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Abstract

Rotation symmetric (RotS) Boolean functions have been used as components of dif-
ferent cryptosystems. This class of Boolean functions are invariant under circular
translation of indices. Using Burnside’s lemma it can be seen that the number of
n-variable rotation symmetric Boolean functions is 2gn , where gn = 1

n

∑
t|n φ(t) 2

n
t ,

and φ(.) is the Euler phi-function. In this paper, we find the number of short and
long cycles of elements in Fn

2 having fixed weight, under the RotS action. As a
consequence we obtain the number of homogeneous RotS functions having algebraic
degree w. Our results make the search space of RotS functions much reduced and we
successfully analyzed important cryptographic properties of such functions by ex-
ecuting computer programs. We study RotS bent functions up to 10 variables and
observe (experimentally) that there is no homogeneous rotation symmetric bent
function having degree > 2. Further, we studied the RotS functions on 5, 6, 7 vari-
ables by computer search for correlation immunity and propagation characteristics
and found some functions with very good cryptographic properties which were not
known earlier.
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1 Introduction

In [10], Pieprzyk and Qu studied some functions, which they called rotation
symmetric (RotS) as components in the rounds of a hashing algorithm. This is
a desirable property when efficient evaluation of the function is important, for
instance in the implementation of MD4, MD5 or HAVAL, since one can reuse
evaluations from previous iterations. It turns out that a degree 2 RotS function
on n variables takes 3n−1

2
+6(m−1) operations (additions and multiplications)

to evaluate in m consecutive rounds of a hashing algorithm. In [8] the authors
showed how to break in less than 20 mili-seconds a block cipher that employs
quadratic Boolean functions as its S-boxes even if it is provably secure against
linear and differential attacks. This suggests that one should employ higher
degree functions in cryptographic algorithms. Moreover, it is clear that to
protect from linear and differential cryptanalysis, one needs functions with
high nonlinearity. The study started by Pieprzyk and Qu [10] on the 2-degree
RotS functions was continued in [5], the authors investigating these in the even
dimensions. It has been shown that the truth table of an n-variable degree
2 RotS function can be displayed using only 2n−3 − 2 operations (additions
and multiplications) as opposed to b3n−1

2
c2n, using the normal form. In [5]

some results about the weights and nonlinearity of degree 3 RotS functions
have been proved and it was conjectured that the weight and nonlinearity of
any degree 3 (homogeneous) RotS function are equal. Moreover, it was shown
that the truth table of a degree 3 RotS function can be displayed using only
2n−2 + 2n−4 + 2n−5 − 3 · 22 operations (additions and multiplications).

It is clear that there are 22n
Boolean functions on n variables and under no

circumstances (with current computational power) it is possible to search them
exhaustively for n ≥ 7 to check some desired property. Thus before analyzing
the RotS Boolean functions the immediate question is: how many rotation
symmetric functions are there? Using Burnside’s lemma, it is easy to see that
the number of rotation symmetric Boolean functions is a very small fraction
of the total number of Boolean functions and it is possible to search the space
with much better efficiency. In fact the rotation symmetric Boolean functions
has been studied earlier in [6], where the authors studied the nonlinearity of
these Boolean functions up to 9 variables.

Before proceeding further let us present some introductory material for better
understanding. Let Vn(= Fn

2 ) be the vector space of dimension n over the two
element field F2. Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

ρk
n(xi) = xi+k if i + k ≤ n,

= xi+k−n if i + k > n.
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Let (x1, x2, . . . , xn−1, xn) ∈ Vn. Then we extend the definition as

ρk
n(x1, x2, . . . , xn−1, xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn−1), ρ

k
n(xn)).

x4 x3 x2 x1 f

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

no. x4 x3 x2 x1 f

1 0 0 0 0 0

2 0 0 0 1 1

2 0 0 1 0 1

3 0 0 1 1 0

2 0 1 0 0 1

4 0 1 0 1 0

3 0 1 1 0 0

5 0 1 1 1 1

2 1 0 0 0 1

3 1 0 0 1 0

4 1 0 1 0 0

5 1 0 1 1 1

3 1 1 0 0 0

5 1 1 0 1 1

5 1 1 1 0 1

6 1 1 1 1 1

Table 1
Truth table of Boolean functions.

A Boolean function on n variables may be viewed as a mapping from Vn

into V1. We interpret a Boolean function f(x1, . . . , xn) as the output col-
umn of its truth table, i.e., a binary string of length 2n, f = [f(0, 0, . . . , 0),
f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)]. In Table 1 we present truth ta-
bles of 4-variable Boolean functions.

Definition 1 A Boolean function f is RotS if and only if for any (x1, . . . , xn) ∈
Vn,

f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn)

for any 1 ≤ k ≤ n.

Note that there are 2n different input values corresponding to a function.
From the above definition, it is clear that for RotS functions, the function
f possesses the same value corresponding to each of the subsets generated
from the rotational symmetry. As example, for n = 4, one gets the following
partitions :

{(0, 0, 0, 0)},
{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)},
{(0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 0, 0)},

{(0, 1, 0, 1), (1, 0, 1, 0)},
{(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0) },

{(1, 1, 1, 1)}.

Therefore, there are 6 different subsets which partition the 16 input patterns
and any 4-variable RotS Boolean function can have a specific value correspond-
ing to each subset. Thus there are 26 = 64 rotation symmetric functions on
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4 variables. In Table 1, the left one is a function which is not RotS, whereas,
the right one is a RotS function (each different subset is numbered). Note that
there are 6 different subsets and two of them are of size 1, one is of size 2 and
the rest three are of size 4.

Let us denote

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 1 ≤ k ≤ n},

that is, the orbit of (x1, . . . , xn) under the action of ρk
n, 1 ≤ k ≤ n. It is clear

that Gn(x1, . . . , xn) generates a partition in the set Vn. Let gn be the number
of such partitions. As example g4 = 6. Given (x1, . . . , xn), a function is RotS
if it takes the same value for all the inputs in Gn(x1, . . . , xn). It is clear that
there are 2gn number of n-variable RotS Boolean functions. From Burnside’s
lemma, we get that gn = 1

n

∑
t|n φ(t) 2

n
t (see Section 2). In Table 2, we present

the first few values of gn.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

gn 2 3 4 6 8 14 20 36 60 108 188 352 632 1182 2192 4116
Table 2
The values of gn, 1 ≤ n ≤ 16.

For binary strings S1, S2 of the same length λ, we denote by #(S1 = S2)
(respectively, #(S1 6= S2)), the number of places where S1 and S2 are equal
(respectively, unequal). The Hamming distance between S1, S2 is d(S1, S2) =
#(S1 6= S2). We will also use the notation wd(S1, S2) = #(S1 = S2)−#(S1 6=
S2). Note that, wd(S1, S2) = λ−2 d(S1, S2). Also, the Hamming weight, wt(S),
or simply the weight of a binary string S is the number of ones in S. An n-
variable function f is said to be balanced if its output column in the truth
table contains equal number of 0’s and 1’s (i.e., wt(f) = 2n−1).

Let us denote the addition operator over GF (2) by +. An n-variable Boolean
function f(x1, . . . , xn) can be seen as a multivariate polynomial over GF (2).
More precisely, f(x1, . . . , xn) can be written as a0+

∑n
i=1 aixi+

∑
1≤i<j≤n aijxixj+

. . .+a12...nx1x2 . . . xn, where the coefficients a0, ai, aij, . . . , a12...n ∈ {0, 1}. This
representation of f is called the algebraic normal form (ANF) of f . The num-
ber of variables in the highest order product term with nonzero coefficient is
called the algebraic degree, or simply the degree of f . A Boolean function is
said to be homogeneous if its ANF contains terms of the same degree only.

Functions of degree at most one are called affine functions. An affine func-
tion with constant term equal to zero is called a linear function. The set of
all n-variable affine (respectively linear) functions is denoted by A(n) (re-
spectively L(n)). The nonlinearity of an n-variable function f is nl(f) =
ming∈A(n)(d(f, g)), i.e., the distance from the set of all n-variable affine func-
tions.
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Clearly one can extend ρn on monomials of the form xi1xi2 . . . xil . Let us take
an example of 4-variable RotS function. If the term x1x2x3 is present in the
ANF, then the terms x2x3x4, x3x4x1, x4x1x2 must be present in the ANF. Thus
we can naturally extend the notation as ρk

n(xi1xi2 . . . xil) = ρk
n(xi1)ρ

k
n(xi2) . . . ρk

n(xil).
Similarly, in this case Gn(xi1xi2 . . . xil) = {ρk

n(xi1xi2 . . . xil), for 1 ≤ k ≤ n}.

We select the representative element of Gn(xi1xi2 . . . xil) as the lexicographi-
cally first element. As example, the representative element of {x1x2x3, x2x3x4,
x3x4x1, x4x1x2} is x1x2x3. Note that it is also clear that the term x1 will al-
ways exist in the lexicographically first element (the representative element)
if we consider a non constant rotation symmetric Boolean function.

We now define the short algebraic normal form (SANF) of a RotS function. A
RotS function f(x1, . . . , xn) can be written as

a0 + a1x1 +
∑

a1jx1xj + . . . + a12...nx1x2 . . . xn,

where the coefficients a0, a1, a1j, . . . , a12...n ∈ {0, 1}, and the existence of a
representative term x1xi2 . . . xil implies the existence of all the terms from
Gn(x1xi2 . . . xil) in the ANF. This representation of f is called the short al-
gebraic normal form (SANF) of f . Note that the number of terms in each
summation (

∑
) corresponding to same degree terms depends on the number

of short and long cycles. As an example, let us consider the ANF of a 4-variable
RotS Boolean function x1 +x2 +x3 +x4 +x1x2x3 +x2x3x4 +x3x4x1 +x4x1x2.
Its SANF is x1 + x1x2x3.

As we have already mentioned, a Boolean function is said to be homogeneous
if its algebraic normal form contains terms of same degree only. It is an impor-
tant question to settle the enumeration of homogeneous RotS functions, which
we present in the next section (Subsection 2.2). Further this helps us in reduc-
ing the search space for RotS functions and we develop computer programs to
explore bent functions and other cryptographically significant Boolean func-
tions in this set (see Section 3). Using the computer search in a reduced space,
we found the exact count of 8, 48, and 15104, RotS bent functions on 4, 6, and
8 variables respectively. Homogeneous bent functions have recently got a lot
of attention in literature [2,3,12,17]. It is interesting to note that we could
not find any homogeneous RotS bent functions having degree > 2 up to 10
variables.

Filiol and Fontaine [6] discussed the set of idempotent Boolean functions in
an experimental setting. Let B = (b1, . . . , bn) a basis of Fn

2 (which is iden-
tified with F2n). An idempotent f is a Boolean function on F2n that satis-
fies f 2 = f . Define the Mattson-Solomon (MS) polynomial by MSf (Z) =∑2n−2

j=0 AjZ
2n−j−1, where Aj =

∑2n−1
i=0 f(αi)αij (α is a primitive element of

F2n). Using the representation f =
∑

g∈F∗
2n

f(g)(g) (in the multiplicative al-

gebra F2[F2n ,×]), we get that f is an idempotent iff f(g) = f(g2), ∀ g; the
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coefficients of the MS polynomial belong to F2; Aj = Ak for all k in the 2-
cyclotomic class of j ({j, 2j, . . . , 2n−1j}); the ANF of f (using a normal basis
(γ, γ2, . . . , γ2n−1

) remains invariant under circular shift. This gives that the
corpus of idempotents is the same as the class of rotation symmetric Boolean
functions. For n = 5, 7, they found idempotents of highest nonlinearity (12,
respectively 56) of degrees 2, 3 (for n = 5), and degrees 2, 3, 4, 5, 6 (for n = 7).
For n = 6, 8 they found all idempotents of highest nonlinearity (28, respec-
tively 120), of degrees 2, 3, respectively, 2, 3, 4. They were not able to find
all idempotent functions for n = 8, though. Finally, for n = 9, they found
1142395 functions (up to equivalence) with nonlinearity 240, some of which
are balanced, of degrees 2, 3, 4, 5, 6, 7.

The search of [6] considers nonlinearity only. Our further attempt to search
the cryptographically significant Boolean functions on 5, 6 and 7 variables
produced extremely encouraging results (see Section 3 for relevant definitions).
We found 480 RotS functions on 7 variables which possess resiliency of order
1, propagation characteristics of order 1, nonlinearity 56, algebraic degree 4
and maximum absolute value in autocorrelation spectra 16. Also we found 72
RotS functions on 7 variables which possess resiliency of order 2, nonlinearity
56, algebraic degree 4 and maximum absolute value in autocorrelation spectra
16. Functions with such optimized properties were not known earlier.

2 Enumeration of Rotation Symmetric Boolean Functions

We start this section with some basic technical discussion. It is clear that
|Gn(x1, . . . , xn)| ≤ n. For the case |Gn(x1, . . . , xn)| = n, we call that the
elements of Gn(x1, . . . , xn) form a long cycle, which is of length n. On the
other hand, if |Gn(x1, . . . , xn)| < n, we call it a short cycle, which is of length
strictly less than n. As example, G4(1, 0, 0, 0), G4(1, 1, 0, 0), G4(1, 1, 1, 0) are
long cycles (each of size 4), whereas, G4(0, 0, 0, 0), G4(1, 1, 1, 1) (each of size
1) and G4(1, 0, 1, 0) (of size 2) are short cycles. Note that |Gn(0, . . . , 0)| =
|Gn(1, . . . , 1)| = 1, for any n ≥ 1. For n = 1, G1(0), G1(1) are two long cycles.
However, for n > 1, Gn(0, . . . , 0), Gn(1, . . . , 1) are always short cycles.

It turns out that the sequence gn counts also the number of n-bead necklaces
with 2 colors when turning over is not allowed, or output sequences from a
simple n-stage cycling shift register, or binary irreducible polynomials whose
degree divides n (see [16]). In the proof of our first result, we need Burnside’s
lemma (which in fact was discovered by Frobenius).

Lemma 2 (Burnside’s lemma) Let G be a group of permutations acting on
a set S. Then the number of orbits induced on S is given by 1

|G|
∑

π∈G |fixS(π)|,
where fixS(π) = {x ∈ S |π(x) = x}.
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Theorem 3 gn =
1

n

∑
t|n

φ(t) 2n/t, where φ(t) is Euler’s phi-function.

PROOF. For convenience, we provide here a proof (see also [16]). Here G =
{ρ1

n, . . . , ρ
n
n} and S = {0, 1}n. To use Burnside’s lemma we need to find the

number of fixed points of ρi
n, i = 1, . . . , n. The number of permutation cycles

of ρi
n is gcd(n, i), each of them of length n

gcd(n,i)
. Observe that ρi

n has order
n

gcd(n,i)
. Since, to be fixed by ρi

n, each input cycle must consist of all 0’s or

all 1’s, we get that the number of fixed points of ρi
n is 2gcd(n,i). Applying

Burnside’s lemma we obtain, gn = 1
n

∑n
i=1 2gcd(n,i) = 1

n

∑
k|n
∑n

i, gcd(n,i)=k 2k =
1
n

∑
k|n 2k ∑

j, gcd(n/k,j)=1 1 = 1
n

∑
k|n φ

(
n
k

)
2k = 1

n

∑
t|n φ(t) 2

n
t . 2

The number of rotation symmetric functions of n variables is 2gn . There are
two groups Gn(0, . . . , 0), Gn(1, . . . , 1) of size 1. Moreover, we know that all
other groups have size ≤ n. There are in total 2n tuples in Vn. Thus apart
from the (0, . . . , 0), (1, . . . , 1) tuples, there are at least d2n−2

n
e groups. Hence,

gn ≥ 2n+2n−2
n

. Further, for n prime, gn = 2n+2n−2
n

.

Corollary 4 For prime p, gpa = p−a

(
2pa

+
a∑

i=1

(pi − pi−1)2pa−i

)
.

PROOF. Take n = pa. Any divisor of such an n is of the form pi, 0 ≤
i ≤ n. Moreover, φ(pi) = pi − pi−1. Applying Theorem 3 we obtain gpa =

p−a
(
2pa

+
∑a

i=1(p
i − pi−1)2pa/pi

)
, which gives the corollary (the first term cor-

responds to the divisor t = 1 of n). 2

2.1 Enumeration of long cycles

Concentrate on Gn(x1, . . . , xn), where Gn(x1, . . . , xn) contains exactly n ele-
ments. Let hn be the number of such length n subsets, i.e., the number of long
cycles. Clearly hn < gn. We will provide a formula for hn.

Let ωn be the number of prime factors of n, and n = pa1
1 · · · paωn

ωn
. First we need

a few technical results.

Lemma 5 If gcd(i, n) = d, then the fixed points of ρi
n are exactly the fixed

points of ρd
n.

PROOF. Since, gcd(n, i) = gcd(n, d) = d, ρi
n and ρd

n have the same number
of fixed points. Therefore, it suffices to show that the fixed points of ρd

n are
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also fixed points of ρi
n. Take (x1, . . . , xn) a fixed point of ρd

n. Let i = di′. We
have

ρi
n(x1, . . . , xn) = ρdi′

n (x1, . . . , xn) = ρd
n(ρd

n(. . . ρd
n(x1, . . . , xn) . . .)) = (x1, . . . , xn),

where the composition contains i′ number of ρd
n operations. Thus, (x1, . . . , xn)

is a fixed point of ρi
n. 2

Lemma 6 If a ≤ b and p |n, then the fixed points of ρpa

n are among the fixed
points of ρpb

n .

PROOF. Take (x1, . . . , xn) a fixed point of ρpa

n . We need to show that it is a
fixed point of ρpb

n , as well. This follows from ρpb

n (x1, . . . , xn) = ρpa

n (. . . ρpa

n (x1, . . . , xn) . . .) =
(x1, . . . , xn), where the composition contains b− a terms. 2

Let p 6= q be prime divisors of n, and a, b arbitrary integers. Denote Fpa , Fqb ,

the set of fixed points of ρpa

n , respectively, ρqb

n .

Lemma 7 We have Fpa

⋂Fqb = {(0, . . . , 0), (1, . . . , 1)}.

PROOF. We know ρn has only two obvious fixed points. Assume that (x1, . . . , xn)
is a fixed point in the intersection, which is neither (0, . . . , 0), nor (1, . . . , 1).
If ρqb

n (x1, . . . , xn) = (x1, . . . , xn), then ρ−qb

n (x1, . . . , xn) = (x1, . . . , xn). Since
p 6= q, then gcd(pa, qb) = 1, therefore there exist some integers A, B, such that
Apa+Bqb = 1. Assume A > 0, B < 0. Thus, ρ1

n(x1, . . . , xn) = ρApa+Bqb

n (x1, . . . , xn) =
ρApa

n (ρBqb

n (x1, . . . , xn)) = (x1, . . . , xn), a contradiction. 2

Theorem 8 We have (i) h1 = 2,

(ii) If n = pa, p prime, then hpa =
1

n

∑
d|n

φ(d) 2n/d −
a−1∑
i=1

2pi − 2pi−1

pi
− 2. In

particular, if a = 1, hp =
2p − 2

p
.

(iii) Let n = pa1
1 · · · paωn

ωn
, pi 6= pj be the prime factorization. Then hn =

1

n

∑
d|n

φ(d) 2n/d −
ωn∑
i=1

ai∑
j=1

2pj
i − 2pj−1

i

pj
i

− 2, if ωn ≥ 2.

PROOF. It is easy to see that h1 = 2. This is the Case (i). Note that
Gn(x1, . . . , xn) is a short cycle, if and only if there is some proper divisor d |n,
such that (x1, . . . , xn) is a fixed point for ρd

n. From the previous lemmata, it
suffices to consider d a power of a prime.
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Case (ii). ωn = 1, therefore n = pa, for some integer a and prime p. We
count the short cycles for ρpa

n by looking at the fixed points of ρpi

n , 0 ≤ i < a.
Obviously, we have fixed points only for ρpi

n , 0 ≤ i < a, which are all fixed
points for ρpa−1

n , also.

But a short cycle under ρpa

n is a long cycle under ρpi

n , for some 0 ≤ i ≤ a− 1.
To find the long cycles under ρpi

n , we take the fixed points of ρpi

n , which are
not fixed points of ρpi−1

n and divide by the length pi of a long cycle under ρpi

n .
Recall that the number of fixed points of ρpi

n is 2pi
. We get that the number

of short cycles of ρn is 2 +
∑a−1

i=1

2pi − 2pi−1

pi
.

Case (iii). ωn > 1. Since the number of cycles of ρ
p

ai
i

n (by Lemma 7, these

cycles are not fixed by any other ρ
p

aj
j

n , j 6= i) is
ai∑

j=1

2pj
i − 2pj−1

i

pj
i

, we obtain that

the total number of short cycles is 2 +
∑ωn

i=1

∑ai
j=1

2pj
i − 2pj−1

i

pj
i

. The number of

short cycles is to be subtracted. Hence the proof of the theorem. 2

2.2 Homogeneous Rotation Symmetric Boolean functions

We noted already that for RotS Boolean functions, if the term xi1xi2 . . . xim

is present, then all the distinct terms of the form ρj
n(xi1xi2 . . . xim) are also

present for 1 ≤ j < n. Hence, for RotS functions, it is clear that some mono-
mials of the same degree either appear or do not appear at the same time.
Now we concentrate on monomials of the same degree. We introduce some
notations which are related to the weight of the binary strings. First consider
Gn(x1, . . . , xn), where wt(x1, . . . , xn) is exactly w. Note that in this way we

get a partition over the n bit binary strings of weight w (total number
(

n
w

)
).

Let us consider that the number of such partitions is gn,w. Moreover, let hn,w

be the number of distinct sets Gn(x1, . . . , xn), where wt(x1, . . . , xn) = w and
|Gn(x1, . . . , xn)| = n, that is, the number of long cycles of weight w. Clearly,
hn,w < gn,w.

We will write k|′m, if k, (1 < k ≤ m) is a proper divisor of m.

Theorem 9 We have

(i) gn,w =
1

n

(
n

w

)
, if gcd(n, w) = 1. Also, gn,0 = gn,n = 1.

(ii) gn,w =
1

n

(n

w

)
−

∑
k|′gcd(n,w)

n

k
· hn

k
, w

k

+
∑

k|′gcd(n,w)

hn
k

, w
k
, if w < n.
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PROOF. First, we make the observation that gn,w is the sum between the
number of long and short cycles. Obviously, x = (x1, . . . , xn) is part of a
short cycle, if and only if there is a minimal block b = [x1, x2, . . . , ] which by
repeating itself (say, k times) covers x, that is x = bbb . . .. Furthermore, k
divides w, so the weight of b is w

k
. Since x is covered by concatenating k copies

of b, it follows that k divides n, as well. This gives that there can not be any
short cycle if gcd(n, w) = 1 and hence we obtain the first claim of (i). If w = 0
(respectively w = n), then the only element x of such a weight is (0, . . . , 0)
(respectively (1, . . . , 1)), so gn,0 = gn,n = 1. The proof of (i) is completed.

Assume 1 < w < n. Using the same observation as above, we note that
(x1, . . . , xn) is part of a short cycle under gn, if and only if there is a minimal
block b, of length n/k, where k |′ gcd(n,w), which renders x by concatenation
of k copies of b. Since b is minimal, then it must be a full cycle under gn

k
, of

weight
w

k
. Thus,

# short cycles =
∑

k |′ gcd(n,w)

hn
k

, w
k
. (1)

Let L (respectively S) be the sets of elements in Vn of weight w, which are part
of long (respectively short) cycles. Recall that the total number of elements

of weight w is

(
n

w

)
. Therefore, |L| =

(
n
w

)
− |S|. The number of long cycles is

1
n
|L|. Moreover, each short cycle under gn of weight w is the concatenation of

k copies (for some value of k |′ gcd(n, w)) of a long cycle under gn
k

of weight w
k
.

Since in each long cycle under gn
k

of weight
w

k
there are

n

k
elements, it follows

that

# long cycles =
1

n

(
n

w

)
− 1

n

∑
k |′ gcd(n,w)

n

k
· hn

k
, w

k
. (2)

Putting together 1 and 2, we obtain (ii). 2

Recall that gn,w is the number of distinct cycles of weight w. This means that
the degree w monomials can be divided in gn,w different cycles. We obtain

Corollary 10 Consider n-variable RotS Boolean functions. The number of
(i) degree w homogeneous functions is 2gn,w − 1, (ii) the number of degree w

functions is (2gn,w − 1)2
∑w−1

i=0
gn,i and (iii) the number of functions with degree

at most w is 2
∑w

i=0
gn,i.

The result of Corollary 10 will be used in Subsection 3.1 as it reduces the
search space of RotS bent functions.

Let us consider the case for w = 2. If n is odd, then gn,2 =
n− 1

2
. If n is even,

gn,2 =
1

n

((
n

2

)
− n

2
· hn

2
,1

)
+hn

2
,1. Since hn

2
,1 = 1, we get gn,2 =

n

2
. Thus there

10



are 2b
n
2
c homogeneous quadratic RotS Boolean functions.

Let us consider the case of degree w = 3. If 3 does not divide n, then gn,3 =
1

n

(
n

3

)
=

(n− 1)(n− 2)

6
. If n is divisible by 3, then gn,3 =

1

n

((
n

3

)
− n

3
· hn

3
,1

)
+

hn
3

,1. Now hn
3

,1 = 1. Hence, gn,3 =
1

n

((
n

3

)
− n

3

)
+ 1 =

n(n− 3)

6
+ 1. The

number of homogeneous degree 3 RotS functions is 2gn,3 .

2.3 Solving a recurrence relation

Since gn,w depends on values of h·,· we shall display now an exact formula for
these values. Let us recapitulate the Equation 2 in the proof of Theorem 9,
which is the recurrence relation for hn,w.

hn,w =
1

n

(
n

w

)
− 1

n

∑
k |′ gcd(n,w)

n

k
· hn

k
, w

k
. (3)

Let n,w be such that gcd(n, w) = 1 and d =
∏t

j=1 p
aj

j , pj primes. With n, w, d

fixed, let bα1,...,αt =

(
n
∏t

j=1 p
αj

j

w
∏t

j=1 p
αj

j

)
.

Theorem 11 We have

hnd,wd =
1

nd

 ∑
0≤i1,...,it≤1

(−1)
∑t

j=1
ijba1−i1,...,at−it

 . (4)

PROOF. We prove the assertion by induction on a =
t∑

j=1

aj. If a = 0, or a =

1, Equation 3 shows that hn,w = 1
n

(
n
w

)
, respectively, hpn,pw = 1

np

((
np
wp

)
−
(

n
w

))
,

for some prime d = p.

Now, we need to show the induction step. We consider two cases: Case 1: all
ai = 1; Case 2: there exists some i with ai ≥ 2.

We take Case 1 first. Let d̄ =
∏t

i=2 pi. Any divisor k |′d, k 6= d, is either p1, k̄,

11



or k̄p1, where k̄ | d̄, k̄ 6= 1. Using this observation together with 3, we obtain

nd · hnd,wd =

(
nd

wd

)
−

∑
k̄|d̄, k̄ 6=1

nd

k̄
hnd

k̄
, wd

k̄
−

∑
k̄|d̄, k̄ 6=1

nd

k̄p1

h nd
k̄p1

, wd
k̄p1

− nd

p1

hnd
p1

, wd
p1

=

(
nd

wd

)
−

∑
s̄|d̄, s̄ 6=d̄

ns̄p1hns̄p1,ws̄p1 −
∑

s̄|d̄, s̄ 6=d̄

ns̄hns̄,ws̄ − nd̄hnd̄,wd̄

(5)

Any divisor s̄ of d̄ is of the form s̄ =
∏t

i=2 pαi
i , with 0 ≤ αi ≤ 1 (2 ≤ i ≤ t).

Moreover, using the induction assumption (with s̄ 6= d̄)

ns̄p1 · hns̄p1,ws̄p1 =
∑

0≤i1,i2,...≤1

(−1)
∑t

j=1
ijb1−i1,α2−i2,...

=
∑

0≤i2,...≤1

(−1)
∑t

j=2
ijb1,α2−i2,... −

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijb0,α2−i2,...

ns̄ · hns̄,ws̄ =
∑

0≤i2,...≤1

(−1)
∑t

j=2
ijb0,α2−i2,...

nd̄ · hnd̄,wd̄ =
∑

0≤i2,...≤1

(−1)
∑t

j=2
ijb0,a2−i2,...

which implies ns̄p1 · hns̄p1,ws̄p1 + ns̄ · hns̄,ws̄ =
∑

0≤i2,...≤1(−1)
∑t

j=2
ijb1,α2−i2,....

Therefore, we get

nd · hnd,wd =

(
nd

wd

)
−

∑
0≤α2,...≤1
not all 1

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijb1,α2−i2,...

−
∑

0≤i2,...≤1

(−1)
∑t

j=2
ijb0,a2−i2,... = b1,1,...,1

−
∑

0≤α2,...≤1

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijb1,α2−i2,... +

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijb1,a2−i2,...

−
∑

0≤i2,...≤1

(−1)
∑t

j=2
ijb0,a2−i2,... =

∑
0≤i1,...≤1

(−1)
∑t

j=2
ijba1−i1,a2−i2,...

(6)

since any term in the first sum is cancelled by another: we have a pattern
similar to that of the inclusion-exclusion principle (it is even more apparent
what happens in the next argument).

The computations are similar in Case 2. Without loss of generality we may

assume that a1 ≥ 2. Let d̄ =
d

pa1
1

. Note that as special cases,

hnpr,wpr =
1

npr

((
npr

wpr

)
−
(

npr−1

wpr−1

))
(for t = 1),

12



and

hnprqs,wprqs =
1

nprqs
(br,s − br,s−1 − br−1,s + br−1,s−1) (for t = 2).

Now let us present the proof. Any divisor k |′d (k 6= d) is of the form pi
1k̄,

i = 1, 2, . . . , a1, where k̄ | d̄, such that if i = a1, then k̄ 6= d̄. Using 3 and the
induction hypothesis, we get (

∑′ denotes the sum with the extra condition
that if i = 0, then k̄ 6= 1, and if i = a1, then k̄ 6= d̄),

nd · hnd,wd =

(
nd

wd

)
−

a1∑
i=0

∑
k̄|d̄

′ nd

pi
1k̄

h nd

pi
1

k̄
, wd

pi
1

k̄

=

(
nd

wd

)
−

a1−1∑
j=0

∑
s̄|d̄

ns̄pj
1hnpj

1s̄,wpj
1s̄ −

∑
s̄|d̄, s̄ 6=d̄

npa1
1 s̄hnp

a1
1 s̄,wp

a1
1 s̄

= ba1,...,at −
a1−1∑
j=1

 ∑
0≤i2,...≤1

(−1)
∑t

k=2
ikbj,α2−i2,... −

∑
0≤i2,...≤1

(−1)
∑t

k=2
ikbj−1,α2−i2,...


−

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijb0,α2−i2,... +

∑
0≤i2,...≤1

(−1)
∑t

j=2
ijba1,α2−i2,...

=
∑

0≤i1,...,it≤1

(−1)
∑t

j=1
ijba1−i1,...,at−it .

(7)

This proves Case 2 and hence the proof is completed. 2

3 Rotation symmetric functions with cryptographic significance

With the enumeration results for RotS Boolean functions in the previous sec-
tion, the search space is reduced to a large extent and it seems possible to
search this space to check whether there exist cryptographically interesting
Boolean functions. The results show that the RotS Boolean functions are rich
in this context. For detailed discussion about these cryptographic properties
see [14] and the references therein. Before stating the results we first need to
present some definitions.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) in Vn and

x · ω = x1ω1 + . . . + xnωn.

Let f(x) be a Boolean function on n variables. Then the Walsh transform of
f(x) is a real valued function over Vn that can be defined as

Wf (ω) =
∑

x∈Vn

(−1)f(x)+x·ω.

13



Note that Wf (ω) = wd(f, lω), where lω denotes the linear function on n vari-
ables given by lω(x) = ω · x.

The following characterization of correlation immune functions has been pre-
sented in [7]. A function f(x1, . . . , xn) is m-th order correlation immune (CI)
if and only if its Walsh transform satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m.
Note that f is balanced if and only if Wf (0) = 0. Balanced m-th order
correlation immune functions are called m-resilient functions. Thus, a func-
tion f(x1, . . . , xn) is m-resilient if and only if its Walsh transform satisfies
Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m.

By an (n, m, d, u) function we denote an n-variable, m-resilient function with
degree d and nonlinearity u. By (n, 0, d, u) function we mean a balanced n-
variable function with degree d and nonlinearity u. In the above notation a
component is replaced by a ‘−’, if it is not specified, e.g., (n,m,−, u), if the
degree is not specified.

Define ∆f (α) = wd(f(x), f(x ⊕ α)), the autocorrelation value of f with re-
spect to the vector α. Now we define the Propagation Characteristics of a
Boolean function [11]. An n-variable function f is said to satisfy PC(k), if
∆f (α) = 0 for any α such that 1 ≤ wt(α) ≤ k. The absolute indicator is
∆f = maxα∈Vn,α 6=0 |∆f (α)|.

3.1 Bent Functions

Bent functions are extremely interesting combinatorial objects, which were
introduced in [13]. Bent functions on n variables (n even) possess the maximum
possible nonlinearity and the Walsh spectra contain only the values ±2

n
2 .

Further these functions are of algebraic degree at most n
2

for n > 2.

We now consider the RotS bent functions. Consider that there exists a RotS
bent function f on n variables with f(0, 0, . . . , 0) = 0 and the ANF of the
function is free from the terms x1+ . . .+xn. In that case, 1+f, x1+ . . .+xn+f
and 1+x1+. . .+xn+f are also RotS bent functions. Thus if we count the RotS
bent functions with f(0, 0, . . . , 0) = 0 and free from the terms x1 + . . . + xn,
then multiplying that by 4 we get the total count.

Note that rotation symmetric bent functions upto 8-variables have already
been enumerated in [6]. We here explain those results once more and then
study the 10-variable case also.

We know that g4 = 6 and g6 = 14. Thus we can easily go for exhaustive search.
For 4 variables, there are 8 such functions, and they are represented by the
SANF x1x3 and x1x2 + x1x3.
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For 6 variables, there are 48 RotS bent functions, represented by the following
12 functions in SANF :

x1x4, x1x2x3 + x1x4 + x1x3x5,

x1x3 + x1x4 + x1x3x4, x1x3 + x1x4 + x1x2x4,

x1x3 + x1x2x3 + x1x4 + x1x3x4 + x1x3x5, x1x3 + x1x2x3 + x1x4 + x1x2x4 + x1x3x5,

x1x2 + x1x4 + x1x3x4, x1x2 + x1x4 + x1x2x4,

x1x2 + x1x2x3 + x1x4 + x1x3x4 + x1x3x5, x1x2 + x1x2x3 + x1x4 + x1x2x4 + x1x3x5,

x1x2 + x1x3 + x1x4, x1x2 + x1x3 + x1x2x3 + x1x4 + x1x3x5.

We also have that g8 = 36. Thus the search over this space needs checking 236

options, which is computationally complex. We reduce this space further using
the results of Theorem 9 and Corollary 10. First of all we can always assign 0
value corresponding to g8,0 many group which forces f(0, 0, . . . , 0) = 0 and g8,1

many group which forces that the ANF is free from the terms x1+ . . .+xn. We
find the count of such bent functions and then multiply by 4 to get the total
count. Further we know that bent functions are of algebraic degree at most
n
2

for n > 2. Thus we can easily discard g8,5 + g8,6 + g8,7 + g8,8 many groups
as all the monomials containing more than 4 variables will not exist. So the
number of groups where we have to assign 0 or 1 values is g8,2 +g8,3 +g8,4 = 21
only. Thus we need to search a space of 221 RotS functions on 8-variables to
get the complete list of RotS bent functions on 8 variables. It took 6 hours on
a Pentium 1.6 GHz computer with 256 MB RAM using Linux 7.2 operating
system. The program has been written in C. We found that there are 4 ·
3776 RotS bent functions on 8 variables and the following 8 are homogeneous,
expressed in SANF :

x1x5; x1x4 + x1x5; x1x3 + x1x5; x1x3 + x1x4 + x1x5; x1x2 + x1x5;

x1x2 + x1x4 + x1x5; x1x2 + x1x3 + x1x5; x1x2 + x1x3 + x1x4 + x1x5.

We could not exhaustively search beyond 8 variable functions. This is because,
for 10 variables, g10 = 108 and we need to consider functions up to degree 5 and
hence g10,2+g10,3+g10,4+g10,5 = 65 groups for searching bent functions, which
needs checking of 265 functions. Homogeneous bent functions are of interest in
literature [2,3,12]. Though we could not search the complete space of RotS bent
functions on 10 variables, we could search the homogeneous ones. The SANF of
degree 2 homogeneous 10-variable RotS bent functions are: x1x6, x1x5 + x1x6,
x1x4 +x1x6, x1x3 +x1x6, x1x3 +x1x4 +x1x6, x1x3 +x1x4 +x1x5 +x1x6, x1x2 +
x1x6, x1x2 +x1x5 +x1x6, x1x2 +x1x4 +x1x5 +x1x6, x1x2 +x1x3 +x1x5 +x1x6,
x1x2 + x1x3 + x1x4 + x1x6, x1x2 + x1x3 + x1x4 + x1x5 + x1x6.
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Note that g10,3 = 12, g10,4 = 22, and g10,5 = 26. Thus it is possible to search
for 10-variable homogeneous RotS bent functions with degree 3, 4, and 5.
Unfortunately we could not find any evidence of homogeneous bent functions
there. Thus we make the following conjecture.

Conjecture 12 There are no homogeneous RotS bent functions of degree > 2.

Somewhat related to our conjecture, Xia et. al. [17] showed that there are no
homogeneous bent functions of degree n in 2n variables, for n > 3.

3.2 Resiliency and Propagation Characteristics

For an (n, m, d, u) function, m+d ≤ n−1 [15] and u ≤ 2n−1−2m+1+bn−m−2
d

c [1].
From cryptographic point of view, it is important to find functions attaining
these bounds. Further it is important to find functions with PC(k), where
k is high. Low value of ∆f is also essential. These functions have important
applications in S-boxes [11]. So far, for odd n < 15, the lowest possible ∆f

value achieved for balanced functions is 2
n+1

2 . We found the evidence of such
very important examples in the RotS Boolean functions class.

Since we find that the space of RotS Boolean functions is much smaller than
the complete space of Boolean functions, we can successfully search that space
for small values of n. In fact, we did the complete search for n = 5, 6, 7 and
found the following interesting results. We present the functions in SANF and
with f(0, 0, . . . , 0) = 0. The properties balancedness, correlation immunity,
resiliency, nonlinearity, algebraic degree, ∆f and propagation characteristics
of a function f stay preserved for the function 1 + f also. Hence we count the
functions with f(0, 0, . . . , 0) = 0 and double the count value to give the exact
number of such functions.

3.2.1 5-variable

There are eight (5, 1, 3, 12) functions, x1x2+x1x3+x1x2x4, x1x2+x1x3+x1x2x3,
x1 + x1x3 + x1x2x4, x1 + x1x2 + x1x2x3 and their complements. Most interest-
ingly, they possess the theoretically best possible ∆f = 8 value. That is, these
functions provide provably best possible parameters in terms of nonlinearity,
resiliency, algebraic degree and autocorrelation values. However, there are no
(5, 2, 2, 8) RotS function.

All the 5-variable functions, with maximum possible nonlinearity 12, that
satisfy propagation characteristics are PC(4). There are 12 functions which
are PC(4) and of nonlinearity 12. The ∆f value for all of them is 32. The
functions with f(0) = 0 are x1x3, x1x2, x1 + x1x2 + x1x3 (balanced) and
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x1x2 + x1x3, x1 + x1x3 and x1 + x1x2 (unbalanced).

3.2.2 6-variable

There are fifty two (6, 1,−, 24) RotS functions. The algebraic degrees of the
functions will be revealed from the SANF presented in Table 3. We present
the 26 functions with f(0) = 0. The others are their complements. The *
marked functions satisfy the PC(1) property and the ** marked functions
satisfy PC(2) property in Table 3. There are no (6, 2, 3, 24) and (6, 3, 2, 16)
RotS functions.

∆f = 64

** x1x3

* x1x2 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5

** x1x2 + x1x2x3 + x1x3x5

* x1 + x1x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5

** x1 + x1x3 + x1x2x3 + x1x3x5

** x1 + x1x2

∆f = 40

* x1x3 + x1x4 + x1x3x4 + x1x2x4x5

* x1x3 + x1x4 + x1x2x4 + x1x2x4x5

* x1x2 + x1x2x3 + x1x4 + x1x3x4 + x1x3x5 + x1x2x4x5

* x1x2 + x1x2x3 + x1x4 + x1x2x4 + x1x3x5 + x1x2x4x5

* x1 + x1x3 + x1x3x4 + x1x2x3x4 + x1x3x5

* x1 + x1x3 + x1x2x4 + x1x2x3x4 + x1x3x5

x1 + x1x2 + x1x2x3 + x1x3x4 + x1x2x3x4

x1 + x1x2 + x1x2x3 + x1x2x4 + x1x2x3x4

∆f = 32

x1x2 + x1x3 + x1x3x4

x1x2 + x1x3 + x1x2x4

x1x2 + x1x3 + x1x2x3 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x4x5

x1x2 + x1x3 + x1x2x3 + x1x4 + x1x2x4 + x1x2x3x4 + x1x2x4x5

x1 + x1x3x4

x1 + x1x2x4

x1 + x1x2x3 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x4x5

x1 + x1x2x3 + x1x4 + x1x2x4 + x1x2x3x4 + x1x2x4x5

∆f = 24

x1x2 + x1x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x4x5

x1x2 + x1x3 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4

x1 + x1x4 + x1x2x4x5

x1 + x1x2x3 + x1x2x3x4

Table 3
The (6, 1,−, 24) RotS functions

There are 2 · 56 balanced PC(1) functions with nonlinearity 24. Considering
f(0) = 0, out of the 56 functions, there are 16 functions with algebraic degree
5 and ∆f = 16. One example is x1x2x3 +x1x4 +x1x3x4 +x1x3x5 +x1x2x3x5 +
x1x2x4x5 + x1x2x3x4x5.

There are 2 · 6 balanced PC(2) functions with nonlinearity 24. Out of the 6
functions with f(0) = 0, there are two functions with algebraic degree 5 and
∆f = 40, and one of them is x1x2x3 + x1x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5 +
x1x2x3x4x5 and x1x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x2x4x5 +
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x1x2x3x4x5. The other three are of ∆f = 64.

There are 2 · 16 unbalanced PC(2) functions with nonlinearity as high as 26.
The functions are only 2 away from balancedness, i.e., they are of weight either
30 or 34 (weight of a 6-variable balanced function is 32). Now we consider the
16 functions with f(0) = 0. Out of these, 8 have degree 4 and ∆f = 16, (one
example is x1x2 + x1x2x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5) and 8 have degree
5 and ∆f = 24, (one example is x1x2 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 +
x1x2x3x5 + x1x2x3x4x5).

There are 2 · 104 unbalanced PC(1) functions with nonlinearity 26. Now we
consider the 104 functions with f(0) = 0. Out of these, 16 have degree 5
and ∆f = 8. Moreover, four of these are only 2 away from balancedness (one
example x1x4 + x1x3x5 + x1x2x3x5 + x1x2x3x4x5).

3.2.3 7-variable

There are 2 ·856 number of (7, 1,−, 56) functions (856 functions with f(0) = 0
and their complements). Now we only consider the count of the functions
with f(0) = 0. There are 42 number of (7, 1, 5, 56) functions with ∆f = 16.
One example is the function x1x3 + x1x4 + x1x3x4 + x1x2x4x5 + x1x2x4x6 +
x1x2x3x4x6 + x1x2x3x5x6.

There are 240 number of (7, 1, 4, 56) functions with ∆f = 16 which also possess
the PC(1) property. One example is the function x1x2x3 + x1x4 + x1x2x3x5 +
x1x3x4x5 + x1x2x4x6. Deterministic construction of these functions are com-
binatorially challenging and still not known.

Construction of 7-variable, 2-resilient functions with nonlinearity 56 has been
considered as one of the extremely hard combinatorial problem. So far there
is no existing deterministic construction method to construct these functions.
These functions were found by search methods earlier [4,9]. Running a com-
puter program, we obtained that there are 2·36 number of (7, 2, 4, 56) functions
in the RotS class. They are listed in Table 4. We mention that all of these func-
tions have ∆f = 16, which is better than the value 24 presented in [4]. In fact,
the (7, 2, 4, 56) function with ∆f = 16 provides best possible parameters for a
7-variable Boolean function.

4 Conclusion

In this paper we investigated rotation symmetric Boolean functions. We pro-
vide complete enumeration results for these functions including the number of
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x1x3 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x2x3x5 + x1x2x4x5

x1x3 + x1x4 + x1x2x4 + x1x2x3x4 + x1x2x5 + x1x2x4x5 + x1x3x4x5

x1x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x3x4x5 + x1x2x4x6

x1x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x4x6

x1x2 + x1x2x3 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x3x5 + x1x2x4x6

x1x2 + x1x2x3 + x1x4 + x1x2x4 + x1x2x3x4 + x1x3x4x5 + x1x2x4x6

x1x2 + x1x2x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x5 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1x2 + x1x2x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x5 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1x2 + x1x3 + x1x3x4 + x1x3x5 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1x2 + x1x3 + x1x2x4 + x1x3x5 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1x2 + x1x3 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5 + x1x3x4x5

x1x2 + x1x3 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x3x5 + x1x2x4x5

x1 + x1x4 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x4 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x2x3x5 + x1x2x4x5

x1 + x1x4 + x1x2x4 + x1x2x3x4 + x1x2x5 + x1x2x4x5 + x1x3x4x5

x1 + x1x2x3 + x1x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x2x3 + x1x4 + x1x2x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x4x6

x1 + x1x2x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x5 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x2x3 + x1x4 + x1x2x4 + x1x3x4 + x1x2x5 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1 + x1x3 + x1x2x3x4 + x1x3x4x5 + x1x2x4x6

x1 + x1x3 + x1x2x3x4 + x1x2x3x5 + x1x2x4x6

x1 + x1x3 + x1x3x4 + x1x3x5 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1 + x1x3 + x1x2x4 + x1x3x5 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x4x6

x1 + x1x3 + x1x2x3 + x1x3x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x2x4x5 + x1x3x4x5

x1 + x1x3 + x1x2x3 + x1x2x4 + x1x2x3x4 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x4x5

x1 + x1x2 + x1x2x3x4 + x1x2x4x5 + x1x3x4x5

x1 + x1x2 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5

x1 + x1x2 + x1x2x3 + x1x3x4 + x1x2x5 + x1x3x5 + x1x2x4x5 + x1x3x4x5 + x1x2x4x6

x1 + x1x2 + x1x2x3 + x1x3x4 + x1x2x3x4 + x1x2x3x5 + x1x2x4x6

x1 + x1x2 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x4x5 + x1x2x4x6

x1 + x1x2 + x1x2x3 + x1x2x4 + x1x2x3x4 + x1x3x4x5 + x1x2x4x6

x1 + x1x2 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x4x5 + x1x3x4x5

x1 + x1x2 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x1x2x3x5 + x1x2x4x5

Table 4
The (7, 2, 4, 56) RotS functions.

such functions with specific degree. Our results show that the search space of
rotation symmetric functions is much smaller compared to the complete space
of Boolean functions and so we were able to do some experiments on this class
of functions. We studied the rotation symmetric bent functions completely up
to 8 variables. Further, we observed that up to 10 variables, there is no homo-
geneous rotation symmetric bent function of degree > 2. It is an important
open question to settle the count of rotation symmetric bent functions. We
have also checked the cryptographic properties of rotation symmetric func-
tions up to 7 variables. Getting theoretical constructions of these functions
instead of search is an interesting research problem. Moreover, any theoretical
advancement in this direction can be used to find cryptographically significant
functions on higher number of variables.
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