Of grandaunts and Fibonacci

The beautiful identity

$$
\prod_{s=1}^{(n-1) / 2} 2 \operatorname{Cos}\left(\frac{\pi s}{n}\right)=1
$$

for odd n, appears in article 88.62 and is termed grandma's identity by Steven Humble ([1]). However, it has been well-known in some quarters as the author says. Indeed, for several years, I have known this identity as well as two identities - a twin sister and an Italian cousin perhaps! The Italian cousin alluded to is :

$$
\prod_{r=1}^{(n-1) / 2}(3+2 \operatorname{Cos}(2 \pi r / n))=F_{n}
$$

for odd n, where F_{n} is the n-th among the Fibonacci numbers $1,1,2,3,5,8,13,21,34, \cdots$ The twin sister to the grandma identity is :

$$
\prod_{s=1}^{2 k} 2 \operatorname{Cos}\left(\frac{2 \pi s}{4 k+1}\right)=\prod_{s=1}^{2 k-1} 2 \operatorname{Cos}\left(\frac{2 \pi s}{4 k-1}\right)=(-1)^{k}
$$

We call this the twin sister because it is seen to be equivalent to the grandma identity on using the substitution formula $\operatorname{Cos}(\pi-\theta)=-\operatorname{Cos}(\theta)$.
The starting point of my discussion is the following identity which I have observed and used in a number of ways (see [2], [3]); it can be proved by induction on n :

$$
\sum_{r=0}^{[n / 2]}(-1)^{r}\binom{n-r}{r} x^{r}(1+x)^{n-2 r}=1+x+x^{2}+\cdots+x^{n}
$$

Using this, we have the identities

$$
\sum_{r=0}^{[(n-1) / 2]}(-1)^{r}\binom{n-1-r}{r} x^{r}(1+x)^{n-1-2 r}=1+x+\cdots+x^{n-1}=\prod_{s=1}^{[(n-1) / 2]}\left(x^{2}-2 x \operatorname{Cos}\left(\frac{2 \pi s}{n}\right)+1\right)
$$

Now, let us evaluate both sides of

$$
\sum_{r=0}^{[(n-1) / 2]}(-1)^{r}\binom{n-1-r}{r}\left(\frac{x}{(1+x)^{2}}\right)^{r}(1+x)^{n-1}=\prod_{s=1}^{[(n-1) / 2]}\left(x^{2}-2 x \operatorname{Cos}\left(\frac{2 \pi s}{n}\right)+1\right)
$$

at a value t of x for which $\frac{t}{(1+t)^{2}}=-1$; that is, $t^{2}+3 t+1=0$. The point is that the left hand side becomes $(1+t)^{n-1} \sum_{r=0}^{(n-1) / 2}\binom{n-1-i}{i}$. It is well-known and easy to prove by induction on n that $\sum_{r=0}^{(n-1) / 2}\binom{n-1-i}{i}$ is nothing but the n-th Fibonacci number. This is true for every n; one just uses the recursion $F_{n+1}=F_{n}+F_{n-1}$. On the other hand, the right hand side is

$$
\prod_{r=1}^{(n-1) / 2}(-3 t-2 t \operatorname{Cos}(2 \pi r / n))=(-t)^{(n-1) / 2} \prod_{r=1}^{(n-1) / 2}(3+2 \operatorname{Cos}(2 \pi r / n))
$$

As $-t=(1+t)^{2}$, this proves the remarkable identity

$$
\prod_{r=1}^{(n-1) / 2}(3+2 \operatorname{Cos}(2 \pi r / n))=F_{n}
$$

for any odd n.
Just as Humble obtained grandma's identity by substituting $x=-1$ for odd n, one could substitute $x=i(=\sqrt{-1})$ for odd n in both expressions, to get the identities

$$
(2 i)^{(n-1) / 2} \sum_{r=0}^{(n-1) / 2}\left(\frac{-1}{2}\right)^{r}\binom{n-1-r}{r}=(-2 i)^{(n-1) / 2} \prod_{s=1}^{(n-1) / 2} \operatorname{Cos}\left(\frac{2 \pi s}{n}\right) ;
$$

these are both equal to 1 or i according as to whether $n \equiv \pm 1 \bmod 4$. Thus, we have a twin sister to grandma's identity :

$$
\prod_{s=1}^{2 k} 2 \operatorname{Cos}\left(\frac{2 \pi s}{4 k+1}\right)=\prod_{s=1}^{2 k-1} 2 \operatorname{Cos}\left(\frac{2 \pi s}{4 k-1}\right)=(-1)^{k}
$$

and the grandaunt identity

$$
\sum_{r=0}^{(n-1) / 2}\left(\frac{-1}{2}\right)^{r}\binom{n-1-r}{r}=(-1)^{(n-1) / 2} \prod_{s=1}^{(n-1) / 2} \operatorname{Cos}\left(\frac{2 \pi s}{n}\right) .
$$

Note that Humble's grandma identity is equivalent to its twin as seen by using the observation $\operatorname{Cos}(\pi-\theta)=-\operatorname{Cos}(\theta)$.
[1] Steven Humble, Grandma's identity, Mathematical Gazette, Article 88.62, P.524, November 2004.
[2] B.Sury, A parent of Binet's formula ?, Mathematics Magazine, Vol. 77(2004) 308-310.
[3] James McLaughlin \& B.Sury, Powers of a matrix and combinatorial identities, Integers, Electronic Journal of Combinatorial Number theory, Vol. 5(2005) Article A 13.

Dr.B.Sury
Indian Statistical Institute 8th Mile Mysore Road
Bangalore - 560059, India.
email : sury@isibang.ac.in

