On non-negligible bias of the first output byte of RC4
towards the first three bytes of the secret key

Goutam Paul - Siddheshwar Rathi - Subhamoy Maitra

Abstract In this paper, we show that the first byte of the keystream output of RC4 has
non-negligible bias towards the sum of the first three bytes of the secret key. This result
is based on our observation that the index, where the first byte of the keystream output is
chosen from, is approximately twice more likely to be 2 than any other value. Our technigue
is further used to theoretically prove Roos’s experimental observation (A class of weak keys
inthe RC4 stream cipher, 1995) related to weak keys.

Keywords Bias - Cryptanalysis - Keystream - Permutation - RC4 - Stream cipher

1 Imtroduction

RC4 is one of the most popular stream ciphers in cryptologic literature and it has wide appli-
cations in industry till date. This cipher has been analyzed for more than a decade in open

Sidaneswar Rathi was a researcher at Applied Statistics Unit, Indian Statistical Institute, Kolkata, We were
shocked by his sudden demise on October 28, 2006. Siddheshwar had observed and proved Theorem 2.
However, we, the other two co-authors, noted the consequence of this thearem at a later date. In fact, we
wene attracted towards the analysis of RC4 due to Siddheshwar’s enthusiasm. Unfortunately, Siddheshwar
could not see this paper published.

124 G. Paul et al.

literature and many different weaknesses have been identified. Even then RC4 is believed to
be a secure stream cipher when used with certain precautions.

A brief description of RC4 is presented in Sect. 1.1 and necessary background is avail-
able in Sect. 1.2, Section 2 contains the contribution of this paper. In Sect. 2.1, we present
theoretical results to show for the first time (Theorem 3) that Piz; = (K[0] + K[1] +
K[2] + 3) mod 256) == BIEU + .37}, where z; is the first byte of the keystream output
after the first round of the Pseudo-Random Generation Algorithm (PRGA) of RC4 and
K[0]. K[1], K[2] are the first three bytes of the secret key. This result is based on (i) Roos's
result [11, Section 2, Result B], summarized as Theorem 1 in this paper, that P(5[2] =
(K[0O]+ K]+ K[2]43) mod 256) = 0.37, where 5, is the permutation after the complete
Key Scheduling Algorithm (KSA), and (i) more importantly, our observation (Theorem 2)
that the index, where the first byte of the keystream output is chosen from, is 2 with proba-
bility == ﬁ We emphasize here that Roos’s observation [11] was that 5(2] is correlated to
K[O]+ K[1]+ K[2] + 3 (see Corollary 1); but our theoretical result (Theorem 3), that this
bias is in fact propagated to z), is only due to our Theorem 2. Thus, our results connect the
weakness of the KSA and that of the PRGA of RC4.

Further, in Sect. 2.2, we theoretically prove (Theorem 5) Roos’s experimental observa-

tion [11] that Pi{z; = (K[2] +3) mod 256 | K[0] + K[1] = 0 mod 256) = 0.13 and the
proof is again hased on our newly identified stronger conditional bias (Theorem 4) of the
index 2 being chosen (given the condition K [0] 4+ K[1] = 0 mod 256) while generating

the first byte of the keystream output. This observation of 1995 [11] staved unproved for
more than a decade.

Finally, cryptanalytic applications of our results are demonstrated in Sect. 2.3,

Our results clearly point out two important issues in shuffle exchange kind of stream
cipher design.

— The assumption that the permutation after the completion of the KSA is random does
not provide any guarantee that the indices. from where the keystream output bytes are
generated, will be random. The designers should properly take care of the initializations
after the KSA and before the PRGA.

— If, due to problems in design, the random-looking permutation after the KS A is biased to
some combinations of the bytes in the secret key, then information related to the secret
key bytes may be leaked in the first few bytes of the keystream output.

1.1 Description of RC4

The RC4 stream cipher has been designed by Ron Rivest for RSA Data Security in 1987,
and was a propriety algorithm until 1994, It uses an 5-Box § = (§[0]...... SIN — 1]y of
length &, each location being of 8 bits. Typically. N = 256, § is initialized as the identity
permutation, i.e., §[i] =iforQ =i = N — 1. A secret key of size typically varying from 40
to 128 bits is used to scramble this permutation. Another array K = (K[0]. KIN-=1])
isused to hold the secret key, where each location is of & bits. The key is repeated in the array
K at key length boundaries. For example. if the key size is 40 bits, then K[0].. ... K[4] are
filled by the key and then this pattern is repeated to fill up the entire aray K.

The RC4 cipher has two components: the Key Scheduling Algorithm (KSA) and the
Pseudo-Random Generation Algorithm (PRGA). The KSA wms the random key K into
an initial permutation § of 0, 1. N — 1 and PRGA uses this permutation to generate a
pseudo-random keysmream. This keystream output byte 2 is XOR-ed with the message byte
to generate the ciphertext byte at the sender end and again z is XOR-ed with the ciphertext
byte to generate the message byte at the receiver end.

Man-negligible bias of the Grst output by te of RC4 125

The KSA mitializes both § and j to 0, and § to be the identity permutation. [t then steps i
across § looping N times, and updates j by adding the ith bytes of § and K. Each iteration
ends with a swap of the two bytes in § pointed by the current values of i and j.

The PRGA also initializes both i and j to 0. It then loops over four operations in sequence:
incrementing i as a counter, updating j pseudo-randomly by adding 5[i]. swapping the two
bytes of § pointed by the current values of @ and j, and cutputting the value of § at index
S[i]+ S[j] as the value of 7.

Algorithm KSA Algorithm PRGA
Initialization: Initialization:
Fori=10,.... N-—1 i=j=10
S =i Output Key-stream Generation Loop:
= i=i+ 1
Scrambling: j=j+ 8l
Fori=10..... N-—1 Swap(S[i], S[jlx
J=ij+ S[l+K[iD: t =580+ 8[j];
Swap(S[i]. S[il]n Cutput z = S[t];

MNote that defining the aray K to be of size N enables us to write K[i] instead of the
typical K[i{ mod key length] in the description of the algorithm. This is done for the sake of
simplification in the subsequent analysis of the algorithm.

Ay addition, used in the RC4 description or in addition of key bytes in this paper. isin gen-
eral addition modulo N unless specified otherwise. For example, (K[0] + K[1]+ K[2]+ 3)
mod 256 is usually written as K [0] + K[1] 4+ K[2] + 3.

1.2 Background

Cryptanalysis of RC4 and RC4-like stream ciphers can be broadly classified into two cate-
gories: attacks hased on the weakness of the key scheduling and attacks based on the internal
state and round operation of the key generation part.

In exploiting the weakness of the PRGA, distinguishing attacks are the main motiva-
tion [1.3.7.5.6.9.10]. In particular, [7] proves a bias in the second output byte being zero
and [10] proves a bias in the equality of the first two output bytes.

Initial empirical observations about the correlation between the bytes of the secret key
and that of the keystream output were reported in [11,12], but theoretical justifications of
these observations were not found. In this paper, we present a more general theoretical frame-
work to find the correlation between the secret key bytes and the first keystream output byte.
Roos [11] observed only the conditional comrelation when K [0] + K[1] = 0[11, Section 3,
Result C] which is not required for our general result that the first output byte is cormrelated
with K[0]+ K [1]+K[2]43(Theorem 3). Moreover, aconsequence of our result{ Theorem 5)
explains the above empirical observation of [11, Section 3, Result C].

In [2], weaknesses of RC4 key scheduling algorithm have been addressed in great detail
and practical attacks have been mounted on several modes of RC4 where IV's are used (e.g.
WEP [4]). In [2, Sect. 4], propagation of weak key patterns to the keystream output bytes has
been discussed. The first output byte of RC4 has been noted in [2, Sect. 6] considering related
key attacks, but they did not observe the relationship between the first output byte and the
secret key bytes. In this paper, we do not focus on any weak or related keys for our analysis.
We show that given any arbitrary secret key. there is a significant comelation between the
first three key bytes and the first byte of the keystream output.

126 G. Paul et al.

In [&, Sect. 6], a very small non-uniformity in the distribution of the first byte of the key-
stream output is reported (without any proof). Interestingly, we could not observe this hias
after considerable amount of experimentation. We like to mention once again that though
several works refer to the first output byte of RC4 keystream, its correlation with the bytes
of any arbitrary secret key was surprisingly never identified before our work.

We now present some important technical results identified in [11]. These results will be
used further for our analysis.

Lemma 1 Assume that during the KSA the index j takes its values uniformily at random.
Then for any fixed index x, the probability that | does not equal x in any round of the KSA
s f W=l W
s {T} 2

Theorem 1 [11] After the KSA. the most likely value of the xth element of the permutation
Jor the first few values of x is given by

2 FEF
sl = ki + S22
1=(} -

When x is small enough (e.g.. x < the key size), then, as Roos points out in [11], the above
equality happens with approximately the same probahility as stated in Lemma 1, ie.,

" xix + 1 o
p(sem= 3w+ 200 o (M1)"

=i

Corollary 1 Affer the KSA, the biases of the second and the thivd bytes of the permutation
towards the secret key are given by

1. P(Spl1]= K[0] + K[1]+ 1) = (&=L)V.
2. P(So[2] = K[0] + K[11+ K[2]1+3) = (20Y.

2 Owir results

For our analysis, we use subscript » to the permutation 5, the keystream output byte 7 and
the index f {in &) from where 2 is chosen to denote the comresponding variables after the rth
round of the PRGA. Thus, &, denotes the permutation just after the completion of the KSA,
i.e., before the first round of the PRGA (as in Theorem 1 above). §; denotes the permutation
after the first round of the PRGA. The first byte z; of the keystream output is selected from
the index 1) of the permutation 5. As the following expression will be used a number of
times in the paper, we denole

R b 1 !
wElw) v e e
Let us now analyze the first round of the PRGA. Initially. i = j = 0. Let §3(1] = X and
S50[X] = Y. Inthe first round, i is updated to 1 and j is updated o 0+ §y[1] = X. Then the

contents X and ¥ of locations | and X respectively are interchanged. Thus, §,[1] = ¥ and
5[X]=X.

Man-negligible bias of the Grst output by te of RC4 127

2.1 Resuhs for any arbirary secret key

In the following theorem, we prove that the index where the first output byte is chosen from
is biased. The probability of the first output index being 2 is approximately twice as large as
it heing any other value.
Theorem 2 Asswne that the initial (just after the KSA) permutation Sy is chosen uniformly
at random from the set af all possible permutations of the set (0,1, ..., N — 1}. Then the
probability distribution of the owtput index 1, that selects the first byee of the keystream
autput, is given by

for odd x
- Wi_"i'l?ﬁ forevenx # 2
- W"T"'T!':ﬁ forx=2
Progf In the first round of the PRGA, we have i = 1, j = S[1] and & [S[1]] = Sll].

Thus, 5 [i] = §1[1] = S[Sell]] and §,[j] = 5 [Se[1]] = Sol1]. Now,
Si[i1=1 — Slll=1, since §[j]= Soll]

Pin=x)

o=

— i =1, sincej=S(l1]
— Si[1]=1. since we started with 5[] = |
= Si[il=1. since we started with { = 1.
Hence,
PSilil=a.851[j1=8 = 4. whene = 1, f= |
= whene £ 1, 8 =1
= 0 whenoe £ 1. =v
= m!.—_”, otherwise.
The probability distibutionof i) = 5 [i] + 5, [J] can be computed as follows.
N-l
- Foroddx, Pity =x)= > PSilj1=k.Silil=N—k+x)
i;ilil
N —t 1
=(N~=1) NN-D- N
M-l
-~ Forevenx Z22,. Pihh=x)= Z Pis[jl=k. S [i1=N—-k+x)
k=0
k], & N3
:[J'Hr—j}'—] ZL——- 2-
NiN-1) N NN-=-1I)
N—1
- Fox=2PH=2=PE[jl=15F=1+ Z P& [l =k . 8[i] =
k=0
k1, 222
Highis) | =3 2 |
=Eerhon (R | A e EE it iy N
i & Ml v v v el e v

o

Using our Theorem 2 and Roos’s Theorem 1, we can show (Theorem 3) that for any arbi-
trary key, the first byte of the keystream output is significantly biased 1o the initial bytes of
the secret key, thus revealing a weakness in the KSA. For this, we first present the following
technical result that will be used in the proof.

128 G. Paul et al.

Proposition 1 After the first round of the PRGA, the bias of the second permunation byte
towards the secvet key is given by

P(5i[2] = K[0] + K[1] + K[2] + 3) = ¢w.

Proof As in the KSA, the index j of the PRGA is assumed to take values uniformly at
random. During the first round of the PRGA, i takes the value | and j takes the value
Soll]. Let f(K) = K[0] + K[1]+ K[2] + 3. Recall from item 2 of Corollary 1 that
P(5[2] = FIK)) = !""—'_]r""’. The event (5,[2] = K[0] + K[1] + K[2] + 3) can occur in
WD ways.

1. After the KSA, 5([2] = f{K). and there is no swap involving index 2 in the first round
of the PRGA. The contribution of this part is
P(Sol21 = fF(KN - P(Sel1] # 2) =~ (V- 4.
After the KSA, So[2] & F(K). and .fEK]' comes into index 2 from index 1 by the swap
in the first round of the PRGA. The cnmr'ibut':nn nfthix part is
P(Sol2] & FIK- P(S[l] = f(K). Soll] =
= P{5p[2] # f{:‘-’}} P(Selll1=2)- P{f{K} = j]I
2 ((1 - (7).

13

Adding the above two cnnmhutmn.\ we get
P(Si21= fOEN = (V- § —)+ 37 = o

The value of ¢y is approximately 0.37 for N = 256.
Mow we present the result that shows the hias of the first keystream output byte towards
the first three bytes of the secret key.

Theorem 3 For any arbitrary secret key, the corvelation between the key bytes and the first
bvte of the keystream output is given by

1
P(ai = KI0] + K11+ KI21+ 3}~ (1 +).

Proof For the sake of brevity, let f{K) = K[0] + K[1]+ K[2] + 3. Then

P(z1 = FIK))

PiSiln]l =Ky

N—1

> Py =i)- PSi[n]=f(K) |t =)
=i}

N—1

= > Py =i)- P(Si[i]1 = f(K))

=0

N—1
P =2)- P(SI21= f(KN+ D Pl =i)- P(Sili]= f(K))

i=(
even 12

N-1
+ > P =1 P(Si[il = f(K))

=0
ended i

Man-negligible bias of the Grst output by te of RC4 129

2 1
. ¥ —
(N N{N - 1}) Pisi21=f(x)

2
—_—) - P(§[i] = fFIK
(N Nw_”) (Silil = f(K))

M-i‘:

J=|:

Nl
1
- ZI P(5i[i1 = f(K)) {by Theorem 2)
1=
5 N-lo
~ 5 PORI=FEN+ D - P(Silil = f(K))
a'l'\;.lr:j::'l
i i N-1
fas ——— & —) + -Pi5ii] = f(K))
NIN-1) N E; N
et |
1 1
= & *PGI21= f KN+ & - PSII2] = f(K))
1 N-1 | N-1
% 2 PSIlil=FE)+5 - D PGl =F(K)
! =i =0
even 172 r.-u’u’a
1 { M
= 5 PSR = FK)+ - D PSilil = f(K)
1=
& % T % <1 {hy Proposition 1)
1
=EU+¢'-\-‘]'

a

Let us now present the detailed interpretation of the probabilities involved in Corollary 1,
Proposition | and Theorem 3. The event considered here is the equality of two random vari-
ables X and ¥, where X is some byte of the permutation (e.g. §[i] as in Corollary 1 and
Proposition 1) or some byte of the keystream output (e.g. 2; asin Theorem 3), and ¥ is some

function f{K) of the key. Each of X and ¥ can take values from {0, ..., N — 1}. Thus the
joint space nf {X ¥ consists of N7 different points (x, v), where x € {0, ..., N — 1} and
yeib,..., — 1L If X and ¥ are independently and identically dhtnhuted (i) uniform

random v.inahlex then for any (x, ¥). P(X = x. ¥ = y) should be - -, and P(X = F)
N—1 N-1
1
=D PX=x,¥=x)=7 =N 1 = 4. For N = 256, this value is 0.0039,
a=0 =l
whereas the observed values of the pmhahtlmﬂ are much htgher In case of Proposition 1,
this is (.37 and in case of Theorem 3. this is '-'C-":] + b b m 51— A1 +037) = 0.0053. Thus,
according to Theorem 3, knowledge of z; reduces the uncertainty ahout the secret key hy
— log, (0.0039) — (— log, (0L0053)) = 0.44 bit.
Mote that the bias in § observed by Roos (Theorem 1, item 2 of Corollary 1) and extended
in our Proposition | do not necessarily imply the bias in 2. For example, assume that S;[2]
{or 8 [2]) equals some combination of the bytes of the key with probability 1. The output 2,

130 G. Paul et al.

may still be unbiased, ifthe index 1 from where 2| is selected is uniformly random. However,
we have proved (Theorem 2) that £ is not uniformly random. In other words, there may exist
some hiasin S[2] due to the weakness of the KSA . But it is the hias in 1) due to the weakness
of the PRGA that propagates the bias from Sg[2] to 2. The proof of our Theorem 3 connects
the bias in Sg[2] and that in 1} and relates them to the bias in 7.

What we have discussed so far applies to any arbitrary secret key. However, similar biases
(hoth in the index 1 and in the value 7 of the first byte of the keystream output) can be
observed with much higher probabilities if we assume the condition that K[0] + K[1] = 0.
We provide theoretical results for this special case in the next section.

2.2 Results for secret keys whose first two bytes sum to zero

Theorem 2 shows that there is a significant bias in the index in § from where the first byte of
the keystream output is selected. In the following theorem, we show that this bias is increased
significantly if the first two key bytes satisfy the condition K[0] + K[1] = 0. In the proof of
this theorem as well as in the proof of the next theorem of this section, we use the fact that
ifevent A — event B, then B 2 A and hence P(B) = P(A).

Theorem 4 Assume that the first two byes K[0], K[1] af the secret key add to O mod N,
and the initial (just after the KSA) permutation Sy is chosen uniformly at random from the
setaf all possible permutations of the set {0, 1, ... N — 1}. Then the bias of the ouiput index
1y, that selects the first byte of the kevstream output, is given by

N-1\¥
P(n =2|K[ﬂ|+K[]|=n};.(_____) _

Proaf

Pih =2 K0+ K[1]=0=P(S[]1+ 5 [j]1=2| K0+ K[1]=0)
=P(SEI=1L581[/l1=1| K]+ K[1]=0)
N—1

+ ¥ PSil1=k §ili]
k=0

kel A2

=N-k+2|K[0]+K[1]=0)

> PSEI=185[l=1K[0]l+K[1]=0
=PiSl]=1| KO+ KE[1]=0D)

fas (Sil=1land §i[j]=1) = (Slll=1))
= P(R[l]=K[0]+ K[1]+1)

(hecause this event implies the conditional event above)

N-1}\V
= (T) by Corollary 1. item 1.
o

To the best of our knowledge, the bias in the output index (Theorem 2), the conditional
bias in the output index {Thecrem 4), and the hias of the first byte of the output towards
the first three bytes of the secret key (Theorem 3) have not been observed before our work.
However, Roos [11] experimentally observed that given any RC4 key with the restriction

Man-negligible bias of the Grst output by te of RC4 131

K[0] + K[1] = 0, the probahility that the first byte generated by RC4 will be K[2] + 3
ranges between 12% and 16% with an average of 13.8%. We, for the first time, provide a
theoretical justification of this observation in Theorem 5 below. The proof of this theorem
depends on the conditional bias of the index being 2 {Theorem 4) which has been proved
above.

Theorem 5 Asswme that the fivst twe byies K[0O], K[1] of the secret key add to 0 mod N.
Then the carvelation between the key bytes andthe first byte of the keystream output is given by

N—13y¥
P{m=K[2I+3IK[ﬂI+K[1I:ﬂ}:-() P -

N
Proof
Pl =KR]+3 | K0+ K[1]=00= P(5[n]=K[2] +3| K[0] + K[1]=0)
=.E Pin =i | K01+ K[1]=0)- P(Si[n]
= -:'-’=[£121+3| K[l +K[l]=0.n=1)
= MZ_:I Pin =i | K[0]+ K[1]=0)- P(S§[i]

=i

KR2I+3| K0 +K[1]=0)

= Pty =2| K[0] + K[1] = 0) - P(5,[2]
KR2I+3| K0 +K[1]=0)

Py =2 K[0]+ K[1] =0)- P(5,[2]
K01+ K[1]1+ K[2] +3)

i{hecause this 2nd event implies the conditional

vl

2nd event in the above step)

N -1}\"
(2115,
by Theorem 4 and Proposition 1)

o

For N = 256, the value nf{'—"'i&_.—' }N @y isapproximately 0. 13 that conforms with the exper-
imental observation of [11]. Thus, knowledge of 7, in this case reduces the uncertainty about
the secret key (as also pointed outin [11]) by at least — bog, (0.0039) — (— log,(0.13)) == 5.1
hits.

2.3 Cryptanalytic applications

We present this section to demonstrate applications of Theorems 3 and 5.

Let m and ¢y denote the first bytes of the message and the ciphertext respectively. Then
¢y = m Ezy. One can use [7, Theorem 2] to calculate the number of samples that suffice to
mount our cryptanalysis. Theorem 2 of [T] states that if the event ¢ happens in distribution
X with probability p and in distribution ¥ with probahility pi(l +g). then for small p and g,

0 (—'rJ samples suffice to distinguish X from ¥ with a constant probability of success. In

1y

132 G. Paul et al.

our case, let X be the joint distribution of the two variables (K [0]+ K[1]+ K[2]+3)and 7,
when K [(0]. K[1]. K[2]. z; are chosen uniformly at random from Oto N — 1, and ¥ be the
joint distribution of the same two variables for RC4 for randomly chosen keys. Let ¢ be the
event that these two variables are equal. Here p = L and g = ¢y (following Theorem 3).

Thus the number of samples required is EI'T = fr For N = 256, this value turns out to be

N
1870.

2.3.1 When the IV precedes the secret key

Consider that the same message is broadeasted after being encrypted by RC4 with uniformly
distributed keys for multiple recipients. If the first three bytes of each of the keys are known,
then one can calculate m'| =) BIK[0]+ K[1]+ K[2]+ 3) for each of the keys. According
to Theorem 3, the most frequent value of m| will give the actual value of m| with high
probability.

MNote that knowing the first three bytes of the key is not always impractical. In Wireless
Equivalent Privacy (WEP) protocol [4]. a secret key is used with known IV modifiers in
RC4[2 5] If the IV bytes precede the secret key bytes then the first three bytes of the key are
actually known. Our analysis isdifferent from [2,5], as we use the first byte of the ciphertext
output only. In [T], the second byte of the ciphertext is used for cryptanalysis in broadcast
mode.

Further, if one can ensure that the first two bytes of the key add to zero, then following
Theorem 3, one can perform the attack much more efficiently. Empirically we have checked
that only 25 samples suffice to recover s with an average probability of success exceeding
0.80 in this case.

Table 1 shows the success probability of recovering s when 3 bytes [V is preceded by
5 bytes secret key. For a given m, we choose n (values of n appear in the second column)
number of samples, i.e.. n many first byte ¢ of the ciphenexts corresponding to n many
runs of RC4, each time with a randomly chosen < fV(3 bytes), Key(5 bytes) = pair. We
compute m'| = ¢ & (K[0] + K[1] + K[2] + 3) for each of the » samples and find out
the most frequently occurring value m| . If this value matches with the given m then the
recovery is considered to be successful. To estimate the success probability, we repeat the
above process with 1000 randomly chosen sy values and find out in how many cases, say T,
niy is recovered successfully. That is, the success probability is .

We repeat the above experiment 100 times to get a set of 100 probabilities and then we
compute the minimum, maximum, average and standard deviation of the success probahili-
ties. This is presented in Table 1. The low values of the standard deviation confirms that the
success probahility is constant.

Table 1 Results with 3 bytes [V preceding 5 bytes secnet key

Comndition #amples min ML g sl

Unconditional 1ET0 (L2000 (L062000 0037990 (LOIETIE
Unconditional 25000 (.57 400K) 0L66aTON0 (L6282 0019447
Unconditicnal S0000 (.91 4000 (1.955000 (0933380 0.0079%4 5
KO+ K[1]=0 25 .74 (922000 0.BD6E4] (.1349063
KM+ K[1]=10 5l (1.957000 (L9890 (1975410 0.0mx7

KM+ K[1]=0 100 (98000 10O (L9970 0.000431

Man-negligible bias of the Grst output by te of RC4 133

Table 2 Resulis with 11 bytes IV following 5 bytes secret key

Condition #5amples min i g sd

Uneonditional 1ETO (.01 2000 (L032000 0.022540) 04318
Uneonditional 25000 0.113000 0. 164000 0. 144 40 (L0108aT
Unconditional S0 0. 12 50100 0. 182000 (L152910 0011410
KO+ K[1]=10 25 (.75900K) (821000 (0.780010 0.013393
KO+ K[1]=10 30 0,492 100 (LGN 0943020 000708
KO+ K[1]=10 1 01.495 200 0477000 0965300 (.00544 2

2.3.2 When the IV follows the secret key

Assume that we can observe the first byte z; of the keystream output. Then with probability
0.0053 we know the value of K[0] + K[1]+ K [2] + 3. Note that if the key is not appended
with IV, then the same secret key would give rise to the same keystream (and hence the
same 7)) each time. Appending different IV's makes the keystream changing and helps in
achieving a frequency distribution of 7). Then the most frequent value of 7| can be treated
as the value of K[0] 4+ K[1] 4+ K[2] 4+ 3. We need the same secret key to be appended by
different IV'’s to generate z) for recovering the value of K [0] + K[1]+ K[2] + 3 reliably.

Further, if one canensure that the first two bytes of the key addto zero(FV[0]+IV[1] =10
for Sect. 2.3. 1 and K [0] + K[1] = O for Sect. 2.3.2), then following Theorem 5, one can per-
form the attack (e.g. recovering K [2]) much more efficiently requiring a very few (practically
= 100) samples.

Table 2 shows the success probability of recovering the sum of the first three bytes when
11 bytes I'V is followed by 5 bytes secret key. We use the same experimental setup as in
Sect. 2.3.1. The only difference is that in order to generate a distribution of 7)., we need to
assume that a different I'V is used with each of the n samples.

Maote that here the success probability is less compared to the case where the IV bytes
precede the secrete key. In the previous case, we use a different IV and a different key for
each sample. so that the effective key is uniformly randomly distributed. However, here we
use many different I'V's with the same key n number of times. If the number of IV bytes is
not sufficiently greater than the number of key bytes, then the key is not uniform by randomly
distributed. That is why, we assume 11 byte I'V and 5 byte secret key for the experiments.
Even with such large ['V's, the success probabilities are much less than the previous case due
to non-uniformity in the distribution of the effective keys (i.e., same secret key appended by
different I'V's).

3 Conclusion

In this paper. we identify and prove that after the KSA of RC4, the index, where the first
byte z) of the keystream output is chosen from, is 2 with a non-negligible bias. This in tum
leaks the sum of the first three bytes of the secret key through ;. Under the assumption that
the initial few hundred keystream output bytes of RC4 may be discarded, this information
leakage (similar to many other published attacks in this area) will not provide any threat
to the practical use of RC4. However, the result clearly points out an unobserved structural

	On non-negligible bias of the first output byte of RC4 towards the first three bytes of the secret key1.jpg
	2.jpg
	125.jpg
	126.jpg
	127.jpg
	128.jpg
	129.jpg
	130.jpg
	131.jpg
	132.jpg
	133.jpg

