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Abstract

This paper considers the class of discrete distributions for which the distri-
bution function is a log-concave sequence. It is shown that such distributions
arise from a wide variety of circumstances in Reliability, and that these have
a decreasing reversed hazard rate. After examining the closures of the class
under certain key operations, sharp upper and lower bounds on the reliabil-
ity function for the member distributions are given. Some useful inequalities
for maintained systems are provided. Some results for the related class of
discrete concave distributions are also given.
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1 Introduction

Discrete life distributions arise in several common situations in reliability
theory where clock time is not the best scale to describe lifetime. A discrete
life distribution is a natural choice where failure occurs only due to incom-
ing shocks. For example, in weapons reliability, the number of rounds fired
until failure is more important than age at failure (Shaked et al., 1995). Dis-
crete lifetimes also occur through grouping or finite precision measurement
of continuous time phenomena. Since there is a limit on the precision of
any measurement, it can be arguably said that samples from a continuous
distribution exist only in theory. However, there has been relatively less
work on discrete distributions, particularly in the area of Reliability. Some
parametric models for discrete life distributions have been discussed, viz.
Bain (1991), Adams and Watson (1989), Xekalaki (1983) and the references
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therein. Roy and Gupta (1992) and Sengupta et al. (1995) considered non-
parametric classes of such distributions. These distributions are applicable
not only to discrete life data, but also to count of events such as repeated
failures of a maintained unit.

Most of the nonparametric classes of distributions (continuous or dis-
crete) that are commonly found in the reliability literature are based on
some notion of aging. Sengupta and Nanda (1999) showed that the class of
log-concave life distributions have some interesting properties, even though
no aging interpretation is available for these classes. They also obtained
reliability bounds and other inequalities for log-concave distributions.

Definition 1.1 A distribution function F with support [0,∞) is said
to be log-concave if

F (αx + (1− α)y) ≥ Fα(x).F 1−α(y)

for α ∈ (0, 1) and 0 ≤ x, y < ∞.

The reversed hazard rate (see Shaked and Shanthikumar, 1994) of a dis-
tribution F at the point t is defined as (d/dt) ln F (t), provided the derivative
exists. If the reversed hazard rate exists, F is log-concave if and only if the
reversed hazard rate is non-increasing in t. In the case of a discrete distri-
bution F with support included in N = {0, 1, 2, ...}, the reversed hazard rate
µF (k) is defined as (F (k)− F (k − 1))/F (k).

Definition 1.2 A discrete distribution F with support contained in
N is said to be discrete decreasing reversed hazard (d-DRH) if the reversed
hazard rate µF is a non-increasing sequence.

The purpose of the present paper is to explore the properties of the d-
DRH class of discrete distributions. A few results obtained here happen to
be similar to those obtained for continuous log-concave distributions by Sen-
gupta and Nanda (1999) but there are many others which are qualitatively
different.

The following are a few instances of d-DRH distributions arising in prac-
tice.

1. Many common discrete distributions are d-DRH for all values of the
parameters. These include binomial, Poisson, geometric, hypergeo-
metric, negative binomial, logarithmic series, hyper-Poisson, Zeta and
Yule distributions.
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2. Grouped data arising from samples of any log-concave life distribution
are found to have d-DRH distribution (see Section 3). As noted by
Sengupta and Nanda (1999), most of the parameric models of distri-
butions in common use in reliability are log-concave.

3. In a stress-strength model where the independent and exponentially
distributed stresses accumulate to cause failure and the strength has
a log-concave distribution, the number of shocks causing the eventual
failure has a d-DRH distribution (see Section 3).

4. Consider a maintained system where a failure is treated with instanta-
neous and perfect repair/replacement. Suppose the (continuous) inter-
replacement times are independent with distribution F . If F is IFR,
then the number of replacements till any fixed time has a d-DRH dis-
tribution (see Sengupta and Nanda, 1999).

5. Given a collection of n independent events with various probabilities,
the distribution of the number of events actually taking place is d-DRH
(see Sathe and Bendre, 1991).

The scope of the d-DRH class and its characterizations are given in Sec-
tion 2. The results concerning relationships between d-DRH and (continu-
ous) log-concave distributions are studied in Section 3. Section 4 deals with
the closure properties of the d-DRH class under different reliability oper-
ations. The sharp reliability bound for a d-DRH distribution is given in
Section 5, while some inequalities for maintained systems are given in Sec-
tion 6. The sub-class of discrete concave distributions is briefly considered
in Section 7.

Throughout the paper, we refer to discrete distributions with support
contained in N as ‘life distributions’. The words ‘increasing’ and ‘decreas-
ing’ would mean ‘non-decreasing’ and ‘non-increasing’, respectively. For a
distribution function F , we denote the corresponding survival function by
F̄ , that is, F̄ (k) = 1− F (k − 1).

2 Characterization and scope

We begin with two characterizations of d-DRH distributions which are
easy to prove.

Theorem 2.1 Let K be a discrete random variable having life distribu-
tion F . The following three statements are equivalent.
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(a) F is d-DRH.

(b) F (n + k)/F (k) is decreasing in k for all n ∈ N.

(c) The distribution function Gk of k−K given K ≤ k, defined as Gk(n) =
P [k −K ≤ n|K ≤ k] is stochastically increasing in k.

Note that Gk in part (c) of Theorem 2.1 is the distribution of the time
since failure, at time k. This is analogous to the remaining life at age k.The
time since failure are of interest, for instance, in problems involving calcula-
tion of premiums for insurance which are payable at the end of the year of
death.

The following lemma, stated without proof, would be useful in proving
the next theorem which shows how d-DRH distributions may arise in a
variety of ways.

Lemma 2.2 Suppose ak and bk for k = 1, 2, . . . are positive sequences
with ak/bk increasing in k. Then(

k∑
i=1

ai

)/ (
k∑

i=1

bi

)
is increasing in k.

Theorem 2.3 Let F be a discrete life distribution and the corresponding
probability mass function be denoted by the sequence fk, k ≥ 0.

(a) If fk is decreasing in k, then F is d-DRH.

(b) If F has decreasing failure rate (d-DFR), then it is d-DRH.

(c) If fn+k/fk is monotone in k for n ∈ N and k = 1, 2, . . ., then F is
d-DRH.

(d) If F has a finite number of modes, then there is an age k0 which is less
than or equal to the rightmost mode such that the distribution of the
‘remaining life’ at any age greater than k0 is d-DRH.

Proof. Part (a) is easy to prove. Part (b) follows from part (a) by
checking that fk is decreasing in k whenever F is d-DFR.

To prove (c), let fk−1/fk be increasing in k, so that

δ/f0 < f0/f1 < f1/f2 < . . . < fk−1/fk,
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where δ is a small positive quantity. Hence, on using Lemma 2.2 and taking
limit as δ approaches zero, we have F (k−1)/F (k) increasing in k. If fk−1/fk

is decreasing in k, that is, fn+k/fn is increasing in n, we have

fn+k/fn ≤ fm+k/fm, for all k > 0 and all n ≤ m.

This means

fn+kfm ≤ fm+kfn for all k > 0 and all n ≤ m.

Taking sum over all m ranging from n to ∞ on both sides of the above
inequality, we have

F̄ (n)fn+k ≤ fnF̄ (n + k) for all k and n,

that is, F is d-DFR. It follows from Part (b) above that F is d-DRH.
To prove (d), let fk be decreasing for all k ≥ k0. The probability mass

function of the remaining life at any age greater than k is decreasing, and
the stated result follows from part (a). �

Remark 2.1 Using part (c) of the above theorem, one can easily see
that the binomial, negative binomial, Poisson, hyper-Poisson, geometric,
hypergeometric, logarithmic series, zeta and Yule distributions belong to
the d-DRH class for all values of the parameters.

Theorem 2.3 shows how the number of certain events may have a d-DRH
distribution. Yet other instances of emergence of d-DRH distributions will
be given in the next section. We end this section with the observation that
there is no discrete distribution with support on the entire domain N which
has an increasing reversed hazard rate.

3 Relationship Between d-DRH and Log-concave Distributions

We begin with a stronger version of a result stated in Section 1.

Theorem 3.1 A discrete distribution is d-DRH if and only if it is the
discretized version of a continuous log-concave distribution.

Proof. Let X be a random variable with continuous log-concave distri-
bution function F . Let K be the integer part of X. Then

P (K ≤ n + k)
P (K ≤ k)

=
F (n + k + 1)

F (k + 1)
,
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which is decreasing in k, since log F is concave. The reverse implication is
proved by observing that for a d-DRH distribution G, the continuous distri-
bution obtained by linearly interpolating log G in between integer points is
log-concave. �

Some preliminaries are needed for the next characterization. Define, for
λ > 0 and n = 1, 2, . . ., the functional

Γ(λ, g, n) =
∫ ∞

0
λe−λx (λx)n−1

(n− 1)!
g(x)dx,

for any function g defined on [0,∞), for which the above integral exists. Let
Γ(λ, g, 0) = 0 for all λ and g. The functional Γ has the property given below.

Lemma 3.2 If f is any density and F is the corresponding distribution
function, then

(a)
∑n

k=1 Γ(λ, f, k) = λΓ(λ, F, n).

(b) Γ(λ, F, ·) is a discrete distribution.

Proof. The proof of part (a) follows from the fact that

Γ(λ, f, n) = λΓ(λ, F, n)− λΓ(λ, F, n− 1), n = 1, 2, . . . ,

which can be proved by integration by parts.
In order to prove part (b), note that Γ(λ, F, n) is increasing in n and it

is bounded above by Γ(λ, 1, n) = 1. Therefore, it is enough to show that
limn→∞ Γ(λ, F, n) > 1− δ for any small and positive δ. Choose a δ, choose
x0 such that F (x0) > 1− δ/2 and choose n0 such that∫ x0

0
λe−λx (λx)n−1

(n− 1)!
dx <

δ

2
for all n > n0.

Note that such an n0 exists because for every fixed λ and x0 the integral in
the left hand side decreases monotonically to 0 as n goes to infinity. Define
the function g by g(x) = (1−δ/2)I(x > x0), where I(·) is the usual indicator
function. It follows that for n > n0,

Γ(λ, F, n) ≥ Γ(λ, g, n)

= Γ(λ, 1−δ/2, n)−(1−δ/2)
∫ x0

0
λe−λx (λx)n−1

(n−1)!
dx≥(1−δ/2)2>1−δ.

This completes the proof. �
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We are now ready for a characterization of the distribution Γ(λ, F, ·).

Theorem 3.3 An absolutely continuous life distribution F is log-concave
if and only if the discrete distribution Γ(λ, F, ·) is d-DRH for all λ > 0.

Proof. Let the distribution function F having density f be log-concave.
This means f(x)/F (x) is decreasing in x, and that f − θF for any θ > 0
changes sign at most once (from positive to negative as x goes from 0 to ∞).
Since the kernel

K(n, x) = exp(−λx)
(λx)n

n!
is TP2 over N× [0,∞), its variation diminishing property (see Karlin, 1968,
Chapter 5 or Barlow and Proschan, 1975, p.93) implies that Γ(λ, f, n) −
θΓ(λ, F, n) changes sign at most once (from positive to negative as n goes
from 0 to ∞). Therefore, Γ(λ, f, n)/Γ(λ, F, n) is decreasing in n. Lemma 3.2
indicates that this sequence is λ times the reversed hazard rate of the discrete
distribution Γ(λ, F, ·). This completes the necessity part.

To prove the sufficiency, note that the d-DRH property of Γ(λ, F, n), by
Lemma 3.2 reduces to

Γ(λ, f, n) · Γ(λ, F, n + k) ≥ Γ(λ, F, n) · Γ(λ, f, n + k) for n, k ∈ N. (3.1)

It is clear that Γ(λ, g, n) = E(g(X)) where X has a gamma distribution.
Block and Savits (1980, page 468) used the argument that when x is a
continuity point of g,

lim
n→∞

Γ(n/x, g, n) = g(x),

since the gamma distribution tends to the degenerate distribution at x. In
the present case, if x (> 0) and x + y (> 0) are two continuity points of F ,
and if we choose k in (3.1) as the integer part of ny/x and λ as n/x, then the
four terms of (3.1) tend to f(x), F (x + y), F (x) and f(x + y), respectively,
as n →∞. It follows that F has a decreasing reversed hazard rate. �

Remark 3.1 Let Y , X1, X2, . . . be independent, with Y having distri-
bution function F and the Xi’s following the exp(λ) distribution. Let N be
such that

X1 + X2 + . . . + XN−1 < Y ≤ X1 + X2 + . . . + XN .

Then the above theorem suggests that the distribution of N is d-DRH for
all λ if and only if F is log-concave.

The random variables mentioned in Remark 3.1 may be interpreted in
any one of the following ways.
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1. In a stress-strength model, Y may be the strength and X1, X2, . . . be
independent stresses (shocks) which accumulate. The device fails as
soon as the cumulative stress exceeds strength. Then, N is the number
of stresses (shocks) causing failure of the device.

2. X1, X2, . . . may be a sequence of inter-failure times of a maintained
unit, while Y may be the time of a catastrophic failure. In such a
case, N would be the number of repairs during the lifetime of the unit,
which is terminated by the catastrophic failure.

3. Y may be the lifetime of a single server whose clients come as per a
Poisson process and are instantly served. Then N would be the number
of clients served in the entire life of the server.

We end this section by mentioning a result due to Sengupta and Nanda
(1999) that links d-DRH distributions with continuous log-concave distribu-
tions through a Poisson shock model.

Theorem 3.4 Suppose that random shocks arrive in continuous time
according to a homogeneous Poisson process, and that the probability that a
unit fails to survive k shocks is P (k). If the distribution P (k) has the d-DRH
property, then the continuous life distribution of the unit is log-concave.

4 Closures and Non-closures

We start this section by proving closure property under convolution of
discrete IFR (d-IFR) class, which will be used in proving the corresponding
closure of the d-DRH class.

Lemma 4.1 Let X and Y be two independent d-IFR random variables,
not necessarily nonnegative. Then their sum X + Y is also discrete IFR.

Proof. Let us write P (X = k) = fk, P (X ≥ k) = F̄ (k), P (Y = k) =
gk, P (Y ≥ k) = Ḡ(k) and assume that F and G are discrete IFR (i.e.
F̄ (k + n)/F̄ (k) and Ḡ(k + n)/Ḡ(k) are both decreasing in k for n ∈ N). We
have to show that

D =
∣∣∣∣∑k F̄ (m1 − k)gk−n1

∑
k F̄ (m1 − k)gk−n2∑

k F̄ (m2 − k)gk−n1

∑
k F̄ (m2 − k)gk−n2

∣∣∣∣ ≥ 0
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for all indices n1 ≤ n2 and m1 ≤ m2. Note that

D =
∑
k1

∑
k2

F̄ (m1 − k1)F̄ (m2 − k2)[gk1−n1gk2−n2 − gk1−n2gk2−n1 ]

=
∑∑
k1≤k2

[
F̄ (m1 − k1)F̄ (m2 − k2)− F̄ (m1 − k2)F̄ (m2 − k1)

]
×[gk1−n1gk2−n2 − gk1−n2gk2−n1 ].

The first of the four product terms can be rewritten as∑∑
k1≤k2

F̄ (m1 − k1)F̄ (m2 − k2)gk1−n1gk2−n2

=
∑
k2

F̄ (m2 − k2)gk2−n2

∑
k1≤k2

∑
j≥m1−k1

fjgk1−n1

=
∑
k2

F̄ (m2 − k2)gk2−n2

∑
k1≤k2

∑
i≤k1

fm1−igk1−n1

=
∑
k2

F̄ (m2 − k2)gk2−n2

∑
i≤k2

fm1−i

k2∑
k1=i

gk1−n1

=
∑
k2

F̄ (m2 − k2)gk2−n2

∑
k1≤k2

fm1−k1 [Ḡ(k1 − n1)− Ḡ(k2 − n1 + 1)]

=
∑∑
k1≤k2

F̄ (m2 − k2)gk2−n2fm1−k1Ḡ(k1 − n1)

−
∑

k

F̄ (m2 − k)gk−n2F̄ (m1 − k)Ḡ(k − n1 + 1).

The other three products of sums in the expression of D can be rewritten as∑∑
k1≤k2

F̄ (m1 − k1)F̄ (m2 − k2)gk2−n1gk1−n2

=
∑∑
k1≤k2

F̄ (m2 − k2)gk2−n1fm1−k1Ḡ(k1 − n2)

−
∑

k

F̄ (m2 − k)gk−n1F̄ (m1 − k)Ḡ(k − n2 + 1);∑∑
k1≤k2

F̄ (m1 − k2)F̄ (m2 − k1)gk2−n1gk1−n2

=
∑∑
k1≤k2

F̄ (m1 − k2)gk2−n1fm2−k1Ḡ(k1 − n2)

−
∑

k

F̄ (m1 − k)gk−n1F̄ (m2 − k)Ḡ(k − n2 + 1);
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k1≤k2

F̄ (m1 − k2)F̄ (m2 − k1)gk1−n1gk2−n2

=
∑∑
k1≤k2

F̄ (m1 − k2)gk2−n2fm2−k1Ḡ(k1 − n1)

−
∑

k

F̄ (m1 − k)gk−n2F̄ (m2 − k)Ḡ(k − n1 + 1).

Once the four terms are put back together, the subtracted terms from the
above expressions would cancel. The combination of the double summations
can be conveniently factored as

D =
∑∑
k1≥k2

[F̄ (m1 − k1)fm2−k2 − F̄ (m2 − k1)fm1−k2 ]

×[gk1−n1Ḡ(k2 − n2)− gk1−n2Ḡ(k2 − n1)].

The first factor of the summand can be written as

F̄ (m1 − k1)fm2−k2 − F̄ (m2 − k1)fm1−k2

=
(

F̄ (m2 − k2)
F̄ (m2 − k1)

· fm2−k2

F̄ (m2 − k2)
− F̄ (m1 − k2)

F̄ (m1 − k1)
· fm1−k2

F̄ (m1 − k2)

)
×F̄ (m1 − k1)F (m2 − k1).

The two ratios contained in the first term within parantheses are greater
than the corresponding ratios of the second term, since F is discrete IFR.
Therefore, the above expression is nonnegative. Similarly,

gk1−n1Ḡ(k2 − n2)− gk1−n2Ḡ(k2 − n1)

=
(

Ḡ(k1 − n1)
Ḡ(k2 − n1)

· gk1−n1

Ḡ(k1 − n1)
− Ḡ(k1 − n2)

Ḡ(k2 − n2)
· gk1−n2

Ḡ(k1 − n2)

)
×Ḡ(k2 − n2)Ḡ(k2 − n1) ≥ 0.

It follows that D ≥ 0 and hence the distribution of X + Y is IFR. �

The ensuing theorem gives the closure properties of the d-DRH distribu-
tions.

Theorem 4.2 The d-DRH class of distributions has the following clo-
sure properties.

(a) If a sequence of d-DRH distributions converges to a limiting distribu-
tion, the limiting distribution is d-DRH.
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(b) If the components of a parallel system have independent lifetimes with
d-DRH distributions, then the system life distribution is d-DRH.

(c) If the components of a k-out-of-n system have independent lifetimes
with identical d-DRH distributions, then the system life distribution is
d-DRH.

(d) Convolution of two d-DRH distributions produces a d-DRH distribu-
tion.

Proof. Parts (a) and (b) are easy to prove from the definition of the
d-DRH class.

In order to prove part (c), let F be a d-DRH distribution and G be a
continuous distribution obtained by linearly interpolating log F at the non-
integral points. Let Bkn be the function defined in Barlow and Proschan (1975,
p.107), so that the composition Bkn◦F is the life distribution of a k-out-of-
n system of independent components having life distribution F . Since the
continuous distribution G is log-concave, Theorem 2(g) of Sengupta and
Nanda (1999) implies that Bkn◦G is log-concave. Therefore, the sequence
log (Bkn◦G(j)/Bkn◦G(j − 1)) is decreasing in j. It follows that the sequence
1−Bkn◦G(j − 1)/Bkn◦G(j) is decreasing in j. However,

1− Bkn◦G(j − 1)
Bkn◦G(j)

= 1− Bkn◦F (j − 1)
Bkn◦F (j)

,

and the expression in the right hand side is the reversed hazard rate of the
distribution Bkn◦F .

Part (d) can be proved by using Lemma 4.1 along with the fact that X
is d-DRH if and only if −X is discrete IFR. �

Remark 4.1 It is to be mentioned here that the proof of Theorem 2(f)
of Sengupta and Nanda (1999) is erroneous. The result is true and it can
be proved along the lines of the proof of Barlow and Proschan (1975) by
considering −X in place of X.

Remark 4.2 The life distribution of a series system with independent d-
DRH distributed component lifetimes need not be d-DRH. Consider F (k) =
P (X ≤ k) = (1/2)4−k and G(k) = P (Y ≤ k) = (1/4)4−k, k = 0, 1, 2, 3, 4.
Then F and G are d-DRH, but 1− (1− F )(1−G) is not d-DRH.

Remark 4.3 Mixtures of d-DRH distributions is not necessarily d-DRH.
Consider the distribution F having masses 0.3, 0.3 and 0.4 at 0, 1 and 2,
respectively, and the distribution G having masses 0.99 and 0.01 at 0 and 1,
respectively. F and G are d-DRH, but (F + G)/2 is not.
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5 Reliability Bounds

Consider a discrete distribution F with support on N and a specified
mean µ. The following theorem gives the sharp upper bound on F̄ (k) when
F is known to be d-DRH.

Theorem 5.1 If X is a discrete random variable having d-DRH distri-
bution with mean µ, then

P (X > k) ≤

{
1 if k < [µ]

max
i=k,k+1,...

(1− ri−k
i ) if k ≥ [µ],

where [µ] is the integer part of µ and ri is the unique solution to the equation

(1− ri+1
i )/(1− ri) = i + 1− µ.

The bound is sharp.

Proof. In order to prove that the trivial upper bound in the case k < [µ]
is sharp, consider the distribution having masses 1−µ+[µ] and µ− [µ] at the
points [µ] and [µ] + 1, respectively. This distribution is d-DRH, has mean
µ and P (X > k) is equal to 1 for all k < [µ]. Now let k ≥ [µ] and define
the class of distributions G = {F : F is d-DRH with mean µ}. The task is
to find the infimum of F (k) when F ∈ G. We shall show that this task is
equivalent to finding the infimum of F (k) when F is in the sub-class

G0=
{

F : F ∈ G, F (l)=min{e−a(t−l), 1} for some t>µ and a>0
}

. (5.1)

To see this, let us choose a distribution F from G and define M(l) = − lnF (l).
The distribution F is d-DRH if and only if M(l) − M(l + 1) is decreasing
in l. For the chosen integer k ≥ [µ] set

M1(l) =
{

a(t− l) if l < t,
0 if l ≥ t,

where a = M(k) − M(k + 1) and t = k + 1 + M(k + 1)/a. (We ignore the
trivial case a = 0, when M(k) = M(k + 1) = M(k + 2) = · · · = 0 so that
F (k) is larger than any distribution in G0.) By construction M1(l) = M(l)
for l = k, k + 1. It follows from the convexity of the sequence M that
M1(l) ≤ M(l) for all l, with equality holding for l = k, k + 1. Since∑

l≥0

(
1− e−M(l)

)
= µ,
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we have ∑
l≥0

(
1− e−M1(l)

)
≤ µ. (5.2)

Note that even though the distribution e−M1 has the requisite shape, it is not
necessarily a member of G0 as its mean may be too small. However, the LHS
of (5.2) would increase if the value of a is increased from M(k)−M(k + 1),
keeping t fixed, and would exceed µ when a goes to infinity. Therefore, there
exists a number a0 such that the distribution e−M2 defined by

M2(l) =

{
a0(t− l) if l < t,

0 if l ≥ t,

where t = k + 1 + M(k+1)
M(k)−M(k+1) , has mean µ. Specifically, a0 is defined by

the equation

µ =
∑
l≥0

(
1− e−M2(l)

)
= [t] + 1− (e−a0(t−[t]) − e−a0(t+1))

(1− e−a0)
.

Clearly, e−M2 is a member of G0 and a0 ≥ M(k) − M(k + 1), implying
e−M2(k) ≤ e−M1(k) = e−M(k).

Thus, for every distribution in G there is a distribution in G0 which has
a smaller value of distribution function at k. Therefore, instead of seeking
the supremum of P (X > k) over G, it is enough to look for the supremum
of P (X > k) over G0. It follows from (5.1) that the sharp upper bound of
P (X > k) in G0 is

sup
t : t≥k,

a : [t]+1−(e−a(t−[t])−e−a(t+1))/(1−e−a)=µ

(1− e−a(t−k)).

In order to simplify the task of maximization, define the variables i = [t],
〈t〉 = t− [t] and r = e−a. Then the upper bound of P (X > k) in G0 is

sup
i=k,k+1,...

0<〈t〉<1

0<r<1

r〈t〉(1−ri+1)/(1−r)=i+1−µ

1− ri−k+〈t〉.

Rewrite the constraint as

r〈t〉(1 + r + · · ·+ ri) = i + 1− µ. (5.3)
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It is clear that the left hand side of (5.3) is an increasing function of r and a
decreasing function of 〈t〉. Therefore, for given µ and fixed i, the constraint
dictates that the variables 〈t〉 and r be increasing functions of one another.

After substituting (i + 1 − µ)(1 − r)/(1 − ri+1) for r〈t〉, the objective
function becomes

1− ri−k(i + 1−µ) · 1− r

1− ri+1
= 1− (i + 1−µ)

1
r−(i−k) + r−(i−k)+1 + · · ·+ rk

.

It is easy to see that r−(i−k) + r−(i−k)+1 + · · ·+ rk is a convex function of r
with a unique minimum. Therefore, for fixed i the maximum of the objective
function occurs at one of the end-points of the range of r permitted by the
constraint. As r is an increasing function of 〈t〉, these end-points correspond
to 〈t〉 = 0 and 〈t〉 = 1, respectively, in (5.3). Consequently for fixed i, the
objective function is maximized by choosing either r = ri or r = si, where
ri and si are unique solutions to the equations

1 + r + · · ·+ ri = i + 1− µ,

and r(1 + r + · · ·+ ri) = i + 1− µ,

respectively. It is easy to see that si = ri+1. Therefore, for k ≤ [µ] the upper
bound of P (X > k) is

max
i=k,k+1,...

max
{

1− ri−k
i , 1− si−k+1

i

}
= max

i=k,k+1,...
(1− ri−k

i ),

with ri defined by (1− ri+1
i )/(1− ri) = i + 1−µ. This leads to the required

result. Sharpness of the bound in the case k ≥ [µ] follows from the fact that
for every i > k, the value 1− ri−k

i is attained by a particular distribution in
G0. �

Remark 5.1 The upper bound in the range k ≥ [µ] is qualitatively
different from the continuous case. Further, the bound in the continuous
case is a function of time divided by mean life, whereas the discrete case
bound cannot be computed solely from the knowledge of k/µ or (k + 1)/µ.

Remark 5.2 Since the d-DRH class includes the discrete DFR class,
and the sharp lower bound on the reliability for the latter class is 0 (see
Theorem 5 of Sengupta et al., 1995), the sharp lower bound on F̄ (k), when
F is d-DRH with mean µ, is 0.
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6 Inequalities for maintained units

Consider a maintained unit where each failure is followed by instant
replacement by a new or perfectly repaired unit. Let the life distribution of
the units be independent with distribution F . In the continuous time case,
Sengupta and Nanda (1999) showed that whenever F is IFR, the number
of failures till a fixed time t0 has a d-DRH distribution. If the mean of this
distribution is known, then one can give an upper bound on this distribution
using Theorem 5.1. If one does not know the mean but has a good idea about
the parent distribution F , then one can use the upper and lower bounds given
by Barlow and Proschan (1975, p.162)

Now consider the above set-up in discrete time, as in Shaked et al. (1993).
Let F be a known distribution. If an item fails at time k, then it is imme-
diately replaced with a new unit at the same time (which means that there
is a possibility of two or more failures at a single time index k). Let N(k)
represent the number of replacements till time k (that is, the N(k)th failure
occurs at or before time k and the (N(k) + 1)th failure occurs strictly af-
ter k). The distribution of N(k) for fixed k is not easy to compute in general.
The following theorem provides an approximation from the lower side.

Theorem 6.1 In the above set-up, let F be d-DRH. Then

P (N(k) < l) ≥ 1− e−lakl

l−1∑
i=0

(kakl)i

i!
,

where akl = − log F
([

k
l

]
+ 1
)
, [k

l ] being the integer part of k
l .

Proof. Let S = − log F and T be a piecewise linear and continuous
function that coincides with S at the integer points. [If S is not defined at
any point, T can be assigned any finite value so that the function is convex.]
Let G(x) = e−T (x). Note that if K is a sample from F , then for any x > 0,

P (T (K) ≥ x) = P (K ≤ T−1(x)) = F
(
[T−1(x)]

)
= G

(
[T−1(x)]

)
≤ G(T−1(x)) = e−x.

In the above simplification the notation [·] has been used to indicate the
‘greatest integer’ function. The above result shows that the random variable
T (K) is stochastically smaller than the unit exponential distribution.

Let K1,K2, . . . be the successive lifetimes of the replacement units. We
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can write

P (N(k)<l) = P (K1+K2+ · · ·+Kl > k)

= P

(
T

(
K1+K2+ · · ·+Kl

l

)
< T

(
k

l

))
≥ P

(
T

(
K1+K2+ · · ·+ Kl

l

)
≤ S

(
k

l
+1
))

≥ P

(
T (K1)+T (K2)+ · · ·+T (Kl)

l
≤ S

(
k

l
+1
))

(since T is convex)

≥ P

(
E1 + E2 + · · ·+ El ≤ l · S

(
k

l
+ 1
))

= P (E1+E2+ · · ·+El ≤ l · akl), where akl = S

([
k

l

]
+ 1
)

,

E1, E2, . . . being samples from the unit exponential distribution. The results
stated in the theorem follows from the form of the gamma distribution with
shape parameter l and scale parameter 1. �

7 Discrete concave distributions

Note from the proof of Part (b) of Theorem 2.3 that there is a class of
distributions which lie somewhere in between the class of d-DFR and d-DRH
classes. These are distributions with decreasing probability mass function.
We define the class of such distributions as discrete concave or d-concave
class.

It can be shown with some algebraic manipulation that the ‘remaining
life’ (at any age) corresponding to any d-concave distribution (at any age) is
d-concave. Further, the class of d-concave distributions is closed under limits
of distributions, formation of arbitrary series systems and arbitrary mixtures.
The class is not closed under convolution and formation of coherent systems.
A simple counterexample that works for both the situations is one where the
first distribution has masses 0.5, 0.3, 0.1 and 0.1 at 0, 1, 2 and 3, respectively
and the second distribution has masses 0.4, 0.3, 0.2 and 0.1 at the same
points, respectively.

Sengupta and Nanda (1999) had shown that d-concave distributions give
rise to continuous concave distributions through a Poisson shock model,
along the lines of Theorem 3.4.

When F is d-concave, one can use the decreasing property of F (k +1)−
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F (k) to obtain a sharp upper bound of the reliability function F̄ for a given
mean µ.

Theorem 7.1 Let X be a discrete random variable having d-concave
distribution with mean µ. Then the sharp lower and upper bounds on the
survival function are given by

0 ≤ P (X > k) ≤


1− 2k([2µ]−µ)

[2µ]·[2µ−1] if k < µ− 1,

µ
2k+1 if k ≥ µ− 1,

where, [·] indicates the integer part.

Proof. Following an argument similar to the one used in the proof of
Theorem 5.1 it can be shown that the upper bound can only be attained by
a distribution of the form

P (X ≤ k) =
{

α + (1− α)k/τ if 0 ≤ k ≤ τ,
1 if k > τ,

(7.4)

where, τ is a real number (τ ≥ k) and α is a fraction such that the mean of
the above distribution is µ. The latter condition implies that

µ =
[τ ]∑

k=0

P (X > k) = (1−α)
[τ ]∑

k=0

(1− k/τ) = (1−α){[τ ]+1−[τ ]([τ ]+1)/(2τ)}

= (1−α)([τ ]+1){1−[τ ]/(2τ)} = (1−α)([τ ]+1){1− [τ ]/(2[τ ] + 2〈t〉)},

where 〈t〉 = τ − [τ ], the fractional part of τ . Note from the last equation
that

1− α =
µ

([τ ] + 1){1− [τ ]/(2[τ ] + 〈t〉)}
. (7.5)

Consider three cases regarding the existence of an α satisfying (7.5).

Case I: [τ ] > 2µ− 1. The right hand side of (7.5) has a fractional value for
every 〈t〉 ∈ [0, 1).

Case II: [τ ] ≤ 2µ−2. The right hand side of (7.5) does not have a fractional
value (that is, the value is bigger than 1) for any 〈t〉 ∈ [0, 1).

Case III: 2µ−2 < [τ ] ≤ 2µ−1 (that is, [τ ] = [2µ−1]). The right hand side

of (7.5) has a fractional value whenever 〈t〉 ≥ (2µ− [2µ])([2µ]− 1)
2([2µ]− µ)

.
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In summary, an α satisfying (7.5) exists if and only if τ ≥ τ0, where

τ0 = [2µ− 1]
{

1 +
2µ− [2µ]

2([2µ]− µ)

}
. (7.6)

Note that [2µ− 1] ≤ τ0 ≤ 2µ− 1.
For the distribution described in (7.4), we can conclude from (7.5) that

P (X > k) = (1− α)(1− k/τ) =
µ{1− k/([τ ] + 〈t〉)}

([τ ] + 1){1− [τ ]/(2([τ ] + 〈t〉))}

=
2µ([τ ]− k + 〈t〉)

([τ ] + 1)([τ ] + 2〈t〉)
. (7.7)

Therefore, the sharp upper bound on P (X > k) is

sup
τ≥max{k,τ0}

α∈[0,1]

µ=(1−α)([τ ]+1){1−[τ ]/(2[τ ]+〈t〉)}

(1− α) ·
(

1− k

[τ ] + 〈t〉

)

= sup
τ≥max{k,τ0}

2µ([τ ]− k + 〈t〉)
([τ ] + 1)([τ ] + 2〈t〉)

.

Note that 2µ([τ ] − k + 〈t〉)/{([τ ] + 1)([τ ] + 2〈t〉)} can also be written as
2µ(τ − k)/(τ2 + τ + 〈t〉 − 〈t〉2) which is a continuous function of τ . The
function can be differentiated at non-integer values of τ . The derivative is

2µ · −τ2 − τ + 2τ〈t〉+ 〈t〉 − 〈t〉2 + 2k(τ + 1− 〈t〉)
(τ2 + τ + 〈t〉 − 〈t〉2)2

=
2µ(2k − τ + 〈t〉)(τ − 〈t〉+ 1)

(τ2 + τ + 〈t〉 − 〈t〉2)2
=

2µ(2k − [τ ])([τ ] + 1)
(τ2 + τ + 〈t〉 − 〈t〉2)2

.

and it has the same sign as 2k − [τ ]. Clearly, the objective function is
maximized when 2k ≤ τ ≤ 2k + 1 and the maximum value is µ/(2k + 1).
This maximum is attained when the range [2k, 2k + 1] has an intersection
with the feasible range of τ , which is τ ≥ τ0. In other words, the above
maximum value is attained when τ0 ≤ 2k + 1. As [2µ − 1] ≤ τ0 ≤ 2µ − 1,
the condition τ0 ≤ 2k + 1 is equivalent to 2µ− 1 ≤ 2k + 1 or 2µ− 2 ≤ 2k or
k ≥ µ− 1.

In the other case (k < µ − 1), we have 2k + 1 < τ0 ≤ τ . Thus, the
objective function is decreasing in τ over its entire feasible range. Therefore,
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the maximum occurs at the smallest feasible value, τ0, and the maximum
value is

2µ([τ0]− k + 〈τ0〉)
([τ0] + 1)([τ0] + 2〈τ0〉)

=
2µ
(
[2µ− 1]− k + [2µ−1](2µ−[2µ])

2([2µ]−µ)

)
[2µ] · [2µ− 1]

(
1 + 2µ−[2µ]

2([2µ]−µ)

)
=

µ{[2µ−1](2[2µ]−2µ+2µ−[2µ])−2k([2µ]−µ)}
[2µ] · [2µ−1]([2µ]−µ+2µ−[2µ])

=
[2µ−1] · [2µ]−2k([2µ]−µ)

[2µ] · [2µ−1]
= 1− 2k([2µ]−µ)

[2µ] · [2µ−1]
.

This completes the proof. �
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