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Abstract

The torus group (S1)`+1 has a canonical action on the odd dimensional sphere S2`+1
q .

We take the natural Hilbert space representation where this action is implemented and

characterize all odd spectral triples acting on that space and equivariant with respect to

that action. This characterization gives a construction of an optimum family of equivariant

spectral triples having nontrivial K-homology class thus generalizing our earlier results for

SUq(2). We also relate the triple we construct with the C∗-extension

0 −→ K⊗ C(S1) −→ C(S2`+3
q ) −→ C(S2`+1

q ) −→ 0.
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1 Introduction

In noncommutative geometry (NCG), a geometric space is described by a triple (A,H, D), called

a spectral triple, with A being an involutive algebra represented as bounded operators on a

Hilbert space H, and D being an unbounded selfadjoint operator with compact resolvent and

having bounded commutators with the algebra elements. The operator D should be nontrivial

in the sense that the associated Kasparov module should give a nontrivial element in K-

homology. A natural question is, are there enough spectral triples around us? The answer

is both yes and no. If we do not demand any further properties then by a theorem of Baaj

and Julg ([1]; [7], chapter 4, appendix A), given any countably generated subalgebra A of a

C∗-algebra there exists a spectral triple (A,H, D). But if we demand further properties like

finite summability then given a dense subalgebra of a C ∗-algebra it may not admit a finitely

summable spectral triple ([6]). Therefore given a natural dense subalgebra of a C ∗-algebra it

is meaningful to ask whether it admits finitely summable nontrivial spectral triples. Also, the

result of Baaj & Julg starts from a Fredholm module, so one has very little control over the

Hilbert space or the representation.

1



In an earlier paper ([5]), the authors studied spectral triples for the odd dimensional quan-

tum spheres taking the Hilbert space to be the L2 space of the sphere and the representation

to be the natural representation by left multiplication there. In the present article, we fix a dif-

ferent representation space dictated by the torus action on the sphere, and investigate spectral

triples for that. The results here generalize those in [4].

We will use the method described in [5] and used implicitly in [3] and [4]. Observe that

the self-adjoint operator D in a spectral triple comes with two very crucial restrictions on it,

namely, it has to have compact resolvent, and must have bounded commutators with algebra

elements. Various analytic consequences of the compact resolvent condition (growth properties

of the commutators of the algebra elements with the sign of D) have been used in the past by

various authors. We will exploit it from a combinatorial point of view. The idea is very simple.

Given a selfadjoint operator with compact resolvent, one can associate with it a certain graph

in a natural way. This makes it possible to do a detailed combinatorial analysis of the growth

restrictions (on the eigenvalues of D) that come from the boundedness of the commutators,

and to characterize the sign of the operator D completely.

We take a representation space where the canonical action of (S1)`+1 on C(S2`+1
q ) is imple-

mented. If we further want our Dirac operator D to be equivariant with respect to the torus

action then D should commute with the unitary implementing that action. Hence D respects

the spectral subspaces. This allows us to write down the form of the Dirac operator. Then

using the boundedness of the commutators we completely characterize all equivariant Dirac

operators. We also produce a nontrivial optimal equivariant Dirac.

Odd dimensional quantum spheres of successive dimension are related through a short exact

sequence that says that the (2`+3)-dimensional sphere C(S2`+3
q ) is an extension of the (2`+1)-

dimensional sphere C(S2`+1
q ) by C(S1). One can naturally associate a KK1(C(S2`+1

q ), C(S1))

element with such an extension (for a discussion on the relation between C ∗-extensions and

KK-elements, see chapter 8, section 17, Blackadar [2]). In the last section, we compute this

KK-element and show that the generic spectral triple that we construct in section 3 comes from

this KK-element.

2 Torus action on quantum spheres

Let q ∈ (0, 1). The C∗-algebra A` = C(S2`+1
q ) of continuous functions on the quantum sphere

S2`+1
q is the universal C∗-algebra generated by elements z1, z2, . . . , z`+1 satisfying the following

relations (see [8], [10]):

zizj = qzjzi, 1 ≤ j < i ≤ `+ 1,

ziz
∗
j = qz∗j zi, 1 ≤ i 6= j ≤ `+ 1,

ziz
∗
i − z∗i zi + (1 − q2)

∑

k>i

zkz
∗
k = 0, 1 ≤ i ≤ `+ 1, (2.1)
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`+1∑

i=1

ziz
∗
i = 1.

Let N be the number operator given by N : en 7→ nen on L2(N) and S be the shift S : en 7→

en−1. We will use the same symbol S to denote shift on L2(N) as well as on L2(Z). In the case

of L2(N), S(e0) is defined to be zero. Let

H` = L2(N) ⊗ · · · ⊗ L2(N)︸ ︷︷ ︸
` copies

⊗L2(Z).

Let π` be the representation of A` on the space L(H`) of bounded operators on H` given on

the generators by

zk 7→ qN ⊗ . . . ⊗ qN︸ ︷︷ ︸
k−1 copies

⊗
√

1 − q2NS∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
`+1−k copies

, 1 ≤ k ≤ `,

z`+1 7→ qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
` copies

⊗S∗,

Then π` gives a faithful representation of A` on H` (see lemma 4.1 and remark 4.5, [8]). Observe

that the C∗-algebra generated by the operator S on L2(Z) is isomorphic to C(S1). Using this

and the identification

L(L2(N
`) ⊗ C(S1)) ∼= L(K(L2(N

`)) ⊗C(S1)),

where L(·) denotes the space of bounded adjointable operators and K(·) denotes the space

of compact operators, one can see that for all a ∈ A`, the operators π`(a) actually lift to

adjointable operators on the Hilbert C(S1)-module L2(N
`) ⊗ C(S1).

The K-groups of these C∗-algebras have been computed by Vaksman & Soibelman and

Hong & Szymanski:

Proposition 2.1 ([10],[8]) K0(A`) = K1(A`) = Z.

The group (S1)`+1 has an action on C(S2`+1
q ) given on the generating elements by

τw(zi) = wizi, w = (w1, w2, . . . , w`+1) ∈ (S1)`+1.

If Uw denotes the unitary wN1 ⊗wN2 ⊗ · · · ⊗wN`+1 on H`, then one has π`(τw(a)) = Uwπ`(a)U
∗
w

for all a ∈ C(S2`+1
q ). Thus (π`, U) is a covariant representation of (A`, (S

1)`+1, τ) on H`. In

the next section, we characterize all equivariant spectral triples for this representation and

construct an optimal triple using this characterization.
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3 Equivariant spectral triples

Let Γ = N × · · · × N︸ ︷︷ ︸
` copies

×Z, so that L2(Γ) = H`. For γ = (γ(1), γ(2), · · · , γ(`+1)) ∈ Γ, eγ denotes

the basis element of H` given by eγ(1) ⊗ · · · ⊗ eγ(`+1).

Theorem 3.1 Let D be a self-adjoint operator with compact resolvent on H` that commutes

with the operators Uw. Then D must diagonalise with respect to the canonical basis, i. e. must

be of the form

eγ 7→ d(γ)eγ , (3.2)

where d(γ) ∈ R for all γ ∈ Γ.

Moreover, such an operator D will have bounded commutators with elements from the *-

subalgebra of C(S2`+1
q ) generated by the zi’s if and only if the d(γ)’s obey the following condition:

|d(γ) − d(γ + εk)| = O(q−γ(1)−...−γ(k−1)), 1 ≤ k ≤ `+ 1, (3.3)

where εk stands for the vector whose kth coordinate is 1 and all other coordinates are 0.

Proof : The first part is immediate. For the second part, just observe that

[D,π(zk)]eγ = (d(γ + εk) − d(γ))qγ(1)+...+γ(k−1)
√

1 − q2γ(k)+2eγ+εk , 1 ≤ k ≤ `,

[D,π(z`+1)]eγ = (d(γ + ε`+1) − d(γ))qγ(1)+...+γ(`)eγ+ε`+1
.

2

By a compact perturbation, one can ensure that all the d(γ)’s are nonzero in the above theorem.

We will assume from now on that d(γ) 6= 0 for all γ. Using (3.3) we get a constant c such that

|d(γ)− d(γ + εk)|q
−γ(1)−...−γ(k−1) < c, with εk as in the theorem. Now join two elements γ and

γ′ in Γ by an edge if |d(γ) − d(γ ′)| ≤ c. Call the resulting graph G the growth graph for D.

Lemma 3.2 Let k be an integer with 1 ≤ k ≤ `+ 1. Let

γ = (0, . . . , 0, r, ik+1, . . . , i`+1), γ′ = (0, . . . , 0, s, ik+1, . . . , i`+1).

Then there is a path in G of length |r − s| joining γ and γ ′ such that all vertices on this path

are of the form (0, . . . , 0, t, ik+1, . . . , i`+1).

Proof : Assume without loss in generality that γ(k) < γ ′(k). Write t = γ ′(k)−γ(k). From (3.3),

it is clear that if δ(i) = 0 for 1 ≤ i ≤ k − 1, then there is an edge joining δ and δ + εk. Thus

(γ, γ + εk, γ + 2εk, . . . , γ + tεk) will give us a required path. 2
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Lemma 3.3 Let k be an integer with 1 ≤ k ≤ `+ 2. Let

γ = (i1, . . . , ik−1, ik, . . . , i`+1), γ′ = (0, . . . , 0, ik , . . . , i`+1).

Then there is a path of length |i1| + . . . + |ik−1| joining γ and γ ′ such that all vertices on this

path are of the form (j1, . . . , jk−1, ik, . . . , i`+1), where each jn lies between 0 and |in|.

Proof : For 1 ≤ j ≤ k, let γj denote the element of Γ whose first j − 1 coordinates are 0 and

jth coordinate onwards coincide with those of γ. Thus γ1 = γ and γk = γ′. Now apply the

previous proposition to get a path of length |γj(j) − γj+1(j)| = γ(j) joining γj and γj+1 for

1 ≤ j ≤ k − 1. Joining all these paths together, one gets the required path. 2

Proposition 3.4 Let D be a Dirac operator that commutes with the operators Uw. Then D

must be of the form eγ 7→ d(γ)eγ where

|d(γ)| = O(γ(1) + . . . + γ(`) + |γ(`+ 1)| + 1).

Proof : Note that if γ is an arbitrary element of the growth graph G, then by the previous

lemmas γ can be connected with 0 by a path of length γ(1) + . . .+ γ(`) + |γ(`+ 1)|, hence the

result. 2

Theorem 3.5 Write Γ+ = {γ ∈ Γ : d(γ) > 0}, and Γ− = Γ\Γ+. There exist nonnegative

integers M1,M2, . . . ,M`+1 such that for each k ∈ {1, 2, . . . , `} and for each

(ik+1, ik+2, . . . , i`+1) ∈ Fk :=
∏̀

r=k+1

{0, 1, . . . ,Mr} × {−M`+1,−M`+1 + 1, . . . ,M`+1},

none of the following sets intersect both Γ+ and Γ−:

A1 = {γ ∈ Γ : γ(`+ 1) > M`+1}, A2 = {γ ∈ Γ : γ(`+ 1) < −M`+1},

Bk,(ik+1,ik+2,...,i`+1) = {γ ∈ Γ : γ(k) > Mk, γ(r) = ir for k + 1 ≤ r ≤ `+ 1}.

Proof : We will construct these numbers M1,M2, · · ·M`+1 inductively starting from M`+1.

Assume there are two sequences of elements γk ∈ Γ+ and δk ∈ Γ− such that

γ0(`+ 1) < δ0(`+ 1) < γ1(`+ 1) < δ1(`+ 1) < · · · .

For each k, use lemma 3.3 to get a path pk from γk to δk such that for any vertex on the path,

the (`+ 1)th coordinate lies between γk(`+ 1) and δk(`+ 1). This last condition would ensure

that the paths pk are all disjoint. Since pk connects points of Γ+ with Γ−, there is a vertex µk

in pk such that d(µk) ∈ [−c, c]. Moreover disjointness of the pk’s implies that the vertices µk
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are all distinct. Therefore counted with multiplicity, the compact interval [−c, c] has infinitely

many eigenvalues of D, a contradiction to compact resolvent condition for D. Therefore there

exists M ′
`+1 such that {γ ∈ Γ : γ(`+ 1) > M ′

`+1} does not intersect both Γ+ and Γ−. One can

similarly show that if there are elements γk ∈ Γ+ and δk ∈ Γ− such that

γ0(`+ 1) > δ0(`+ 1) > γ1(`+ 1) > δ1(`+ 1) > · · · ,

then there is some big enough natural number M ′′
`+1 such that the set {γ ∈ Γ : γ(` + 1) <

−M ′′
`+1} is either in Γ+ or in Γ−. Now taking M`+1 = max{M ′

`+1,M
′′
`+1}, we get that neither

of A1, A2 intersect both Γ+ and Γ−.

Next, given Mk+1, . . . ,M`+1 and (ik+1, ik+2, . . . , i`+1) ∈ Fk, if there are elements γn ∈ Γ+

and δn ∈ Γ− with

γn(j) = ij = δn(j), k + 1 ≤ j ≤ `+ 1,

γ0(k) < δ0(k) < γ1(k) < δ1(k) < · · · ,

then using lemma 3.3 again, one can join each pair (γn, δn) by disjoint paths and arguing

as above arrive at a contradiction to the fact that D has compact resolvent. Therefore the

existence of Mk follows. 2

Theorem 3.6 Let Dtorus be the operator eγ 7→ d(γ)eγ on H` where the d(γ)’s are given by

d(γ) =

{
γ(1) + . . .+ γ(`) + |γ(`+ 1)| if γ(`+ 1) ≥ 0,

−(γ(1) + . . .+ γ(`) + |γ(`+ 1)|) if γ(`+ 1) < 0.

Then (C(S2`+1
q ),H`, Dtorus) is a nontrivial (`+ 1)-summable spectral triple.

The operator Dtorus is optimal, i. e. if D is any Dirac operator acting on H that commutes

with the Uw’s, then there exist positive reals a and b such that

|D| ≤ a+ b|Dtorus|.

Proof : Clearly Dtorus is a selfadjoint operator with compact resolvent. That it has bounded

commutators with the π(zj)’s follow by direct verification.

From the commutation relations that the generators zj obey, it follows that z`+1 is normal

and the element z∗`+1z`+1 has spectrum {q2n : n ∈ N} ∪ {0}. Let

u = χ{1}(z
∗
`+1z`+1)(z`+1 − 1) + 1.

It is easy to see that u is a unitary. We will now compute the pairing between Dtorus and π(u).

First observe that the action of π(u) on H is given by

π(u)eγ =

{
eγ+ε`+1

if γ(i) = 0 for 1 ≤ i ≤ `,

eγ otherwise.
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Write P = 1
2(I + signDtorus). Then P is the projection onto the closed linear span of {eγ :

γ(`+ 1) ≥ 0}. It follows that the index of PuP is −1.

Summability follows from the observation that the number of elements in {(i1, . . . , i`+1) ∈

N
` × Z :

∑`
k=1 ik + |i`+1| ≤ n} is of the order n`+1.

Optimality is a consequence of proposition 3.4. 2

Theorem 3.7 Let D be a Dirac operator on H that commutes with the operators Uw. Then

either D is trivial or has the same K-homology class as Dtorus or −Dtorus.

Proof : If D is a self-adjoint operator with compact resolvent on H that commutes with the

operators Uw and if P = 1
2(signD+I), then by theorem 3.5, P is the projection onto the closed

linear span of {eγ : γ ∈ Γ+} where Γ+ must be of one of the following form:

A1 ∪ (∪x∈EBx), (3.4)

A2 ∪ (∪x∈EBx), (3.5)

A1 ∪A2 ∪ (∪x∈EBx) , (3.6)

∪x∈EBx, (3.7)

where E is some finite subset of ∪`k=1{k} × Fk. By direct calculations in the first two cases

the index of Pπ(u)P turns out to be −1 and 1 respectively, whereas in the last two cases, the

index is zero. Thus one always has

〈[u], (C(S2`+1
q ),H, D)〉 = 0 or ± 1.

By [9], we have K1(C(S2`+1
q )) = Z. therefore the result follows. 2

4 Relation with C∗-extensions

In this section we will denote the generators for A` by zk and the generators for A`+1 by yk. A
0
`

will denote the *-subalgebra of A` generated by the zk’s. Let J0
` denote the two-sided *-ideal

in A0
` generated by z`+1 and let J` denote the norm closure of J 0

` in A`. Thus J` is the ideal in

A` generated by the element z`+1.

For a Hilbert C∗-module E, we will denote by L(E) the C∗-algebra of bounded adjointable

operators on E, and by K(E) its ideal of ‘compact’ operators. We denote by K the C ∗-algebra

K(H) for an infinite dimensional Hilbert space H.

Lemma 4.1 Let C∗(S) denote the C∗-algebra generated by the operator S on L2(Z). Then

one has J` ∼= K(L2(N
`)) ⊗ C∗(S) ∼= K ⊗ C(S1).
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Proof : We will identify A` with π`(A`).

For 1 ≤ k ≤ `, denote by Xk the operator

qN ⊗ . . .⊗ qN︸ ︷︷ ︸
k copies

⊗ I ⊗ . . .⊗ I︸ ︷︷ ︸
`+ 1 − k copies

on H`. Write X0 = I. Then it is easy to check that one has the relations

zkz
∗
k = X2

k−1 −X2
k , 1 ≤ k ≤ `.

It follows that Xk ∈ A` for all 1 ≤ k ≤ `.

Write pij for the rank one operator |ei〉〈ej | on L2(N). Then

pi1j1 ⊗ . . . ⊗ pi`j` ⊗ Sk

can be written in the form

f1(X1) . . . f`(X`)z
−k
`+1g1(X1) . . . g`(X`)

where fi, gi are continuous functions on the spectrums of the respective Xi’s. Therefore pi1j1 ⊗

. . .⊗ pi`j` ⊗ Sk ∈ J`. It follows from this that K(L2(N
`)) ⊗ C∗(S) ⊆ J`.

For the reverse inclusion, observe that any polynomial in the zi’s and their adjoints is a

finite sum of the form
∑

j Tj⊗S
kj where Tj ∈ L(L2(N

`)) and kj ∈ Z. Therefore J0
` is contained

in K(L2(N
`)) ⊗ C∗(S). Same is therefore true for its closure J`. 2

Proposition 4.2 Let σ` : A`+1 → A` be the homomorphism given by

yi 7→

{
zi if 1 ≤ i ≤ `+ 1,

0 if i = `+ 2.

Then we have the following short exact sequence

0 −→ J`+1 −→ A`+1
σ`−→ A` −→ 0. (4.8)

We will need the following lemma for the proof.

Lemma 4.3 Let A be the universal C∗-algebra in noncommuting variables x1, x2, · · · xn subject

to relations R1(x1, x2, · · · , xn), · · · , Rj(x1, x2, · · · , xn). Let J be the ideal of A generated by non-

commutative polynomials Q1(x1, x2, · · · , xn), Q2(x1, x2, · · · , xn), · · · , Qk(x1, x2, · · · , xn). Then

A/J is isomorphic to the universal C∗-algebra A(J) generated by x1, x2, · · · , xn subject to the

relations R1, · · · , Rj , Q1, · · · , Qk.
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Note that it is part of the hypothesis that the universal C ∗-algebras A and A(J) exist.

Proof : Let ξ1, · · · , ξn be the generating elements of A(J). Clearly we have a surjection q :

A(J) → A/J mapping ξi to xi. To show that this is injective it is enough to show that given

a polynomial α = f(ξ1, · · · , ξn) ∈ A(J), one has ‖q(α)‖ = ‖a‖, where a = f(x1, · · · , xn). Now

observe that

‖a‖ = sup{‖π(a)‖ : π is a representation of A, π(J) = 0}

= sup{‖π(a)‖ : π is a representation of the algebra generated by x1, x2, · · · xn

subject to R1, · · · , Rj , Q1, . . . , Qk}

= ‖α‖.

Thus the proof is complete. 2

Proof of proposition 4.2. Clearly J`+1 ⊆ ker(σ`) and lemma 4.3 gives A`+1/J`+1
∼= A`+1(J`+1).

Also note that in the defining relations for the generators for A`+1 if we put y`+2 = 0 we get

the relations for A`, hence A`+1(J`+1) = A`. Therefore ker(σ`) = J`+1, hence the result. 2

Proposition 4.2 gives a homomorphism ψ`+1 : A`+1 → M(J`+1). Using lemma 4.1 we get

M(J`+1) ∼= L(L2(N
`+1) ⊗ C(S1)). Thus ψ`+1 is given by:

yk 7→ qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
k−1 copies

⊗
√

1 − q2NS∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
`+2−k copies

, 1 ≤ k ≤ `+ 1,

y`+2 7→ qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
`+1 copies

⊗Z.

Here Z : C(S1) → C(S1) denotes the operator given by (Zf)(z) = zf(z).

Define σ̃` : A` → L(H` ⊗ C(S1)) by

zk 7→ qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
k−1 copies

⊗
√

1 − q2NS∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
`+2−k copies

, 1 ≤ k ≤ `,

z`+1 7→ qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
` copies

⊗S∗ ⊗ I.

Let

E` = K(L2(N)) ⊗ · · · ⊗ K(L2(N))︸ ︷︷ ︸
` copies

⊗C(S1), F` = L2(N) ⊗ · · · ⊗ L2(N)︸ ︷︷ ︸
` copies

⊗C(S1).

Let U be the unitary from L2(N) ⊕ L2(N) onto L2(Z) given by

en ⊕ 0 7→ en, 0 ⊕ en 7→ e−n−1, n ∈ N.
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Using this unitary in the (` + 1)th copy, one can identify H` ⊗ C(S1) with F`+1 ⊕ F`+1. Let

P ∈ L(L2(Z)) be the projection onto the L2(N) part and let Q` = I ⊗ · · · ⊗ I︸ ︷︷ ︸
` copies

⊗P ⊗ I. Define

C` : L(H` ⊗ C(S1)) → L(F`+1) by C`(T ) = Q`TQ`. Now define σ̂` : A` → L(F`+1) by

σ̂`(a) = C`σ̃`(a). For convenience, we summarize various maps and the spaces between which

they act in the following diagram:

J`+1
//

OO

=

��

A`+1
σ` //

OO

ψ`+1

��

A`

σ̂`

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

σ̃`

��
E`+1

⊆

��

ψ`+1(A`+1)

⊆

��

L(H` ⊗ C(S1))
OO

∼=

��
M(E`+1) oo

∼= // L(F`+1) L(F`+1 ⊕ F`+1)
C`oo

Theorem 4.4 The element (H`⊗C(S1), σ̃, 2Q−I) gives the KK-class in KK1(C(S2`+1
q ), C(S1))

corresponding to the extension (4.8).

Proof : Let r ∈ N and let p be a polynomial in noncommuting variables and their adjoints.

Using the observation that Q` commutes with σ̃`(zk) for 1 ≤ k ≤ `, one gets

1. σ̂`(z
r
`+1p(z1, · · · , z`, z

∗
1 , · · · , z

∗
` )) = σ̂`(z

r
`+1)σ̂`(p(z1, · · · , z`, z

∗
1 , · · · , z

∗
` )).

2. σ̂`((z
∗
`+1)

rp(z1, · · · , z`, z
∗
1 , · · · , z

∗
` )) = σ̂`((z

∗
`+1)

r)σ̂`(p(z1, · · · , z`, z
∗
1 , · · · , z

∗
` )).

Using this one can now easily show that

1. σ̂`(p(z1, · · · , z`, z
∗
1 , · · · , z

∗
` )) = ψ`+1(p(y1, · · · , y`, y

∗
1 , · · · , y

∗
` )).

2. σ̂`(z
r
`+1) − ψ`+1(y

r
`+1) ∈ K(L2(N

`+1)) ⊗ C∗(S) = ψ`+1(J`+1).

3. σ̂`((z
∗
`+1)

r) − ψ`+1((y
∗
`+1)

r) ∈ K(L2(N
`+1)) ⊗ C∗(S) = ψ`+1(J`+1).

It follows from these that for any polynomial p we have

σ̂`(p(z1, · · · , z`+1, z
∗
1 , · · · , z

∗
`+1)) − ψ`+1(p(y1, · · · , y`+1, y

∗
1, · · · , y

∗
`+1))

∈ K(L2(N
`+1)) ⊗ C(S1) = ψ`+1(J`+1). (4.9)

Let τ : A` → M(J`+1)/J`+1 be the Busby invariant for the extension (4.8), and let Φ :

M(J`+1) →M(J`+1)/J`+1 be the quotient map. For a polynomial p in noncommuting variables

and their adjoints, we now have from (4.9),

τ(p(z1, · · · , z`+1, z
∗
1 , · · · , z

∗
`+1)) = Φ ◦ ψ`(p(y1, · · · , y`+1, y

∗
1 , · · · , y

∗
`+1))

= Φ ◦ σ̂`(p(z1, · · · , z`+1, z
∗
1 , · · · , z

∗
`+1)).
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Since such elements are dense in A`, we get

τ(a) = Φ ◦ σ̂`(a), a ∈ A`.

Thus by (4.9) τ admits the completely positive lifting σ̂` and the result follows. 2

Thus one now has the following commutative diagram:

J`+1
//

OO

=

��

A`+1
σ` //

OO

ψ`+1

��

A`

σ̂`

yyrr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

σ̃`

��
E`+1

⊆

��

ψ`+1(A`+1)

⊆

��

L(H` ⊗ C(S1))
OO

∼=

��
M(E`+1) oo

∼= // L(F`+1) L(F`+1 ⊕ F`+1)
C`oo

Let ev1 denote the following representation of C(S1) on C:

ev1(f) = f(1).

Now take the trivial grading on C. Then (C, ev1, 0) gives an even Fredholm module for C(S1).

Lemma 4.5 The Fredholm module (C, ev1, 0) is a generator for the group KK0(C(S1),C).

Proof : This can be seen as follows. The identity projection gives a generating element for

KK0(C, C(S1)) = K0(C(S1)) = Z. The pairing of this with [(C, ev1, 0)] gives 1. One can

conclude from this that [(C, ev1, 0)] must be ±1. 2

Proposition 4.6 (H`, π, signDtorus)] = (H` ⊗ C(S1), σ̃`, 2Q` − I) ⊗ev1 (C, ev1, 0).

Proof : For this, one needs to note that (H` ⊗ C(S1)) ⊗ C ∼= H` where the tensor product is

the internal tensor product of Hilbert C∗-modules, and under this isomorphism, (2Q` − I) ⊗ I

is just the operator signDtorus. 2

Thus on multiplying the even Fredholm module (C, ev1, 0) from the left by the KK-element

we just computed, one gets the odd fredholm module corresponding to the spectral triple

(H`, π`, Dtorus) we have constructed in the last section.
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