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Abstract

For the ergodic control problem for a large class of controlled Markov pro-
cesses in continuous time, existence of an optimal ergodic solution and an
optimal, possibly time-inhomogeneous Markov solution, in both cases corre-
sponding to a stationary Markov relaxed control policy, are known separately
under suitable conditions (Bhatt and Borkar, 1996). The aim of this article is
to refine this result to establish the existence of an optimal time-homogeneous
Markov solution. The proof is based upon Krylov’s Markov selection proce-
dure.

AMS (2000) subject classification. Primary 93E20.
Keywords and phrases. Controlled Markov processes, ergodic control, Markov
selection, optimal control.

1 Introduction

In Bhatt and Borkar (1996), the ergodic control problem for a broad class
of controlled Markov processes was analyzed and existence of an optimal er-
godic solution and an optimal Markov, though possibly time-inhomogeneous
solution were separately established under reasonable hypotheses, both cor-
responding to a stationary Markov relaxed control policy. Experience with
simpler situations (countable Markov chains, nondegenerate diffusions in
Rd, · · · ) suggests that one would have an optimal ergodic time-homogeneous
Markov control. The aim of this article is to provide such a result by adapting
Krylov’s Markov selection procedure (Chapter 12, Stroock and Varadhan,
1979). Originally intended for extracting a Markov family of probability
measures satisfying a ‘martingale problem’ in presence of nonuniqueness,
this procedure was adapted to extract an optimal Markov solution to degen-
erate controlled diffusions in Haussmann (1986) and El Karoui et al. (1987),
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following a suggestion of Varadhan. A compact treatment appears in Chap-
ter IV (page 84) of Borkar (1989), which we use as our starting point. As
it stands, the procedure in the above references is geared for ‘integral costs’
such as finite horizon cost, infinite horizon discounted cost, cost up to an
exit time, etc., and its application to ergodic control calls for an additional
limiting procedure, viz., the ‘vanishing discount limit’, which is the main
contribution of this work.

The next section recalls the problem set-up from Bhatt and Borkar
(1996). Section 3 proves some preliminary results for the discounted cost
problem which pave way for the ‘vanishing discount’ argument of section 4.
Section 5 proves the main result. Section 6 concludes with some remarks.

Notation.

1. E: a Polish space ≈ the state space of the controlled Markov process
X(·)

2. U : a compact metric ‘control’ space

3. U : the space of measurable maps [0,∞) → V
def
= P(U) with the

coarsest topology that renders continuous each of the maps

µ(·) = µ(·, du) ∈ U 7→
∫ T

0
g(t)

∫
U
h(u)µ(t, du)dt,

for all T > 0, g ∈ L2[0, T ], h ∈ Cb(U). This is compact metrizable (see,
e.g., Borkar (1989)).

4. For a Polish space S:

• B(S) is its Borel σ-field and P(S) the space of probability mea-
sures on (S,B(S)) with the Prohorov topology,

• B(S) (resp., Cb(S)) is the space of bounded measurable (resp.,
continuous) maps from S → R.

5. L(· · · ) stands for ‘the law of ’ · · · .

6. For {fk}, f ∈ B(S), fk
bp→ f (where ‘bp’ stands for ‘bounded pointwise’)

if supx,k|fk(x)| < ∞ and fk(x) → f(x) ∀x. Q ⊂ B(S) is bp-closed if

fk ∈ Q ∀k and fk
bp→ f together imply f ∈ Q. For Q ⊂ B(S), define

bp-closure(Q)
def
= the smallest bp-closed subset of B(S) containing Q.
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2 The Control Problem

Let A be an operator with domain D(A) ⊂ Cb(E) and range R(A) ⊂
Cb(E × U). Let ν ∈ P(E).

Definition. An E × V -valued process (X(·), π(·) = π(·, du)) defined on
a probability space (Ω,F , P ) is said to be a solution to the relaxed controlled
martingale problem for (A, ν) with respect to a filtration {Ft, t ≥ 0} if:

• (X(·), π(·)) is {Ft}-progressive;

• L(X(0)) = ν;

• for f ∈ D(A),

f(X(t))−
∫ t

0

∫
U
Af(X(s), u)π(s, du)ds, t ≥ 0, (2.1)

is an {Ft}-martingale.

We omit explicit mention of {Ft} or ν when they are apparent from the
context. Further, we may simplify notation by setting

Āf(x, µ)
def
=

∫
U
Af(x, u)µ(du), f ∈ D(A), x ∈ E,µ ∈ V,

and rewrite (2.1) as

f(X(t))−
∫ t

0
Āf(X(s), π(s))ds, t ≥ 0. (2.2)

The operator A is assumed to satisfy the following conditions:

1. (C1) There exists a countable subset {gk} ⊂ D(A) such that

{(g,Ag) : g ∈ D(A)} ⊂ bp-closure({(gk, Agk) : k ≥ 1}).

2. (C2) D(A) is an algebra that separates points in E and contains con-
stant functions. Also, A1 = 0, where 1 is the constant function iden-
tically equal to 1.

3. (C3) For each u ∈ U , let Auf(·) def
= Af(·, u). Then there exists an

r.c.l.l. solution to the martingale problem for (Au, δx) for all u ∈
U, x ∈ E.
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We also make the following assumption: Let (X(·), π(·)) be a solution to
the relaxed controlled martingale problem above.

(†) For fixed initial law ν of X0, L((X(·), π(·))) form a tight set M̄(ν) of
P(C([0,∞);E)× U).

Simple sufficient conditions for this can be given in specific cases men-
tioned above. An immediate corollary is the following:

Lemma 2.1 M̄(ν) is a compact convex set.

Proof. Let Us denote the set of restrictions of π(·) ∈ U to [0, s] with
the induced topology and let C([0, s];E) be the space of continuous maps
from [0, s] to E. A process (X(·), π(·)) is a solution to the relaxed control
martingale problem for A if and only if for all t > s ≥ 0, f ∈ D(A) and
G ∈ Cb(C([0, s];E)× Us) ,

E

[(
f(X(t))−f(X(s))−

∫ t

s
Āf(X(y), π(y))dy

)
G

(
X(·)|[0,s], π(·)|[0,s]

)]
= 0.

This relation is retained under convex combinations of laws and also under
convergence in P(C([0,∞);E)× U). The claim follows. �

Let k : E × U → [0,∞] be a running cost function. The ergodic control
problem is to minimize the ergodic cost

lim sup
t→∞

1
t

∫ t

0
E

[∫
U
k(X(s), u)π(s, du))

]
ds. (2.3)

We assume that the set of L((X(·), π(·))) for which this is finite is nonempty.

3 The Discounted Cost Problem

The main argument will be based on combining the Markov selection
procedure applied to the infinite horizon discounted cost problem with the
‘vanishing discount limit’. With this goal, introduce the discounted cost

J(Φ, x)
def
= E

[∫ ∞

0
e−αt

∫
U
k(X(t), u)π(t, du)dt

∣∣∣X(0) = x

]
, (3.1)

where Φ
def
= L((X(·), π(·))) and α > 0 is the discount factor. Let

J(Φ, ν)
def
=

∫
E
J(Φ, x)ν(dx),
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Ψα
0 (ν)

def
= inf

Φ∈M̄(ν)
J(Φ, ν),

and
Mα

0 (ν)
def
=

{
Φ ∈ M̄(ν) : J(Φ, ν) = Ψα

0 (ν)
}
.

Let {fi} ⊂ Cb(E) be a countable separating class for P(E) and {βj} be a
countable dense set in (0,∞). For i, j ≥ 1, define Fij : P (Cb([0,∞);E)× U)
7→ R as follows. Let Φ ∈ P (Cb([0,∞);E)× U) denote the law of a process
(X(·), π(·)). Then

Fij(Φ)
def
=

∫ ∞

0
E

[
e−βitfj(X(t))

]
dt. (3.2)

Enumerate Fij ’s as F1, F2, · · · , by a suitable relabelling. For i ≥ 1, define
inductively

Ψα
i (ν)

def
= inf

Φ∈Mα
i−1(ν)

Fi(Φ),

Mα
i (ν)

def
=

{
Φ ∈Mα

i−1(ν) : Fi(Φ) = Ψα
i (ν)

}
.

Since Mα
i (ν) have been obtained as Argmins of lower semi-continuous lin-

ear functionals on compact convex sets of measures, we have the following
immediate corollary to Lemma 2.1:

Corollary 3.1 For fixed α, ν, {Mα
i (ν), i ≥ 0} is a nested, decreasing

family of compact convex nonempty sets.

In particular, Mα
∞(ν)

def
= ∩iMα

i (ν) is nonempty compact and convex.

For sake of simplicity, we shall denote Ψα
i (δx),Mα

i (δx), where δx
def
= the

Dirac measure at x, by Ψα
i ([x]),Mα

i ([x]) resp. The following lemma mimicks
Lemma 1.2, p. 86, of Borkar (1989).

Lemma 3.2 For Φ ≈ L((X(·), π(·))) ∈ Mα
i (ν), the regular conditional

law of (X(·), π(·)) given X(0) = x is in Mα
i ([x]) for ν−a.s. x. (Equivalently,

Ψα
i (ν) =

∫
Ψα

i ([x])ν(dx).)

Proof. For i = 0, the claim follows by a standard argument of dynamic
programming (see, e.g., Lemma 1.2, pp. 55-56, of Borkar (1989), in fact this
is the same argument as for i ≥ 1 below from (3.4) onwards, except that the
steps preceding (3.4) are not needed for i = 0). Suppose the claim is true
for all j ≤ i. Thus

Ψα
j (ν) =

∫
Ψα

j ([x])ν(dx), j ≤ i.
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Let ε > 0 and εn
def
= ε/2n, n ≥ 1. For n ≥ 1, let Φn = L((Xn(·), πn(·))) ∈

Mα
i (ν) be such that

Fi+1(Φn) ≤ Ψα
i+1(ν) + εn. (3.3)

Let Φn(x) denote the regular conditional law of (Xn(·), πn(·)) given Xn(0) =
x. By the induction hypothesis, we can find a set N ⊂ E with ν(N) = 0
such that the Φn(x) is in Mα

j ([x]) for all x /∈ N and for all j ≤ i. Let

Bn =
{
x ∈ E : Fi+1(Φn(x)) < Ψα

i+1([x]) + ε
}
, n ≥ 1.

Then, (3.3) implies that ν(Bc
n) < 2−n. Define Cn ⊂ E,n ≥ 1, successively by

C1 = B1, Cn = Bn ∩ (∪m<nBm)c, n > 1.

Then clearly Cn’s are disjoint and ν(∪nCn) = ν(∪nBn) = 1. Define Φ̄ by

Φ̄ =
∑

n

∫
Cn

Φn(x)ν(dx).

Then Φ̄ is the law of a process (X̄(·), π̄(·)) such that L(X̄(0)) = ν and for
x ∈ Cn, n ≥ 1, the regular conditional law of (X̄(·), π̄(·)) given X̄(0) = x is
Φn(x). Using the fact that Φn(x) ∈Mα

j ([x]) for all n ≥ 1 and 0 < j ≤ i, we
get

Fj(Φ̄) =
∑

n

∫
Cn

Fj(Φn(x))ν(dx) =
∑

n

∫
Cn

Ψα
j ([x])ν(dx) = Ψα

j (ν),

where the last equality above follows from the induction hypothesis. Thus
Φ̄ ∈Mα

j (ν), 0 < j ≤ i. A similar argument works for j = 0 where F0 = J is
the discounted cost defined in (3.1). Furthermore, another similar argument
using (3.3) leads to

Fi+1(Φ̄) ≤
∫

E
Ψα

i+1([x])ν(dx) + ε. (3.4)

Since ε > 0 was arbitrary, we get

Ψα
i+1(ν) ≤

∫
E

Ψα
i+1([x])ν(dx). (3.5)

Now consider an arbitrary Φ∗ = L((X∗(·), π∗(·))) ∈ Mα
i (ν). Let Φ∗(x)

denote the regular conditional law of (X∗(·), π∗(·)) given X∗(0) = x. Then
we have

Fi+1(Φ∗) =
∫

E
Fi+1(Φ∗(x))ν(dx) ≥

∫
E

Ψα
i+1([x])ν(dx).
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Thus, taking the infimum over all Φ∗ ∈Mα
i (ν) on the left hand side, we get

Ψα
i+1(ν) ≥

∫
E

Ψα
i+1([x])ν(dx). (3.6)

Now (3.5) and (3.6) together complete the induction step. �

For Φ ≈ L((X(·), π(·))), let ν ′
def
= L(X(t)) for some t ≥ 0. Suppose Φ′ ≈

L((X ′(·), π′(·))) is such that L(X ′(0)) = ν ′. We define a t−concatenation Φ̃
of Φ with Φ′ to be L((X̃(·), π̃(·))) such that

L((X̃(·), π̃(·))|[0,t]) = L((X(·), π(·))|[0,t]),

and the regular conditional law of (X̃(t + ·), π̃(t + ·)) given (X̃(·), π̃(·))|[0,t]

is the same as the regular conditional law thereof given X̃(t), which is in
turn the same as the regular conditional law of (X ′(·), π′(·)) given X ′(0),
ν ′−a.s. The next two lemmas are in the spirit of Lemmas 1.3-1.4, pp. 87-
88, of Borkar (1989). They are stated separately, but their induction steps
are interlinked: The i−th induction step of Lemma 3.3 invokes the claim
of the i−th induction step of Lemma 3.5, whereas the i−th induction step
of Lemma 3.5 invokes the claim of the (i− 1)−th induction step of Lemma
3.3. Let Φ,Φ′, Φ̃, (X(·), π(·)), (X ′(·), π′(·)), (X̃(·), π̃(·)) be as above, with Φ ∈
Mα

i (ν) and Φ′ ∈Mα
i (ν ′) for some i ≥ 0.

Lemma 3.3 Φ̃ ∈Mα
i (ν).

Proof. For i = 0, this is a standard part of the dynamic programming
argument (see section III.1 of Borkar (1989)). Let i ≥ 1 and suppose that
the claim is true for all ` < i. Now, Φ ∈ Mα

j (ν) and Φ′ ∈ Mα
j (ν ′) for

0 ≤ j ≤ i.
Fix j, 0 < j ≤ i. Let m,n be such that for Φ∗ = L((X∗(·), π∗(·))) (see

(3.2))

Fj(Φ∗) =
∫ ∞

0
E

[
e−βmsfn(X∗(s))

]
ds.

For any Φ∗ ∈ P (Cb([0,∞);E)× U) as above let Φ∗t ∈ P (Cb([0,∞);E)× U)
be defined by Φ∗t = L((X∗(t+ ·), π∗(t+ ·))).

We have

Fj(Φt) = Ψα
j (ν ′) = Fj(Φ′) = Fj(Φ̃t) 0 < j ≤ i,
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where the first equality follows from Lemma 3.5 below, the second follows be-
cause Φ′ ∈Mα

j (ν ′), and the third follows from our definition of Φ̃. Multiply
both extremes of the above equality by e−βmt and add

E

[∫ t

0
e−βmsfn(X(s))ds

]
to both sides. But since L(X(s) : 0 ≤ s ≤ t) = L(X̃(s) : 0 ≤ s ≤ t) we get

Ψα
j (ν) = Fj(Φ) = Fj(Φ̃),

implying Φ̃ ∈Mα
j (ν) for 0 ≤ j ≤ i. �

Corollary 3.4 The following ‘dynamic programming principle’ holds:
For i ≥ 1 and m,n as above and Φ

def
= L((X(·), π(·))) ∈Mα

i (ν),,

Ψα
i (ν) = E

[∫ t

0
e−βmsfn(X(s))ds+ e−βmtΨα

i ([X(t)])
]
. (3.7)

Proof. By Lemma 3.2, the r.h.s. above equals

E

[∫ t

0
e−βmsfn(X(s))ds

]
+ e−βmtΨα

i (ν ′)

for ν ′
def
= L(X(t)). Take Φ′

def
= L((X ′(·), π′(·))) ∈ Mα

i (ν ′) and let Φ̃ =
L((X̃(·), π̃(·))) be the t−concatenation of Φ with Φ′. Then by the above
lemma Φ̃ ∈Mα

i (ν), leading to

Ψα
i (ν) = E

[∫ ∞

0
e−βmsfn(X̃(s))ds

]
= E

[∫ t

0
e−βmsfn(X̃(s))ds

]
+ E

[∫ ∞

t
e−βmsfn(X̃(s))ds

]
= E

[∫ t

0
e−βmsfn(X(s))ds

]
+ E

[∫ ∞

t
e−βmsfn(X ′(s− t))ds

]
= E

[∫ t

0
e−βmsfn(X(s))ds

]
+ e−βmtΨα

i (ν ′).

This completes the proof. �

Lemma 3.5 If Φ = L((X(·), π(·))) ∈ Mα
i (ν), then for each t > 0, Φt ∈

Mα
i (L(X(t))).
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Proof. For i = 0, the claim follows from dynamic programming as
follows. If not, recalling (3.1), one would have

E

[∫ ∞

t
e−αs

∫
k(X(s), u)π(s, du)ds

]
> e−αtΨα

0 (L(X(t))). (3.8)

Hence,

Ψα
0 (ν) = E

[∫ t

0
e−αs

∫
k(X(s), u)π(s, du)ds

]
+ E

[∫ ∞

t
e−αs

∫
k(X(s), u)π(s, du)ds

]
> E

[∫ t

0
e−αs

∫
k(X(s), u)π(s, du)ds+ e−αtΨα

0 ([X(t)])
]

= Ψα
0 (ν), (3.9)

a contradiction. (Here the strict inequality follows from (3.8) and Lemma
3.2, and the last equality follows from the dynamic programming principle.)

Suppose now that the claim is true for 0 ≤ j < i, i ≥ 1. Let Φ ∈Mα
i (ν).

Then by the induction hypothesis,

Φt = L((X(t+ ·), π(t+ ·))) ∈Mα
i−1(L(X(t))). (3.10)

Let m,n be such that

Fi(Φ∗) =
∫ ∞

0
E

[
e−βmsfn(X∗(s))

]
ds

for any Φ∗ = L(X∗(·), π∗(·)). Suppose now that the claim is false for i.
Then we get

E

[∫ ∞

t
e−βmsfn(X(s))ds

]
> e−βmtΨα

i (L(X(t))).

This implies

Ψα
i (ν) = E

[∫ t

0
e−βmsfn(X(s))ds

]
+ E

[∫ ∞

t
e−βmsfn(X(s))ds

]
> E

[∫ t

0
e−βmsfn(X(s))ds+ e−βmtΨα

i ([X(t)])
]

= E

[∫ t

0
e−βmsfn(X(s))ds

]
+ e−βmtΨα

i (ν ′)

(3.11)
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where ν ′ = L(X(t)). Let Φ′ = L((X ′(·), π′(·))) ∈ Mα
i (ν ′). Hence, by

definition,

Ψα
i (ν ′) = Fi(Φ′) = E

[∫ ∞

0
e−βmsfn(X ′(s))ds

]
. (3.12)

Let Φ̃ be the t−concatenation of Φ with Φ′. Since (3.10) holds, Lemma 3.3
can be used for (i − 1) and hence we get that Φ̃ ∈ Mα

i−1(ν). This implies
that Fi(Φ̃) ≥ Ψα

i (ν). Using this and the definition of Φ̃, and substituting
(3.12) in (3.11) we get

Ψα
i (ν) > E

[∫ t

0
e−βmsfn(X(s))ds

]
+ e−βmtE

[∫ ∞

0
e−βmsfn(X ′(s))ds

]
= E

[∫ t

0
e−βmsfn(X(s))ds

]
+ E

[∫ ∞

t
e−βmsfn(X ′(s− t))ds

]
= Fi(Φ̃) ≥ Ψα

i (ν), (3.13)

a contradiction. This completes the induction step and hence the proof of
the lemma. �

The following technical lemma is easily proved and is the same as Lemma
1.5, p. 89, of Borkar (1989).

Lemma 3.6 For bounded measurable f : [0,∞) → R,∫ ∞

0
e−βjtf(t)dt = 0 ∀j =⇒ f(t) = 0 a.e.

Corollary 3.7 For any two elements L((X(·), π(·))),L((X ′(·), π′(·)))
of Mα

∞(ν), X(·), X ′(·) have the same one dimensional marginals. Further-
more, there exists a L((X̂(·), π̂(·))) ∈Mα

∞(ν) such that

π̂(t) (= π̂(t, du)) = v(t, X̂(t)) (= v(t, X̂(t), du))

for some measurable v : [0,∞) → V (i.e., π̂(·) is a ‘Markov control’).

Proof. The first claim is immediate from Lemma 3.6 and our choice
of {fm} as a separating class for P(E). The second is a consequence of
Corollary 2.2, p. 1549, of Bhatt and Borkar (1996). �

Define qα(x, t, B)
def
= P (X(t) ∈ B) forB ∈ B(E) and any L((X(·), π(·))) ∈

Mα
∞([x]). The exact choice of the latter is immaterial by Corollary 3.7.
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Lemma 3.8 {qα(x, t, .), x ∈ E, t ≥ 0} satisfy the Chapman-Kolmogorov
equations.

Proof. This is immediate from Lemma 3.5. �

Consider a Markov process Xα(·) with the transition kernel qα(·, ·, ·).

Lemma 3.9 For Xα(·) constructed as above with L(Xα(0)) = ν and
v(·, ·) as in Corollary 3.7, (Xα(·), v(·, Xα(·))) satisfies the relaxed controlled
martingale problem for (A, ν).

Proof. By our construction L((Xα(·), v(·, Xα(·))) ∈ Mα
∞(ν). This

implies the claim. �

Corollary 3.10 Without loss of generality, we may replace v(t,Xα(t))
in Lemma 3.9 by vα(Xα(t)) for a measurable vα : E → V .

Proof. This follows as in Corollary 1.1, p. 13, of Borkar (1989). �

4 The Vanishing Discount Limit

We recall the following notation. For Φ = L((X(·), π(·))), Φ(x) denotes
the regular conditional law of (X(·), π(·)) given X(0) = x. Also for any set
D let D denote its closure.

Now, for prescribed i ≥ 0, ν ∈ P(E), let M0
i ([x])

def
= the set of limit

points of Mα
i ([y]) as α→ 0 and y → x. In other words, letting ρ denote any

compatible complete metric on E,

M0
i ([x])

def
= ∩α>0 ∩ε>0 ∪0<β<α ∪ρ(y,x)<ε M

α
i ([y]).

Further let

M0
i (ν)

def
= {Φ = L((X(·), π(·))) : L(X(0)) = ν,Φ(x) ∈M0

i ([x]) ∀x a.s. [ν]}.

First we note down the following observation.

Lemma 4.1 M0
i (ν) is compact and contains the set of limit points of

Mα
i (ν ′) as (α, ν ′) → (0, ν) (in particular, is nonempty).

Proof. We first prove the second claim. Let νn → ν, αn → 0, and let
L(Xn(·), πn(·)) ∈ Mαn

i . Then {L(Xn(·), πn(·))} can be shown to be a tight
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sequence as in Lemma 3.6 (pp. 126) of Borkar (1989). By dropping to a
subsequence if necessary we can assume that

L(Xn(·), πn(·)) → L(X(·), π(·)) (4.1)

(say). Let ψn : E → P(C([0,∞);E) × U) denote the regular conditional
law of (Xn(·), πn(·)) given Xn(0). By dropping to a further subsequence if
necessary, we may suppose that

(Xn(0), ψn(Xn(0))) → (X ′(0), ψ′) (4.2)

in law for an E×P(C([0,∞);E)×U)-valued pair (X ′(0), ψ′). Clearly, the law
of bothX ′(0) in (4.2) andX(0) in (4.1) is ν. Let f : E×(C([0,∞);E)×U) →
R be a bounded continuous function. Then by (4.2),

E

[∫
f(Xn(0), ω)ψn(Xn(0), dω)

]
→ E

[∫
f(X ′(0), ω)ψ′(dω)

]
. (4.3)

By Lemma 3.2, ψn(Xn(0)) ∈Mαn
i (Xn(0)) ∀n, a.s. Thus

ψ′ ∈M0
i (X ′(0)) a.s. (4.4)

Define ψ : E → P(C([0,∞);E)× U) by:∫
hdψ(X ′(0)) = E

[∫
hdψ′

∣∣∣∣X ′(0)
]

for h in any countable convergence determining class in Cb(C([0,∞);E)×U).
ClearlyM0

i (µ) is convex for all i, µ (being the set of limit points of a sequence
of convex compact sets contained in a compact set). By (4.4), it then follows
that ψ(X ′(0)) ∈M0

i (X ′(0)), a.s. By (4.3),

E

[∫
f(Xn(0), ω)ψn(Xn(0), dω)

]
→ E

[∫
f(X ′(0), ω)ψ(dω)

]
.

Also,
E[f(Xn(0), (Xn(·), πn(·)))] → E[f(X(0), (X(·), π(·)))].

Therefore ψ is the regular conditional law of (X(·), π(·)) given X(0). Hence
L(X(·), π(·)) ∈M0

i (ν).
We have proved that every limit point of Mα

i (µ) as α→ 0 and µ→ ν is
in M0

i (ν). To prove compactness, let L(Xn(·), πn(·)) ∈M0
i (ν) be such that

L(Xn(·), πn(·)) → L(X(·), π(·)).
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Pick αn ↓ 0, νn → ν and L(X̃n(·), π̃n(·)) ∈Mαn
i (νn) such that

|αn| < 2−n,

ρ(νn, ν) < 2−n,

ρ′(L(X̃n(·), π̃n(·)),L(Xn(·), π(·))) < 2−n,

where ρ, ρ′ denote the Prohorov metrics on P(E),P(C([0,∞);E)×U) resp.
Then

L(X̃n(·), π̃n(·)) → L(X(·), π(·)).

Argue exactly as above to conclude that L(X(·), π(·)) ∈M0
i (ν). �

In particular, we have the following result.

Lemma 4.2 For each ν, {M0
i (ν), i ≥ 0} is a nested decreasing family of

nonempty compact sets.

The following results mimic their counterparts in the preceding section.
First we note the following straightforward result without proof.

Lemma 4.3 Let Cn be a sequence of compact convex subsets of a compact
set in P(C([0,∞);E) × U) and C the set of its limit points as n → 0. Let
f be a bounded linear functional on P(C([0,∞);E) × U), and Dn, resp. D
the set of minimizers of f on Cn, resp. C. Then the set of limit points of
Dn is a compact convex subset of D.

Corollary 4.4 For any two elements L((X(·), π(·))),L((X ′(·), π′(·)))
of M0

∞(ν), X(·), X ′(·) have the same one dimensional marginals. Further-
more, there exists a L((X̂(·), π̂(·))) ∈M0

∞(ν) such that

π̂(t) (= π̂(t, du)) = v(t, X̂(t)) (= v(t, X̂(t), du))

for some measurable v : [0,∞) → V (i.e., π̂(·) is a ‘Markov control’).

Proof. Lemma 4.3 implies that the minimum of Fi on M0
i−1(ν) is at-

tained on M0
i (ν) for i > 0. Now mimicking the arguments of the preceding

section we get the result. �

Lemma 4.5 If L((X(·), π(·))) ∈ M0
∞(ν) and ν ′

def
= L(X(t)) for some

t > 0, then L((X(t+ ·), π(t+ ·))) ∈M0
∞(ν ′).
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Proof. It suffices to prove the claim for M0
i (ν),M0

i (ν
′) in place of

M0
∞(ν),M0

∞(ν ′) resp. for all i ≥ 0. Furthermore, it suffices to consider
ν = δx for some x ∈ E. Fix i ≥ 0. Let L((X(·), π(·))) ∈ M0

i ([x]). From the
definition of M0

i ([x]), there exist xn → x, αn → 0, and L((Xn(·), πn(·))) ∈
Mαn

i ([xn]) such that

L((Xn(·), πn(·))) → L((X(·), π(·))).

Then
L((Xn(t+ ·), πn(t+ ·))) → L((X(t+ ·), π(t+ ·))).

The claim now follows from Lemma 3.5 above. �

Define q(x, t, B)
def
= P (X(t) ∈ B) for B ∈ B(E) and any L((X(·), π(·))) ∈

M0
∞([x]). The exact choice of the latter is immaterial by Corollary 4.4.

Lemma 4.6 {q(x, t, .), x ∈ E, t ≥ 0} satisfy the Chapman-Kolmogorov
equations.

Proof. This is immediate from Lemma 4.5. �

Consider a Markov process X∗(·) with the transition kernel q(·, ·, ·).

Lemma 4.7 For X∗(·) constructed as above with L(X∗(0)) = ν and v(·, ·)
as in Corollary 4.4, (X∗(·), v(·, X∗(·))) satisfies the relaxed controlled mar-
tingale problem for (A, ν).

Corollary 4.8 Without loss of generality, we may replace v(t,X∗(t))
in Lemma 4.7 by v∗(X∗(t)) for a measurable v∗ : E → V .

5 The Existence Result

We begin by adapting for the present set-up the existence results from
Bhatt and Borkar (1996), section 3. For a stationary L((X(·), π(·))), define
the associated ergodic occupation measure ϕ ∈ P(E × U) by:∫

fϕ(dxdu)
def
= E

[∫
U
f(X(t), u)π(t, du)

]
.

Note that (2.3) then becomes
∫
kdϕ. Let G denote the set of all ergodic

occupation measures. From Theorem 2.1, pp. 1538-1541, of Bhatt and
Borkar (1996), we have:
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Lemma 5.1 G is closed convex and is characterized as

G =
{
µ ∈ P(E × U) :

∫
Afdµ = 0 ∀f ∈ D(A)

}
.

Define η : [0,∞) → P(E × U), η(t) = η(t, dxdu) by∫
fη(t)

def
=

1
t

∫ t

0
E

[∫
U
f(X(s), u)π(s, du)

]
ds, f ∈ Cb(E × U).

We make the following ‘stability’ assumption:

(A1) G is compact and for any compact B ⊂ P(E) and L((X(·), π(·))) ∈
M̄(ν), ν ∈ B (in particular, for a fixed ν ∈ P(E)), {L(X(t)), t ≥ 0} is tight.

This implies in particular that η(t), t ≥ 0, is tight and therefore relatively
compact in P(E × U) by Prohorov’s theorem.

Lemma 5.2 Any limit point η∗ of η(t) in P(E × U) as t→∞ is in G.

Proof. Let t→∞ along an appropriate subsequence in the formula

E[f(X(t))]
t

− E[f(X(0))]
t

=
1
t

∫ t

0
E[Āf(X(s), π(s))]ds, f ∈ D(A),

to conclude that
∫
Afdη∗ = 0 ∀f ∈ D(A). The claim now follows from

Lemma 5.1 above. �

This enables us to establish the following basic existence result in the
spirit of Lemma 3.1, p. 1553, of Bhatt and Borkar (1996).

Lemma 5.3 Under (A1), there exists a stationary ergodic L((X̄(·), π̄(·)))
that is optimal for the ergodic control problem.

Proof. By the above lemma,

lim inf
t→∞

∫
kdη(t) ≥ inf

η∈G

∫
kdη.

By compactness ofG, the infimum on the right is a minimum. From Theorem
2.1 of Bhatt and Borkar (1996), we know that the minimum will correspond
to a stationary pair (X(·), π(·)). Considering the ergodic decomposition of
the latter, the claim follows. �
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Our aim is to refine this result to the existence of an optimal ergodic
L((X(·), π(·))) so that X(·) is a time-homogeneous Markov process (whence
π(·) may be taken to be a stationary Markov control as observed earlier).

Let γ
def
= minµ∈G

∫
kdµ denote the optimal cost and ν∗

def
= L(X̄(t)) for X̄(·)

as in Lemma 5.3.
Recall the time-homogeneous Markov processes Xα(·), α > 0, of section

3, with the associated control processes {vα(Xα(·))} resp. From now on we
consider these with L(Xα(0)) = ν∗. We shall need the following assumption:

(A2) Each Xα(·) is asymptotically stationary.

Lemma 5.4 For all α > 0,

αE

[∫ ∞

0
e−αt

∫
U
k(Xα(t), u)vα(Xα(t), du)dt

]
≤ γ. (5.1)

Proof. This is immediate from the optimality of L((Xα(·), vα(Xα(·))))
for the α−discounted cost and the fact that the corresponding cost for
L((X̄(·), π̄(·))) is γ/α for all α > 0. �

Lemma 5.5 As α→ 0,

αE

[∫ ∞

0
e−αt

∫
U
k(Xα(t), u)vα(Xα(t), du)dt

]
→ γ.

Proof. By the above lemma,

lim sup
α→0

αE

[∫ ∞

0
e−αt

∫
U
k(Xα(t), u)vα(Xα(t), du)dt

]
≤ γ.

Consider the ‘discounted occupation measures’ µα ∈ P(E × U) defined by∫
fdµα def

= αE

[∫ ∞

0
e−αt

∫
U
f(Xα(t), u)vα(Xα(t), du)dt

]
, f ∈ Cb(E × U).

As shown in Bhatt and Borkar (1996), these satisfy∫
(Af − αf)dµα +

∫
fdν∗ = 0, f ∈ D(A). (5.2)

It follows from (A1) that {µα} are tight. Letting α→ 0 in (5.2) leads to∫
Afdµ∗ = 0 ∀f ∈ D(A),
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for any limit point µ∗ of µα as α→ 0, implying µ∗ ∈ G by Lemma 5.1. Thus

lim inf
α→0

αE

[∫ ∞

0
e−αt

∫
U
k(Xα(t), u)vα(Xα(t), du)dt

]
= lim inf

α→0

∫
kdµα ≥

∫
kdµ∗ ≥ γ.

The claim follows. �

Let L((X̂α(·), vα(X̂α(·)))) for α > 0 denote the limiting stationary laws
of L((Xα(·), vα(X(·)))), implicit in the statement of assumption (A2) above.
By (A1), these are tight. Let α(n) ↓ 0 be a subsequence such that

L((X̂α(n)(·), vα(n)(X̂α(n)(·)))) → L((X ′(·), π′(·)))

(say), which will also be stationary. Let

ν̂n def
= L(X̂α(n)(t)) → ν̂

def
= L(X ′(t)).

Since L((X̂α(n)(·), vα(n)(X̂α(n)(·)))) ∈Mα(n)
∞ (ν̂n), it follows that

L((X ′(·), π′(·))) ∈M0
∞(ν̂).

Consider L((X∗(·), v∗(X∗(·)))) as in the preceding section with L(X∗(0)) =
ν̂. Then L((X∗(·), v∗(X∗(·)))) ∈ M0

∞(ν̂). Thus by Corollary 4.4, it has
the same one dimensional marginal as L((X ′(·), π′(·))), viz., the constant
marginal ν̂. Since it is also time-homogeneous Markov, it follows that it is
stationary. Furthermore,

E

[∫
U
k(X̂α(n)(t), u)vα(n)(X̂(t), du))

]
→ E

[∫
U
k(X̂ ′(t), u)π′(t, du))

]
= E

[∫
U
k(X∗(t), u)v∗(X∗(t), du))

]
= lim

t→∞

1
t

∫ t

0
E

[∫
U
k(X∗(s), u)v∗(X∗(s), du)ds

]
,

implying that the latter equals γ. That is, L((X∗(·), v∗(X∗(·)))) is an opti-
mal stationary pair. By considering its ergodic decomposition if necessary,
we have proved:

Theorem 5.6 Under (A1), (A2), there exists an optimal ergodic, time-
homogeneous Markov solution to the ergodic control problem.
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6 Concluding Remarks

We have established the existence of an optimal time-homogeneous Markov
and ergodic solution to the ergodic control problem under a certain set of
conditions. A careful look at the arguments of the final section shows that
it is of the nature: ‘if an optimal ergodic solution exists, then so does one
which is also time-homogeneous Markov’. Condition (A1) played a crucial
role in establishing the former. In specific cases, however, one may be able
to replace it by other more convenient conditions for the purpose, see, e.g.,
section 3 of Bhatt and Borkar (1996) for one such instance.
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