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Abstract

In this paper we first construct an universally optimal main effect plan (MEP) for an s* experiment on (s — 1)/2
nonorthogonal blocks of size two each, s a power of 2. Next we derive another set of sufficient conditions for an MEP on
nonorthogonal blocks requiring a smaller number of blocks. These conditions are used to obtain universally optimal
saturated MEPs in blocks of size 2 for (i) 4 experiment on & blocks and (ii) 5% % 2% on 10 blocks.

MEC: 602K 15 62K05

Kevwords: Saturated main effect plans; Orthogonal arcay; Mon-orthogonal blocking; Universal optmality

1. Introduction

Optimal fractional factorial plans are of considerable recent interest due to their wide applicability in many
diverse fields, notably in the context of industrial experimentation and quality improvement work. For a
review of optimal fractional factorial plans, see Dey and Mukerjee (1999). Much of the work on optimal
fractional factorial plans is available either in the absence of blocks or, under an orthogonal blocking
arrangement. Interesting resulis on optimal main effect plans (MEP) with non-orthogonal blocking are
obtained in Mukerjee et al. (2002) (henceforth referred to as MDC (2002) in this paper). With an approach
differing substantially from the classical ones, MDC (2002) obtained sufficient conditions for a MEP, with
possibly non-orthogonal blocking, to be universally optimal. They also suggested a construction procedure for
obtaining optimal block designs making use of these sufficient conditions. Continuing with this line of
research, we first take up situations where the construction procedure of MDC (2002) is inapplicable and
provide a new method of construction for optimal MEPs with non-orthogonal blocking. We further show that
the size of the design can be considerably reduced if one is content with a design optimal under a weaker
optimality criterion (say, E-optimality) rather than universal optimality. This is done in Section 2 of this
paper.
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In Section 3, we give a new set of sufficient conditions for optimal MEP on non-orthogonal blocking. These
conditions do not require any orthogonal array and hence can be realized by a design of size smaller than
those presented earlier. [See Examples 3.1 and 3.2

2. Optimal MEPs with blocks

Consider a factorial experiment involving m factors F, .., F,, with the ith factor having s;=2 levels,
l=iz=m. Llet §;={0,1,. .5 — 1} denote the set of levels of the ith factor, 1 <i<m._ A typical treatment
combination is denoted by x=(x,.. ,xu).x € S,l=i=m. For a symmetric experiment, 5 =5 and
Si= 8, 1si=m. Let v = [[iL,5 and let t; be the 5; x 1 vector of fixed effects of the levels of F;. We assume an
additive, fixed effects, main effects model with homoscedastic and uncorrelated errors. Finally, let

{T]T :{{TI]Ts{rJ]Ts---s{Tm]T]- (2.1)

For completeness, we recall the definition of an orthogonal array.

Definition 2.1. An orthogonal array OAs, m, s % -0 % 8, 0), having » rows, m( = 2) columns, s, ..., 5, =2)
symbols and strength #(<m), is an n x m array, with elements in the ith column from a set of s distinct
symbols (1 =i<m), in which all tuples of symbols appear equally often as rows in every n x ¢ subarray. If
sy =4, 1=im, the OA is denoted by OAln,m, s, ().

Let 20(h, k,v) denote the class of all connected block designs with v treatments in b=2 blocks, each of size
k=2 and let Z4(h, k, 5 = --- x 5,) denote the class of all fractional factorial plans for an ) = --- x 5, factorial
arranged in b blocks of size & each. The n x 1 unit vector will be denoted by 1, and let J,., = 1,,,1:{. For a plan
d e @b ks %2 x5, let ¥ denote the response vector. Then, our model is

EiYy=pl,+ X1+ 28, (2.2)
where
XZ[XIlXEI---lel {23}

jois the general effect, T asin (2.1) and f is the vector of block effects. Further, for 1< /< m, the (i, fith entry of
X;is 1if the ith observation contains the jth level of F; and 0 otherwise. Similarly, the (i, ith entry of £ is 1 if
the ith observation is in the jth block.

For a plan d, let &y denote the 5 = b incidence matrix of the levels of F; versus the blocks, 1< i<m and
My be the 5; x 5; incidence matrix of the levels of F, versus F, 1 <i#j=m. Ao, for l<i=m, let R, be the
diagonal matrix of order ; with diagonal entries as the replication numbers of the levels of F; in d. Then, we
have

N:‘d — {XJ']T2~ M{l’n’ = {XJ']TX;':: Rx'f = {X.I']TXI- {2-4]
Let
Cir = My —k_lf"-'rﬂf”"'rj.’]']-1 (2.5)

where My, is to be replaced by Ry, when j =i

For l=i<m, let ¢y; be a non-increasing optimality criterion, where ¢b; need not be the same criterion for all i
For details on optimality, we refer to Shah and Sinha (1989). The following result can be viewed as a
generalization of Theorem 1 of MDC {2002).

Theorem 2.1. Suppose there exists a plan d* € S0(b ks x -+ % 5,) safisfving the following conditions: (ai) the
bk treatment combinations in d written as rows form an orthogonal array of strength two; (ait) for every
i#f =i j=m, Nl ij]T has all elemenis equal, (b) for 1 <ism, N i the incidence matrix of a block design
that is ¢roptimal over (b k,s)). Then d* is ¢-optimal for inference on 7, 1<i<m.

Proof. For a design d € bk, 5 % --- = 5,), let the coefficient matrix of the reduced normal equations for ©
be given by Cy. Then, Cy = ((Ciw)), 1 =i j=m, where the Cyy's are as in (2.5) and © is as in (2.1).
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Now, condition (ai) ensures that for every i#/,1 =i, /< m, My, has all entries equal. Thus, simple counting
shows that conditions (ai) and (aii) together implies that Cype = 0,i#j,1=<i,j=m. This, together with
condition (b) imply the required optimality property of &*. O

Remark 2.1. Note that unlike Theorem 1 of MDC (2002), the design &% of Theorem 2.1 above can be optimal
according to different optimality criteria for different factors. This is illustrated in Example 2.1,

Example 2.1. Consider the following design &% for a 4* x 2* experiment, laid out in eight blocks of size 2 each:

Block 1 Block 2 Block 3 Block 4 Block 5 Block & Block 7 Block 8
0000 2211 0311 2100 0101 1010 0210 1301
1111 3300 1200 3011 2310 2m 2001 3110

It is easy to verify that both N w,h- 4o are the incidence matrices of a randomized block design, while N
and N g Are each incidence matrices of a group divisible design with two groups consisting of the pairs o
tre:ﬂments (0,3) and (1,2). In uwsual notations, this group divisible design has 4> = 4; + 2 and by a result in
Jacroux (1983), condition (b) of Theorem 2.1 is satisfied with E-optimality as the optimality criterion for
i = 1,2. Hence the design is universally optimal for 1, i = 3,4 and E-optimal for 1, j = 1, 2. Of course, since
universal optimality implies E-optimality, the design is F-optimal for aff the factors.

A method of construction for obtaining universally optimal block designs for MEPs was suggested by MDC
{2002). This method is based on generalized Youden designs with & rows, 5 columns and 5 symbols for each
i, | =i=n. However, for a given k, such a generalized Youden design may not exist for all &, 1<i<n. For
instance, such a design does not exist with & = 2,5, = 4. It follows then that the method proposed in MDC
{2002) cannot be applied to construct MEPs with blocks when one or more factors are at four levels and the
block size &k = 2. To fill this gap, we propose an alternative method of construction of block designs for MEPs
with factors at ¥ = 27 levels each and the block size is 2.

Let #, be a finite field of order s = 2", p>1 and #7 = # {0}, where 0 is the additive identity of #,. For
each x € #7, let H, and A, constitute a partition of #, into two equal parts, such that for every 0 € H,,
0 + 2 .. An additive subgroup of #,, which does not contain 2, gives one such H,. Clearly, given z € #,
there may be more than one such partitions. For every a € % we choose one of these partitions and keep this
fixed throughout the construction described below.

Let 4 be an s x 5 matrix with rows indexed by the elements of #,, columns by the elements of #, x #,
and the entry in the zth row and (x, ¥)th column being the element x.z + yof F,, x, v,z € #F,. [t is then easy to
verify that AT is an OA(#*, 5.5, 2). Next, foranz e F, and a fixed H,, consider x € F,and y € H,and let w be
the (x, y)th column of 4. Define w = u + 21,. Form a block having the treatment combinations represented by
u and w. Repeat this process for each x € F_ and y e K, and call the resultant block design d(2). Now define
the design d* as d* =) dia)

Before proving the opztiaaht} properties of ¢, we state a lemma without proof.

Lemma 2.1. Consider a design d € Z(b, 2,85 % --- % 850) and a pair of distinet factors, say F; and F;.
Corresponding to any fypical Mock of d, consisting, say, of the treatment combinations w = (w),ua, .., uy) and
W= (W, W), consider the two ordered pairs (g, we) and (wy, wp). Let By be the collection of the 2b such
ordered pairs arising from the b Mocks of d.

The design d satisfies condition (aii) of Theorem 2.1 i it satisfies condition (at) of Theorem 2.1 and also the
Jollowing condition:

(aiii) For every i#j, 1= i,j=m, every ordered pair (o, f), 2. € § appears equally often in B,

Theorem 2.2. The design d* constructed above is universally optimal in (5™ (s — 1)/2,2,5") for inference on every
hiE F,.

Proof. From the method of construction of &%, it is clear that §;, = #,..i € #,, so that v = s*; further, b =
sNs—1)/2 and k = 2.
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Mow, with universal optimality as the optimality criterion, to verny condition (b) of Theorem 2.1 one has to
verify that N+ is the incidence matrix of a balanced block design in S4(h, k, ), i € F,.

But, from the description of (=) it follows that for w, i, f € #,, the (i, /)th element of N,z (N ,,]T is equal
to 5 when either j=i or, j=i4+ 2 and, is zero otherwise. This fact implies the required property of
Nﬂp, ic F,.

So, it remains to verify conditions (ai) and (aii) of Theorem 2.1. But for that it is enough to verify conditions
{ai) and (aiii), in view of Lemma 2.1. Towards that, we observe that the pair of treatment combinations u, w of
any block of d{x) are really the {x, y)th and the (x, Fjth columns of 4, with F = vy + 2, for some x € #, and
y e H,. Condition (ai) now follows by recalling that x takes all values in 5, and y, all values in H, Next, fix
i#f, i,/ € F;and consider a block containing the treatment combinations u and w. Then, for some x € #, and
yel, w=tx+yw=tx+y+at=ij Thus, wy—wij={i—flx—a=({—x+oe=nw—u==z say.
Since i,j,a are fixed, for a fixed x, z is fixed. Hence, (u,w)=(p,p—z) with p=ix+y and
{wi ) = (p+ o, p 4+ o — z). It is now clear that as y varies over M, and x over # 5, the ordered pairs vary
over #,x #, and condition (aiii) of Lemma 21 holds. This completes the proof of the
theorem. O

Example 2.2. Putting s = 4 in the construction procedure above, we get the following MEP &5 for a 4°
experiment, laid out in 24 blocks of size 2 each. (The set of elements of the finite field of order 4 is denoted by
{0,1,a,b}.) By Theorem 2.2, 43 is universally optimal for all factors.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block &8
Q000 daa Olak ahil Oabl alllh Ohla albl)
1111 Bhbh 10ha Bal0 1 hal) B0 LaQb Bl
Block 9 Block 10 Block 11 Block 12 Block 13 Block 14 Block 15 Block 16
0000 1111 Olah 10ha Oabl LBal) Ohla L)
el bbb ahil Bl alllh Bl0a albl) FBal

Block 17 Block 18 Block 19 Block 20 Block 21 Block 22 Block 23 Block 24

0000 1111 OMah 10ha Oabl L bal) Ohla L
bbb daad P} ahil B0 alllh Bal albl)

MNote that &5 allows one 3-level factor to be added. This is illustrated in Example 2.3

Example 2.3. The following design o for a 4% % 3 experiment can be obtained from 3 by adding a factor with
levels {0, 1, 2}. It can be verified that f satisfies conditions (ai), (aiii) and (b) and hence is universally optimal
for all five factors.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
Q0000 cetarel) 01ahl) ah10 Oah 10 all 1A Ohlal) al b0
11111 bhibh2 10hal a2 1 Bal)1 B10a2 1a0b1 012
Block 9 Block 10 Block 11 Block 12 Block 13 Block 14 Block 15 Block 16
00001 11110 0Mahl 10 Oabll 1 B0 Ohlal 100
et Bhhbl ahl)2 P11 alllh2 B10al alhi2 Ball

Block 17 Block 18 Block 19 Block 20 Block 21 Block 22 Block 23 Block 24

00002 11112 Oah2 10ha2 Oab12 1 Bal)2 0hla2 12
Bhhid) aetacl Fra 100 ahll B 10l alllil Bal alhil
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3. Optimal MEPs on fewer blocks

In this section we look for the minimum number (#) of blocks of a given size (k) necessary for the existence
of an optimal MEP in 29(h &, ).

The necessary conditions for the existence of an orthogonal array and a BIBD{h, &, v) can be used to derive
the following Lemma.

Lemma 3.1. An wniversally optimal MEP for an 8" experiment in b bocks of size k each can satisfy the
conditions of MDC (2002), only if (i) bk is divisible by & and (i) bk(k — 1) is divisible by s(s — 1).

In particular, if s =4, & = 2, then b has to be divisible by 8 as well as 6 and hence b must be a multiple of 24.
Thus, Example 2.2 uses the minimum number of blocks and further reduction in size is not possible. In
Example 2.1, bk = 4% is not a multiple of 6 and so universal optimality for the 4-level factors could not be
achieved.

We give the following example of an universally optimal MEP (d)) for a 4% experiment in 6 blocks of size 2
each, to illustrate that there exisis optimal MEPs with fewer number of blocks than what is required by
Lemma 3.1.

Example 3.1. Consider the following design d|

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
01 10 02 20 03 1]
23 32 il 13 12 21

Clearly, Cj,; = 0and NV ; and N,; are incidence matrices of BIBD(6,2, 4). Thus, d) is universally optimal
for inference on both 1) and 2. This example inspires us to find sufficient conditions weaker than those of
MDC (2002), which we present now.

Recall the notation in Lemma 2.1. For fixed i/, 1 =i, j=m, let Uy denote the collection of all 24 ordered
pairs (u, 1), where u = (1,...,u,) 15 a treatment combination appearing in the design.

Theorem 3.1. Suppose a design d in F(b, 2, ") satisfies the following condition:

(al) For every i#), 1 =i f=m, the muiltisets By and Uy ave the same. [This means that if an ordered pair
(o, ), o0 f§ € § appears ¢ times in By then it also uppﬂm ¢ times in Uy

Then, d is an orthogonal MEP, which is possibly non-orthogonal to the blocks.

Proof. Fix j#i 1<j<m. it is easy to verify that condition (al)) implies that C,; = 0. Hence the result. []
Corollary 3.1. I} a design d e Fib k8 satisfies conditions (a0) of Theorem 3.1 and (b) of Theorem 2.1, then J*
is r-optimal for inference on t 1 sism.

Example 3.2. The design da below is an MEP for a 5% x 2° experiment on 10 blocks of size 2 each. It is easy to
verify that d satisfies the condition (a0) of Theorem 3.1. Further, N ;. and N,; are incidence matrices of
BIBIY10,2,5), while N, ; and N ; are incidence matrices of the randomized block design (10,2, 2). Hence, by
Corollary 3.1, d is I.Inl'l.'fr"s&“} D[‘J[ll‘ﬂ&l for inference on 1,1 <i<4

Block Block 2 Block 3 Block 4 Block 5
0100 1200 2300 3400 4000
3211 4311 0411 1011 2111
Block 6 Block 7 Block 8 Block 9 Block 10
0301 1401 2001 3 4201

4110 0210 1310 2410 3010
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Remark 3.1. As Example 3.1 shows, universally optimal MEP do exist with bk smaller than 5. This is because
condition (al)) requires only equality between the multisets By and Uy they need not contain all possible
ordered pairs (from § x §). Example 3.2 shows that even in the case of asymmetric factorials, universally
optimal MEP exists with small bk. However, construction of designs with By as an arbitrary multiset ensuring
By = Uij seems to be rather difficult when there are three or more factors.
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