Construction of universal one-way hash functions: Tree hashing
revisited

Palash Sarkar*

Applied Statistics Unir, Indian Statistical stitre, 208, BT Boad, Kolkata 700008, India

Ahbstract

We present a binary tree based parallel algorithm for extending the domain of a universal one-way hash function (UOWHF). For
1 =2, our algorithm extends the domain from the set of all n-bit strings to the set of all ({2’ — 1)in — m) + m)-bit stings, where
m is the length of the message digest. The associated increase in key length is 2m bits for + = 2, mi(r + 1) bits for 3 <1 <6 and
m o (t + [loga(t — 1)) bits forr =7,

Keywords: Cryptogmphic hash functions; UOWHFE: Binary tree; Parallel computation

1. Introduction

Let # = {hg}p oy bea family of functions where each fip - X — Y. The set % is said to be the set of keys and .#
is said 1o be a keyed family of functions. Consider the following adversarial game with respect w 5 the adversary
outputs an ¥ € X; is then given a randomly chosen key & € .#7; and has o output an x° € X such that v # ' and
fp(x) = hp(x"). The family 5 is said to be a universal one-way hash function (UOWHE) if it is infeasible for an
adversary 1o win this game. The concept of UOWHF was introduced by Naor and Yung [6] and used by them to show
that it is possible o construct secure digital signature schemes based on 1-1, one-way functions.

The notion of collision resistant hash function {CRHF) is more common in eryptography. In this notion, the adversary
is first given & & and then has to output ¢ and x* such that x # x" and fig(x) = hg(x"). Note that in the case of UOWHE,
the adversary has to commil to the input x even before he knows the function for which a collision is to be found.
Intuitively, this makes the adversary’s task more difficult and hence UOWHF is considered 1o be a weaker primitive.
In fact, Simon [9] has shown that there 1s an oracle relative to which UOWHFs exist but not CRHFs.

A systematic study of construction methods for UOWHF was undertaken by Bellare and Rogaway [1]. The approach
taken in [1] is to start with a UOWHF {fig). ¢, where the domain X of ig consists of short fixed length strings and
then obtain methods to construet another UOWHF {Hp} . » where the domain X3 of Hj, consists of long fixed length
strings. Such a method is called a domain extending algonthm. Further, it is shown in [1], that extending the domain
also requires an increase in the length of the keys.

2175

The most important method in [1] 15 a tee based construction. For binary trees withr 2 2 levels, the BR construction
extends the domain from n-bit strings 1o ({(2' — 1){n — m) + m)-bit strings and requires an associated increase in key
kength by 2mir — 1) bits, where the range ¥ of the hash functions consists of m-bit strings. Later, Shoup [8] provided
a sequential construction which requires an increase in key length of mr bits for extending the domain by the same
amount. Thus, the sequential algonthm has a smaller key length expansion compared o the ecadier binary tree based
algorithm. Mironov [3] provided an altemative proof of correctness of Shoup’s result and showed that the key length
expansion is the best possible for any sequential algorithm.

The essential computational task in a domain extending algorithm consists of executing fiy several times. In a binary
tree based algorithm, the different invocations of fy are organised in a binary wee. This opens up the possibility of
parallel execution using more than one processors. Such a parallel algonthm will have several parallel rounds. In each
round, all {or some) of the processors would operate in paralle]l and produce outputs to be used in the next round. Since
more than one processors work simultaneously, the number of parallel rounds will be less than the wtal number of
invocations of fiy made by the algorithm. On the other hand, a sequential algorithm using one processor will require
time proportional to the wotal number of invocations of fig. There are standard ways 10 converl & binary tree structure
into an efficient parallel algorithm (see [3]). Thus, even though the binary tree algorthm of [1] has a larger key length
expansion compared o the sequential algorithm of [8], it will be more efficient 1o implement when more than one
processors are available.

In this work, we show that 8 modification of the binary tree algorithm of [1] results ina smaller key length expansion
while retaining the advantage of parallelism. The key length expansion of our algorithm is 2m bits fort = 2; m(r 4+ 1)
bits for 3t <6 andm = (¢ + [log,(t — 1)]) bits for t =7. This is an improvement over the algorithm in [1] though it
is more than the key length expansion achieved in [8]. The improvement in key length expansion over [1] is achieved
by combining the construction in [1] with the construction in [8]. The proof of correctness of our algorithm employs
the technique used in [3] rather than the technigue in [8].

2. Preliminaries

Let{fg g o ¢ bea keyed family of hash functions, where each fy - X — ¥ Inthis paper we require n = 2m. Consider
the following adversaral game.

1. Adversary choosesanx € X

2. Adversary 1s given a k which is chosen uniformly at random from %,

3. Adversary hasto find x" € X such that x # " and hg(x) = fg(x’).

We say that {hi}pep 15 2 universal one way hash family (UOWHFE) of the adversary has a negligible probability of
success with respect to any randomized polynomial time strategy. A strategy = for the adversary runs in two stages,
In the first stage .o/#** the adversary finds the x 1o which he has o commit in Step 1. It also produces some auxiliary
state information s. In the second stage ™ (x k, 5), the adversary either finds a x" which provides a collision for by
or it reports failure. Both .o/#"=* and .o/"™4(x_ k. 5) are randomized algorithms. The success probability of the strategy
is measured over the random choices made by /%% and /"™ (x_k. s) and the random choice of k in step 2 of the
game. We say that .=/ 15 an (g, a)-strategy if the success probability of =7 15 at least 2 and it invokes the hash function fi;
at most @ tmes. In this case we say that the adversary has an (g, a)-strategy Tor (A} g Note that we do not include
tme as an explicilt parameter though it would be easy to do so.

In this paper we are interested in extending the domain of a UOWHE Thus, gven a UOWHF {he}, 4. with
B 2 {0, 1 — {0, 1™ and a positive integer L =n, we would like w construet another UOWHE {Hp}pew, with
H, - {0, ”I_ — {0, 1. We say that the adversary has an (g, a)-strategy for {Hp I"r“._?n if there is a strategy 4 for the
adversary with probability of success at least £ and which invokes the hash function fi at most a times. Note that H,
is built using iy and hence while studying strategies for Hp, we are interested in the number of invocations of the hash
function hy.

The correctness of our construction will essentially be a Turing reduction. (See [10] for more on this approach.) We will
show that if thereis an iz, a)-strategy I‘i.}r{,‘-.l".rj }m_.:,p, then there is an (g1, a) J-strategy for {fg g - ¢ where a) s not much
larger than a and & is not significantly smaller than & This will show thatif {hg};, 4 isa UOWHE thensois {H,} 5.

The key length for the base hash family (gl o i [log,| 2711 On the other hand, the key length for the family
{Hp}pew is [logz|#]. Thus, increasing the size of the input from n bits to L bits results in an increase of the key size

78

by an amount [log: |2 — [log:|.%71]. From a pracucal point of view a major motvation is 1o mimmise this memease
in the key length.

3. Known consiructions
We briefly discuss the sequential construction by Shoup [8] and the tree construction by Bellare—Rogaway [1].
3.1, Sequential construction

The Merkle-DamgAArd construction is a well-known method for extending the domain of a collision resistant
hash functions. However, Bellare and Rogaway [1] showed that the construction does not directly work in the case of
UOWHE. In [8], Shoup presented a modification of the MD construction. We briefly describe the Shoup construction
as presented i [5].

Let {fig), oy with fig 2 {0, 11 — {0, 1}™ and %" = {0, 1}* be the UOW HF whose domain is to be extended. Let x
be the input to Hp with x| =rin —m). We define p = k|mg|m| ... |mi—) where f =1 + |logr | and m; are m-bil
randomly chosen binary strings called masks. The increase in key length is Im bits, The output of Hy is computed by
the following algorithm. Define v{i) = jif 2/ |i and 2/7Y4i.

. Letx = x|l xz]| ... || x. where |xjl=n —m.
Let IV be an p-bit imtiahisation vector.
. Define zp =1V, 5y = zo & myp.
. For 1 i < r define z; = hgis;_y %) and 55 = 23 B my.
5. Define z, to be the output of Hp (x).
A proof of correctness of the constructon was descnbed by Shoup in [8]. In a later work, Mironov [5] provided an
altemative correctness proofl. More importantly, in [3] it was shown that the amount of key length expansion is the
minimum possible for the construction o be correct.

£l —

3.2, Tree based construction

In [1], Bellare and Rogaway described a tree based construction for extending UOWHE We briefly describe the
construction for binary trees. As before, et {hg |y ¢ be the UOWHF whose domain is 1o be extended.

There are 2' — 1 processors P, .., Py _ connected in a full binary tree of 1 levels numbered 1, .. tand 2" — 1
nodes. The processors Py, oo, Py are at level i The ares in the binary tree point towards the parent, i.e., the arcs
are of the form (24, i) and (2i + 1, 7). Each processor is capable of computing the function g for any k € %7, ie.,
Bk, x) = hg(x), for an n-bit string x. In the west of the paper we will always assume that t = 2. By levefii) we denote
the level of the tree to which P; belongs. Thus, fevel(i) = jif 2/='<i <2/ — 1. It is clear that all the nodes at the same
level can work in parallel.

Denote the extended domain UOWHEF to be {Hp} . ». The input to the function Hy is x of length Pt @) -
1)in — 2m). The key p for the function Hp is formed oot of the key k for the function fip plus some additional m-bit
strings called masks. In the Bellare—Rogaway (BR) algorithm, we have p =&l |f, ... o |1 F,_ . where 2;"s and
fi;’s are randomly chosen m-bit strings. The computation of the function Hp(x) is done in the following manner.

BR Construction:

1. Write x = x||az] - . . |a2e =1, where x| =+ - = Jxp-1_ | =r — 2m and |xq-1 | = - - - = |xp_ 1| = n; (note |x] =
2in—m) —(n—2m).)
2. for 21 < i< 2" — 1, do in parallel
(a) compute z; = Filk, x;) = e (x5);
(b) sets; =z; Far_pif 118 even, and set 55 = z; & ﬁI_| if 1 15 odd;
J.lorj=t—1ldownto2do
o fori=2/"'102/ —1 doin parallel
(a) zi = Filk, s2p|ls2i00 | xi) = helsai|| 52540 || x3).
(b) set 5; = z; & aj—y 1115 even and set 55 = z; B IH.."—I if 1 15 odd;

4. define the output of Hplx) o be hyisa|lsaflx).

We note that in the original algorithm in [1], the strings 1, .. ., Xy-1_ were defined o be empty strings. The amount
of key length expansion is 2{r — 1)m bits for a tree with ¢ levels. Thus, 2(r — 1) masks each of length m bits are required
by the construction.

Remark. The processors Py, .., Py are mentioned for the sake of cladty. In practice, the binary tree algorithm
described above can be carnied out by x< 2"/t processors in not more than ¢ + [2' /%] rounds. This is a basic fact in
parallel computation (see, for example, [3]).

4. Improved tree based construction

As in the BR algorithm, assume that {Hp},.» is 1o be constructed from {hg g 4 using the 2' — 1 processors
By P _y. As before, the input to the function Hy is a string x of length 2=ln + (2! — 1){n — 2m) and the key
p for the function Hy, is formed out of the key & for the function iy plus some masks. The definition of these masks in
our algorithm is different from that in the BR algorithm.

For convenience in describing the algorithm we divide these masks inlo two disjoint sets "= {a, ..., %1} and
A=A{fi v B} where | =1+ [log,(t — 1)]. Recall that for integer i, the function v(i) = j if 2/ |i and 2/ i The
new algorithm can be described by simply changing Lines 2(b) and 3(b) in the following manner.

Improved Tree Construction (ITC):

2(b) sets; =z; @ By if i iseven and set 5; = z; @ oy if 7 is odd;
3(b) set si =z B fly—jsp il iisevenand sets; =z B ay—_j4 i isodd.

We provide an explanation of the construction. Let P = F; F; ... F;, be a path of processors of length r from the
keaf node F; 1o some intemal node ;. which is obtained by following only left links, i.e., level (i,)=t and fiq1=2;
for j =1,...; r— 1. Theares (i j4, ;) in the path are assigned masks according to the Shoup construction. Let S be
the setof ares 1020 + 1, i) (282 4+ 1, i2), oo (28— + 1. ip 1)} The construction also ensures that no two arcs in 8§
el the same mask.

Proposition 1. The following are true for algorithm ITC.

L. t parallel rounds are reguired to compute the output.
2. The function fy is invoked 2' — | times.
3. The amount of key length expansion (|p| — |k is mit + |loga(r — 1)) bits.

Proof. (1) Step 2 of ITC is one parallel round. Step 3 requires (r — 2) parallel rounds and Step 4 requires one round.
Hence, a total of ¢ rounds are required.

(2) There are 2' — 1 processors and each processor invokes the function fig exactly once. Hence, iy is invoked exactly
2" — 1 times.

(3) The amount of key lkength expansion is m = |[I"UA] By definition [= — Land |4]| =14 |log,(r — 1)]. Also
'md=#. O

Remark. The amountof expansion inthe BR construction is 2{r — 1 ym bits. Thus, with respect 1o key length expansion
ITC 15 an mmprovement over the BR construction.

Theorem 2 (Security reduction for Hyp). If there is an (2, a) winning strategy o/ for {Hp} . ». then there is an
(8/(2' — 1),a +2(2" — 1)) winning strategy # for {hglic 5. Consequently, {Hplpep is a UOWHF if {hylpe v is
a UOWHF.

Prool. We describe the two stages of the strategy 4 as follows:
HECEE (outpul (v, 5), with |y =n.)

1. Run &#"* 1o obtain x € {0, 1}* and state information s”.
2. Choose an { uniformly at random from the set {1, .. ., 2 -1k

I

3 Wnte x =xq| ... ||xp_y, where || == |xp-1_ | =0 — 2m aud |xp-1]| == |xp_g| =n.

4. IF 2V i <2 — 1, set y = x5 mp, w2 to be the empty sting and s = (", 7, w1, w2). Output (v, 5) and stop.

5. If 1<i<2~! — 1, then choose two strings &) and w2 uniformly at random from the set {0, 11" Set v = u w2 |x;
and s = (&', i, uy, wz). Output (v,) and stop.

Atthis point the adversary is given a k which is chosen uniformly at random from the set %" =1{0, 1 ¥ The adversary
then runs #"™ which is described below.

.aa‘”"'d{_v, k.s): (Note s = (5", 0, 1y, 12).)
1. Define the masks «;, ..., 1. Py oo e fi;_; by executing algorithm MDef(i, u). u2) (called the mask defining al-
gorithm; will be described later). This defines the key p for the function Hy . Here p=k|la || .. a1 fall .. 181

where [= [loga(r — 1] + L.
. Run /™ {x_ p, s') toobtain x".
3. Letvand v’ be the inputs to processor Py corres ponding Lo the strings xand ©°, respectively. Denote the coresponding

¥

outputs by z; and 2. If z; =z, and v # v’, then output v and v, else output “failure™.

I

Note that Step 3 either detects a collision or reports failure. We now lower bound the probability of success. But first
we have to specify the mask defining algorithm.

The task of the mask defining algorithm MDef is 1o define the masks 2y, ..., o1y By s By (and hence p) so
that the input 1o processor B is v. Note that the masks are not defined until the key k is given Lo the adversary. Once the
key K is specified we extend it to p such that the extension is “consistent”™ with the input v to P 1o which the adversary
has already committed. Another point that one has 1o be careful about is 1o ensure that the key pis chosen uniformly
at random from the set #, i.e., the masks %; and fi; are chosen independently and uniformly 1o be m-bit strings.

The mask defining algorthm MDef is given below. The algorithm uses an array A[..] of length at most (r — 1) whose
entries are pairs of the form (f, v) where j is an integer in the range 1 < j <2" — 1 and v is an m-bil string.

Algorithm MDef(i, uy, uz)
(Mote: i was chosen by A8 in Step 2. The strings v and w2 were chosen by #5* either in Step 4 or in Step 5.)
1.If 2"~ <i <2' — |, then randomly define the masks «, .. ., -1, gy oo e, By, and exit.

2. Append (2 + 1, 02) o the array A.

I Lletj=r—levelli), jj =j — 2" and i) =2/ 0,

4. Randomly define all undefined masks in the set By 1y, ..., Bei—13-
5.If ji =0, then z;;, = Aglx;,),

6. else

(a) randomly choose . v in {0, 1},
(by Append (2§ + 1. v) to the array A.
(c) zj, = helu|v]x,).
TRrj=hH+1,..., J—1ldo
(8) iz = 212,
(b) 520, = z2i, B By jy)-
(c) Randomly choose w in {0, 1™,
(dy Append (2i2 + 1, w) to the array A.
(€) 2ix = fp (52 || w || xi2).
8.8,y =2u D,

9.If jy =0, thenw) = w, w2 = v, j = j| and go o Step 2.

10. Randomly define all as yet undefined masks f§,, 0<i</! — 1.

11. Sort the array A in descending order based on the first component of each entry (f, v).

12.Foriy=1tor —level(i) do
(a) Let {{,) = Al].
ib) Compute z; 1o be the output of processor Pr. (This can be done, since at this point all masks used in the

subtree rooted at { have already been defined.)

(cyLet j=r—level(l) + 1.
(d) Definest; =z G u.

13, Randomly define all as yet undefined masks o5, 1< j<r — 1.

)

Intuitively, algorithm MDef applies the mask reconstruction algorthm for the Shoup construction along the path
Byl Py, where) =i, 1 = 2=V and level (1,) = t. This defines the masks Bt —teverey f0r 1= j <r.Todo
this the algorithm guesses the inputs that the processors F, L., P, , obtain from their right descendants. These inputs
along with the proper processor numbers are added to the array A. Once the definition of the § masks are complete,
the algorithm begins the sk of defining the » masks. The first element of the amay A is (24, + 1, u) for some m-bit
string w and we are required to define 2. The processor Py, 4 is at the leaf level and applies fig to 12, 4 to produce
I, +1. Now 2 18 defined to be the XOR of u and I3, +1. Suppose for some 2= f <r, the masks o, ..., ;1 has
already been defined. The cumrent element of the array A is (20— ;4 1, 0) for some m-bit string . At this point all masks
present in the subtree rooted at processor Pa,, o have already been defined. Thus, the input to processor Py, 4 is
known. Hence, processor Py, 1 applies the hash function A toits input o oblam the stnng £z, 4. The mask o
is now defined to be the XOR of u and Th, 41+ -

Notice that this procedure ensures that the input to processor P is the string v to which #5°* has committed. We
now argue that the masks are chosen randomly from the set {0, 11", For this we note that in MDef each mask is either
chosen 1o be 4 mndom string or 15 obtamed by XOR with a random stnng. Hence, all the masks are random strings
from the set {0, 1}1"™. Also kis a mandom string and hence pis a randomly chosen key from the set 5.

Suppose x and x' collide for the function Hy,. Then there must be aj in the range 1< j<2" — 1 such that processor
P; provides a collision for the function fig. (Otherwise it is possible (o prove by a backward induction that ¥ =x".) The
probability that j =i is 1/{2' — 1). Hence, if the success probability of o is at least &, then the success probability of
A 15 at least g/ (2" — 1). Also the number of invocations of fi; by 3 is equal to the number of invocations of iy by o
plus at most 2{2' — 1). This completes the proof. O

d 1. Improvement on Algorithm ITC fort =56

Algorithm I'TC uses two disjoint sets of masks " and A. Forr =35, 6, we have '={a, .. ., o1} and A={fy, ;.).
This results in a wotal of ¢ + 2 distinet masks. The next result shows that £ + 1 masks are sufficient for these valoes of &

Theorem 3. Fort=35. 6. it is possible to properly extend a UOWHF {hy |, o to a UOWHF {H)} using a processor
tree af 21 — | processors and reguiring exactfv t + | masks.

Proof. The algorithm is same as Algorithm 1TC with the following small modification. In Algorithm ITC the seis
F={x,..., sy tand A = {fiy, f;, 2} are disjoint. We remove this disjointness by setting %) = §;. This results in a
total of r 4+ 1 masks.

We have to show that setting s = fi; does not affect the comectness of the construction. More precisely, we have to
provide a security reduction similar to that of Theorem 2. A close examination of the proof of Theorem 2 shows that
the only part of the proof which will be affected by setting o) = f#5 is the mask defining algorithm. Thus, it is sufficient
o describe a proper mask defining algorithm. We describe the mask defining algorithm for ¢ = 6 which will also cover
the case r = 5.

Let the processors forr =6be Py, ..., Fya. Suppose the output of #¥°% s (v, s = (5", i, 1y, 11)). If § =4, then the
mask defining algorithm of Theorem 2 is sufficient to define all the masks. This is because of the fact that in Algorithm
ITC the mask f#, does not occur in the subtree rooted at # and hence we are required Lo define only o). The problem
arises when we have to define both % and f; using Algorithm MDef. Since in this case) = [, defining one will
define the other. Thus, we have to ensure that this particular mask is not redefined.

There are three values of i that we have 1o consider, namely i = 1, 2 and 3. The case i = 1 is the most general as it
requires us to consider the full ree of 63 processors. The other two cases, i =2 and § = 3 are simpler and are essentially
the same. These two cases require defining the masks for a tree with 31 processors which correspond o + = 5. Here we
only describe the case of i = 1.

1. Randomly choose two m-bit strings 1z and 1. Define ﬁu =u| P Az x2).
2. Randomly choose two m-bit strings 3 and .

(a) Setwy = hplua|vallxg).

by Set wo = w & fi.

(¢) Randomly choose an m-bil string vg.

2180

(d) Setws = hp(us|vglaa).
(¢) Define iy = 2 & ws.
3. 0(a) Setwy = fy & hg(xa).
by Setws = o) 6 hg(xraz). (Note that) = fi; has been defined in Step 2(e).)
(¢) Define fi; = 3 & he(wallwsllxie).
. Compute the output of processor P7 and call it wg. Define 22 = wg & va.
. Compute the output of processor Py and call it wy. Define 23 = wy & vy.
. Compute the output of processor Ps and call it wy. Define o4 = wy 6 va.
. Compute the output of processor Pz and call it wy. Define 25 = wy & va.

=] hoLn B

It is not difficult to verify that the above algorithm properly defines all the masks. Further, each mask is obtained by
XOR with a random m-hit string and hence the concatenation of the (r 4 1) different masks is a mndom bit siring of
length mit + 1). This completes the proof of the theorem. [

5. Conclusion

In this paper, we have considered the problem of extending the domain of a UOWHF using a binary wee algorithm.
As shown in [1] this requires an expansion in the length of the key to the hash function. To extend the domain from
n-bit strings w {({2" — Lj{n — m) 4 m)-bil strings, our algorithm makes a key length expansion of 2m bits for 1 = 2;
mit + 1) bits for 3=t <6 and mir 4 [log,(r — 1)]) for 1 27 where mis the length of the message digest. The binary
tree algorithm of Bellare and Rogaway [1] requires a key length expansion of 2mir — 1) with the same pammelers.
Hence, the key length expansion in our algorithm is smaller. However, it is greater than the sequential algorithm due
to Shoup [8], which requires a key length expansion of mr for the same parameters. On the other hand, the advaniage
of the BR and our binary tree algorithm is that it is parallelizable while Shoup’s algorithm is not.

Acknowledgement

We would like to thank the reviewers for carefully reading an earlier version of the paper and providing detailed
comments which helped in improving the presentation of the paper.

References

[1] M. Bellare, P. Rogaway, Collision-resistant hashing: towards making UOWHFs practical, in: Pmceedings of Crypto 1997, Lecture Motes in
Computer Science, vol. 1294, Springer, Berlin, 1997, pp. 470484,

[3] 1. Jal4d, An Introduction to Pamllel Al gonthms, Addison-Wesley, Reading, MA, 1992,

[5] I. Mimonow, Hash functions: from Merkle—DamgAArd to Shoup, in: Proceedings of Eumerypt 2001, Lecture Notes in Computer Science, val.
2(15, Springer, Bedin, 2001, pp. 166181,

[6] M. Maor, M. Yung, Universal one-way hash functions and their cryptographic applications, in: Proceedings of the 2 Ist Anmual Sy mposium on
Theory of Computing, ACM, New York, 1989, pp. 3343,

[&] ¥. Shoup, A composition theorem for universul one-way hash functions, in: Proceedings of Eurocrypt 2000, Lecture Notes inComputer Science,
vol. I8(07, Springer, Berlin, 2000, pp. 445452

[9] D Simon, Finding collisions on a one-wary street: can secure hash function be hased on general assumptions?, in: Proceedings of Burocrypt
1948, Lecture Notes in Computer Science, vol. 1403, Springer, Berlin, 1998, pp. 33435,

[L0] DR, Stinson, Some observations on the theory of cryptographic hash functions, Des. Codes Cryptogr. 38 (2 (30060 250-277.

	construction of universal one way2174.jpg
	2175.jpg
	2176.jpg
	2177.jpg
	2178.jpg
	2179.jpg
	2180.jpg

