). (15)

It follows from (13), (14) and (15) that

E−1 = −1

2
L +

1

2(n− 1)
λλ

′

and the proof is complete. 2

We now obtain the Graham and Pollack [10] formula for the determinant
of the distance matrix of a tree. By the Matrix-Tree Theorem, any cofactor
of L is the number of spanning trees and hence the common cofactor, say,
K = 1. Thus by Theorem 3.3 we have,

Theorem 4.2 Let T be a tree on n vertices and let E be the distance matrix
of T . Then det(E) = (−1)n−1(n− 1)2n−2.
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5 Inverse EDMs perturbed by Laplacians

Let D be the distance matrix of a tree. If L is the Laplacian matrix of an
arbitrary connected graph, then it was shown in [1] that (D−1 − L)−1 is a
nonnegative matrix. Now let D be a EDM. Motivated by the result in [1], we
may ask the following question: If L is a Laplacian, is (D† − L)† necessarily
a nonnegative matrix? From numerical experiments, we found that for small
ε > 0, (D† − εL)† is not a nonnegative matrix when D is singular. However
when D is a nonsingular EDM, we observed that D−1−L has a nonnegative
inverse. We give a proof of this in the next theorem. First, we prove the
following lemma which is true even for singular EDMs.

We recall that a matrix S is called a signature matrix if it is a diagonal
matrix with diagonal entries as 1 or −1. A matrix A ∈ Rn×n is called a
N -matrix if all the principal minors are negative.

Lemma 5.1 Let D be a EDM and let L be a Laplacian matrix. Then the
following are true.

1. D† − L is a nonsingular matrix.

2. D† − L is c.n.d.

3. det(L−D†) < 0.

Proof. Suppose that there exists a nonzero vector x ∈ Rn such that
(D† − L)x = 0. Then, 1′D†x = 0. Put y = D†x. Then y ∈ {1}⊥. Now,
y′Dy ≤ 0 since D is c.n.d. and therefore x′D†x ≤ 0. Hence x′Lx ≤ 0.
Because L is p.s.d., x′Lx = 0 and therefore, Lx = 0. Thus, x = β1 for some
nonzero β. We now have D†1 = 0. This contradicts the result DD†1 = 1.

We now prove (2). Let x ∈ {1}⊥. We claim that D† is c.n.d. We note
that D† has exactly one positive eigenvalue. Since DD†1 = 1, from Theorem
4.1 in [5], D† is c.n.d. Now −L is negative semidefinite. Hence D† − L is a
c.n.d. matrix.

Let A := D†−L. Then A is a nonsingular c.n.d. matrix. If A is negative
definite then 1′A1 < 0. This is a contradiction. Thus, A has exactly one
positive eigenvalue and hence det(L−D†) < 0. 2

We now obtain the following identity.
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Lemma 5.2 Let D be a nonsingular spherical EDM and L be the correspond-
ing Laplacian matrix. If D is nonsingular and γ ≥ 0 then

(D−1 − γL)−1 = (
γ

1 + 2γ
)(

2

1′D−11
)11′ +

1

1 + 2γ
D. (16)

Proof. From (6), L = −2(D−1 − 1
k
uu′), where u := D−11 and k :=

1′D−11. Now the proof follows by direct verification. 2

From the above result we note that D−1 −L has a nonnegative inverse if
L is the corresponding Laplacian matrix of D. This fact holds even when L
is any Laplacian as shown in the following result.

Theorem 5.1 Let D be a nonsingular EDM. If L is a Laplacian matrix,
then (D−1 − L)−1 > 0.

Proof. As before, let D−1(i) denote the principal submatrix obtained
by deleting the i-th row and the i-th column. We claim that −D−1(i) is
p.s.d. By the interlacing theorem, −D−1(i) can have at most one nonnegative
eigenvalue. But dii = 0 and hence det(D−1(i)) = 0. Thus, 0 is an eigenvalue
of D−1(i). Therefore, −D−1(i) is p.s.d. This implies that αL(i) − D−1(i)
is positive definite for any α > 0. Now, the inertia of αL − D−1 is the
same as −D−1 and hence det(αL − D−1) < 0. Thus, αL − D−1 is an N -
matrix. By Lemma 5 in Parthasarathy and Ravindran [13], there exists a
signature matrix Sα such that Sα(αL − D−1)−1Sα < 0. For α = 0 we note
that Sα = I or Sα = −I. By continuity, Sα = I or Sα = −I for all α. Hence
(D−1 − L)−1 > 0. This completes the proof. 2

6 A note on infinitely divisible matrices

In this section, we construct infinitely divisible matrices from distance ma-
trices. We now define an infinitely divisible matrix. Let A = (aij) be a
nonnegative symmetric matrix and r ≥ 0. Recall that the rth Hadamard
power of A is defined by A◦r := (ar

ij).

Definition 6.1 Let A be a p.s.d. matrix. We say that A is infinitely divis-
ible if A◦r is p.s.d. for all r ≥ 0.
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Infinitely divisible matrices are studied in detail by Horn [6]. Interesting
examples can be found in Bhatia [3]. We now construct infinitely divisible
matrices from distance matrices. First we state a result due to Löwner, see,
for example, [3]. We say that a matrix A is conditionally positive definite
(c.p.d.) if −A is c.n.d.

Theorem 6.1 If A is a symmetric matrix with positive entries then A is
infinitely divisible if and only if its Hadamard logarithm log◦A = (log(aij))
is c.p.d.

Now from the previous section, we see that if D is any nonsingular EDM
and L is a Laplacian matrix then D−1−L is a c.n.d. matrix and its inverse is
positive. Hence from Theorem 4.1 in [5], it follows that the inverse of D−1−L
is a c.n.d. matrix. Now put A = (D−1 − L)−1. By Theorem 4.4.4. in [2],
log◦A is c.n.d. and hence (log ( 1

aij
)) is a c.p.d. matrix. Thus, by Theorem

6.1, we have the following result.

Theorem 6.2 Let D be a nonsingular EDM and L be a Laplacian matrix.
If A := (D−1 − L)−1, then A◦−1 = ( 1

aij
) is an infinitely divisible matrix.

By a similar argument as before one can prove the following.

Theorem 6.3 Let D be an EDM. For k > 0, let T := D + kJ . Then
T ◦−1 := ( 1

tij
) is an infinitely divisible matrix.

Example: Let D = (dij) be the distance matrix of a path on n-vertices,
where n > 2. Then dij = |i− j|, 1 ≤ i, j ≤ n. By Theorem 6.3 it follows that
(|i− j|+ k) is an infinitely divisible matrix for all k > 0.
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