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SUMMARY

We present a methodology for implementing sensitivity analysis in the case of inverse problems. This is motivated
by a problem in palzeoclimatology, where interest lies in reconstruction of past climates from fossil data. In such
situations fossil data are modelled as functions of climate variables, since in general ecological terms, variations
in climate drive variations in fossil. However, prediction of climate variables are of interest, indicating the inverse
nature of the problem.

Technically, given a data set {x, wl:i = 1.. .., »n, and a probability distribution pf v | x. &), where & is the set
of model parameters, the problem is *inverse” if, given a new observed vy, prediction of the corresponding unknown
x is required. On the other hand, the more usual forward problem considers prediction of v for given x. Sensitivity
analysis in forward problems is about examining if the results are robust with respect to changes of the prior on &,
This has received a lot of attention in the statistical literature. However, in the case of inverse problems, a prior on
x is required, in addition to the prior on @, This complicates sensitivity analysis, at least operationally, and, to our
knowledge, there exists no work in the literature that addresses this. In this paper, we propose a new methodology
for sensitivity analysis in inverse problems, and discuss its application to a real, complex, palaeoclimate problem.

KEY worDs:  climate variable, importance weights: Poisson regression; Reweigh; saturated posterior; temporal
smoothness

1o INTRODUCTION

In serious Bayesian analysis it is desirable that the conclusions of the analysis are not heavily dependent
on an arbitrary choice of the prior distibution of model parameters. To check whether this is the case, it
15 necessary o obtain the postenor results under all possible reasonable pnors. Simee incomplex realistic
Bayesian analyses, posterior analysis typically proceeds via highly computer intensive Markov chain
Monte Cado (MCMC) (see, for e.g. Tierney (1994)) methods, obtaining posteriors under all possible
reasonable prior specifications is computationally burdensome. In the case of forward problems, where
pvendata (X, V=[x, whi=1...., n and probability density piy; | xg, 8) (8 being the set of model
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parameters), prediction of v fora given x is of interest, methods based on imporance sampling has been
proposed W ease computational burden. In this paper, we show that such methods are not applicable
W inverse problems, where, instead of prediction of y for given x, interest lies in prediction of x for
given v. To our knowledge, there exists no work that addresses sensitivity analysis in mverse problems;
however, there 15 some lmited discussion on this in Haslett er af. (2006).

We develop an approach which is a varant of Importance Resampling MCMC (IRMCMC), originally
mtroduced by Bhattacharya and Haslett (2007) wo solve the cross-validation problem ininverse setlings.
The methodology combines Imporance Resampling (IR) (see, e.g. Rubin (1988)) with MCMC 1o
radically reduce high dimensionality. We demonstrate that our approach is computationally cheap and 15
highly suitable for exploring multimodal posteriors. We further demonstrate that it is highly amenable to
parallel implementation. All these have imponant consequences, particularly in the case of palacoc limate
reconstruction problems. In brief, palacoclimatology involves reconstruction of past climates { X) from
fossils (¥) in lake sediment. The model in this situation posits that variations in organisms (fossil data)
are implied by varations in past climates. So, ¥ is modelled as dependent on X. However, since interest
lies in prediction of past climates, given fossil data, one must predict X from ¥. For recent works on
inverse modelling in the case of palacoclimate studies, see Vasko et al. (2000), Haslett e af. (2006),
Bhattacharya (2006). Apart from palacoclimate problems, of course, there are many more examples
of inverse problems in environmental science and physics. For some recent works relating 1o inverse
problems in science other than palacoclimatology, see, for example Haaro et af. (2004), Comford
et al. (2004). These clearly demonsirate the importance of inverse problems in science, and hence the
importance of sensitivity analysis in inverse problems.

Before proceeding with sensitivity analysis, we first review the differences between forward and
inverse problems, and indicate why sensitivity analysis in the latter case requires careful attention.

L1 Forward problems
Assuming conditional independence, the likelihood of ¥ given X, 8 is given by

L

LY, X,6) = [ ] plyjx; ) (h
i=1

The posterior distribution of # given (X, ¥) is given by

A X, ¥Y) e m(f)L(Y, X,8)
"

=m0 [ | pty; 1 %;.6) (2)
i=l1

Suppose that, prediction is needed for the unobserved v, where x has been observed. Denoting

unobserved y by ¥, we note that it is required 1o compute a posterior predictive distribution of 7.
This s given by

a¥|X. Yx)= f piF| x 8)a(d] X, ¥)de
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As anexample, let us consider a Poisson regression problem, where, fori =1, ..., n, ¥ ~ Poisson(fx;).

Using a flat prior on & it follows from Equation (3) that

_r:"" r ('!T' + E:,r'=|_ ¥ + 1)
mF|X, ¥, x) oc —

i

This is the well-known forward problem. Note that, only prior on model parameter 8 is needed in this
case.

1.2 Inverse problems

On the other hand, if itis of interest 1o predict x (which is unobserved, and denoted by ), given observed
v, then the problem is inverse. In this case, itis necessary 1o compute the posterior predictive distribution
of ¥, which is given by

| X, ¥y = frrfil v. m(d | X, ¥ y)de

L
x f (@ (e | Dty 15.0) [ ploy | x;. 6)d8 @)
=1
It is 1o be noted that, unlike in the case of forward problems, the posterior predictive (Eqg. 4) requires a

prior distribution for ¥. In Equation (4) this is indicated by 7(% | #). For the Poisson regression problem,
using flat priors on both ¥ and & it follows that
wy

X

-+ Ty ) )

XX, ¥ y) x

Although for demonstration purpose we used a flat prior in the above Poisson regression example,
a question that arses now is that how the prior for ¥, in addition to the priov for 8, should be chosen.
Thus, compared to forward problems, which requires prior specification for model parameters & only,
inverse problems have an additional complexity due to the requirement of prior distribution for ¥ in
addition to pror requirement for #. Since & is the model parameter, the prior for 8, denoted by 7(d),
should be chosen independently of . The prior for ¥ may depend upon &; we denote the joint prior for
(&, 8) by m(¥, ) = mi)mx (¥ | #). However, in most cases, it will be convenient to use a prior for ¥, given
by 7 %), independent of 8.

In the case of forward problems, possible mis-specification of the prior distibution on model
parameters & 15 usually mvestigated by sensitivity analysis. This has been an important element of
the philosophies of a number of Bayesians (see, e.g. Berger ( 1985) and the references therein). Loosely,
sensitivity analysis involves trying different reasonable priors and scrutinising the resultant posterior
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quantities. Re-thinking is necessary if, due to different prior assumptions, the posterior quantities are
changed in a way that has practical impact on interpretations or decisions.

The above exposition of inverse problems automatically leads to consider sensitivity analysis for
checking possible mis-specification of prior distributions on . For our purposes, it will be assumed that
an appropriate prior for & has been already specified using standard methods for sensitivity analysis using
the posteriorsof the form (8 | X, ¥) oc 7(#) Hj-=| plv|xy. 8 (as an aside, we remark that this posterior
has been referred Lo as “saturated posterior” by Bhattacharya and Haslett { 2007 ). For both forward and
inverse problems, implementation of sensitivity analysis involves computational challenges. Although
the literature contains methodologies to deal with this challenge in the case of forward problems, there
exists no literature for comesponding challenges in inverse problems. Hence, in this paper, we will
particularly devote ourselves to developing computational techniques for sensitivity analysis for the
prior on .

The rest of our paper is structured as follows. In Section 2, we review computational methods available
for sensitivity analysis in forward problems. Our proposed method for sensitivity in inverse problems
is introduced in Section 3. In Section 4 we demonstrate, with reference to the palacoclimate model
of Haslett er af. (2006}, that our proposed methodology requires modification when dimensionalities
of priors under consideration are different. The modified proposal, which takes into account different
dimenswonalities of priors, 15 discossed n Section 5. Ammed with the new proposal, in Section 6 we
implement sensitivity analysis in the case of the complex palacoclimate model of Haslett er al. (2006),
and demonstrate the superority of our proposal over regular MCMC method. Finally, we conclude in
Section 7.

2. COMPUTATIONAL TECHNIQUES FOR SENSITIVITY ANALYSIS IN FORWARD
PROBLEMS

For sensitivity analysis in forward problems, where mis-specification of the prior on the model
parameters & needs o be checked, m pnnciple 1t 15 possible o compute, via regular MCMC, the
postedor (8| X, ¥), for all reasonable priors on 8, denoted by m(8). Note however, that for many
reasonable priors m#), this entails recomputing poslenor quantities very many tmes. This could be
computationally extremely expensive, particularly for high-dimensional &, Impornance sampling is
generally recommended for sensitivity analysis (see, e.g. Athreya et al. (1996), Doss (1994)). For

a particular prior my (preferably, sufficiently thick-tailed) on the parameter 8, samples 9, N
are generated from the posterior mp(8 | X, ¥), usually by regular MCMC. Then for another pror of
mterest, mp (i=1,..., M, say, where M may be large), importance weights of posteriors 7068 | X, ¥)

are computed with respect o the *imital postenor” mp(9 | X, ¥). This 1s given by
wild) = a8 | X, Y/ mp(f | X, ¥) o m(8) /myid) (5)

These weights are then used o compule approximations o posterior quantities of ;8 | X, ¥), for
example expectation of an appropriate function iid) as

N
» I
Qe = - ;h (0 s (6) (6)
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In fact, if in Equation (6) weights w;(8) are known only up to a constant, rescaling E{,L.]fh (7)) by the
average of the weights is sufficient. The quality of the estimate thus obtained depends much on
the variability of the importance weights wy;, which, in twn depends upon how close the priors
are w the mital prior mg.

The above technique of sensitivity analysis is appropriate in the case of forward problems.
However, such technique is inapplicable in the case of inverse problems, as we demonstrate
below.

3. PROPOSED COMPUTATIONAL TECHNIQUES FOR SENSITIVITY
ANALYSIS IN INVERSE PROBLEMS

In addition o the set up described in the above Poisson regression problem, suppose that a further set
of observations y are available from the model but the corresponding ¥ are unavailable. The interest
is o leam about the set of unknown values, ; 8 is treated as a (possibly multidime nsional ) nuisance
parameter (see, ¢z Berger er al. (1999)). Recall thal, we assume that an appropriate prior, given by
i) is assigned 1o 8.

Our interest in this case is thus o check sensitivity of the priors on ¥ and not on 8. A

convenient way o proceed is o propose prors {mpi- |8), ml-|8ni=1,..., M} on I, where
mpl-| 8y is the prior of main interest and {m;-|8); i=1,..., M} are considered variations of

the former. The interest is then to check sensitivity with respect to the posterior m(%| X, ¥, v) =
[ mi%, 8| X, ¥, y)d. However, since the functional form of the posteriors involve integrating out the
nuisance pamameter &, this may not be available, even up o a constant. Hence importance weights,
given by

wi) =m(X| X, ¥, ¥)/mp(X | X, ¥, )

[ mi(%,6] X, ¥, y)dé
T [ m(x.6] X, ¥, y)dé

will not be avarlable here, unlike in the forward case, which was given by Equation (5).

In principle, it is possible w apply IRMCMC of Bhattacharya and Haslett (2007) 1o such inverse
problems. Only appropriate modification of their algorithm is necessary, which we discuss below. Put
simply, one can realise from my(, 8| X, ¥, v), typically by regular MCMC, a sample of (¥, ). Then
using importance weights of the form given by

ai% 8| X, ¥ y)
To(X. 6] X. ¥, _1;'}}
X |6)
mplX |6)

wy (X, 8) =

(7

one can realise a subsample of & realisations comresponding o the posterior ;08 | X, ¥, v). Given ecach
realised &, realisations of ¥ can be obtained from ;0% | v, ), typically by regular MCMC. The realised ¥
can then be said 1o be samples from the wrgel posterior ;0% | X, ¥, v). This method can be repeated for
eachi=1,..., M. Note that the essence of this proposal is exactly the IRMCMC proposal as described
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in B hattacharya and Haslett (2007) in the context of ecross-validation. In the context of sensitivity analysis
the proposal of Bhattacharya and Haslett (2007) can be modified as follows.

1. Choose an  initial  prior moi¥|&). Use the inmitial  posterior  mp(¥, 8 X, ¥ ) o
mEm(x | Fmv| X, 9) Hj‘:l pivy|xj. &) as the importance sampling density.
2. From this density, sample values (3 #8):6 =1, ..., N, for large N. Typically, regular MCMC
will be used for sampling.
3. Porieg{l,..., M} do
a. For each sample value (gt glthy, compute importance weights u}:]f:‘]. = wy (X, 819, where
the importance weight function is given by

mil x| )
wy (¥, 8) e - (8
i ) (31 8) )
b. Forke {l,..., K}
(i) Sample % from &Y, | #') where the probability of sampling #'9 is proportional to
{£]
o

(i1) For fixed 8 = Y draw T tumes from (¥ ¥s BNy, Thus, for the Poisson TEEression case,
with prior ; on ¥ (and assuming that the prior on ¥ is independent of 8),

x| v, B o0 E) expl—HE)EY )

If 77 is a flat prior, then the above distribution (in Eq. 9) is the Gamma distribution. Note
that in general it is not easy 1o sample from (% | v, &), even when ¥ is univariate, and we
recommend MCMC for generality. For example for the Poisson regression case, if the prior
mild)1s given by a Caochy distribution, runcated on (0, o), then

1 ;
mil¥ | v, &) o T8 expl —HE)E (10

To generate samples, from Equation (107, MCMC seems to be the simplest methodology.
Here we draw attention of the reader 1o an interesting parallel implementation issue. Note
that, for each different k, a separate MCMC, with separate starting value, is required to draw
samples from ;0% | v, #*%'). Hence, MCMC runs needed to explore (% | y. #*%') for each
k are independent of each other. Because of this independence, the MCMC computations
can be done in separate parallel processors. This is not only computationally efficient, but
the separate stating values of the MCMC algorithms for each & enable exploration of
the postenor w3 | X, ¥, ¥) much more rehably; in particular, this independence makes the
algorithm very suitable for adequate exploration of multimodal posteriors. For details, see
Bhattacharya and Haslett (2007).

}EKT]

€. Slome as {3’?] b the K » T draws of ¥ corresponding 1o prior 7; as representative of

the postenor m;(% | X, ¥, v

An important technical question is whether IR of [#7;¢ =1, .., N} should be used with or without
replacement. Indeed, most of the references to IR in the literature use sampling with replacement. See,
for example Gelfand er af. (1992), Newton and Rafiery ( 1994), O'Hagan and Forster (2004). However,
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Gelman et al. (1993), Stem and Cressie (2000) recommend IR without replacement. It has been argued
that sampling without replacement can provide protection against highly vardable importance weights.
Recently, Skare et al. (2003) formally prove atheorem that IR without replace ment is better than IR with
replacement, with respect to the total varation norm. Thus, in our proposal we recommend the former.
Bhattacharya (2004) provides further details in this context including a comparison of IR with/without
replacement.

Thus IRMCMC may be applied in a straightforward manner to carry oul sensilivily analysis in
mverse problems. There 15 no ssue now as o the choiee of mportance sampling disribotion: it s
the posterior ik, #) X, ¥, v) computed with reference to the prior mpi- | #). Nothing more needs 1o
be said.

There is however a variation, which deserves careful attention. For it is not necessarily the case that
the priors mp(¥ | 8) and 7;(% | #) are of the same dimension, and hence further modification of the above
algorithm is necessary. We demonstrate this next with the palacoclimate model of Haslett er af. (2006).

4. A PALAEOCLIMATE MODEL

Haslett et al. (2006) use ‘modem’ observed training data on pollen and two climate varables, GDD3
( growing degree days above 5°C and MTCO (mean temperature of the coldest month) and attempt 1o
reconstruct, using ‘fossil’ pollen data, as well as the observed modern raining data, the two unobserved
climates that prevailed over Glendalough in Ireland about 15,000 calendar years ago. Thus, the inverse
nature of the problem is already apparent.

The compositional pollen data arise from counts. Each vector of proportions represents each of a
set of distinguishable taxa in a sample extracted from the sediment. For the purposes of their study,
Haslett er al. (2006) use m = 14 different taxa; this yields a vector v of counts, with elements vy for
k=1, m. For this problem, 7815 such vectors of counts are available.

In Haslett er af. (2006), for each sample, modern or fossil, y;| p;. 1~ Multinomial(ng., p;)
independently; here p; denotes the underlying composition of the pollen assemblage in the sediment
sample and n; the wtal count. The elements pyg refer o the kth wxon at the ih site.

The Dirichlet mixre of multinomials provides a natural and convenient model for such variation,
being conjugate w the multinomial. After integrating out p;, the marginal diswribution of y; is obtained
as the compound multinomial distnbuton (see Dey and Mait (200205, given by

- n\T(8) — (rf Vi + a‘m})
alyi| yi. 8. mi) = - : (11
LY | ¥ "j} l_'f.l'!j +1"J::I H rfﬁ}"j;}_l’j.t! ::'

Under this parameterisation, E(pi | yic. 4, n) = pie. The § parameter has a simple inlerpretation as
controlling ‘extra-multinomial” dispersion. Note that in this formulation 3 yi = 1. Haslett er al.
(2006) model the py as functions in a real two-dimensional climate space as p(x;. ¢y Lo relate the
climate v; to the propensity of the pollen from the kth taxon w occur in lake sediments. The two
dimensional climate space used in this case is shown in Figure 1. The climate space consists of 778
points, each associated with a 13-dimensional mndom vanable. Thus, there are 778 = 13 = 10114
parameters associated with the climate space. We denote by & the entire set of parameters ;. and 4.
Note that yy depend directly upon observed raining data and hence should be interpreted as latent
variables, rather than parameters. The model for yp does not depend upon any unknown parameters.
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Figure 1. Support lattice for the response surfaces. The bold black points stand for the lattice points that form the support of
the response surfaces: the light black points denote the regular lattice, and the grey points denote the training data set

Hence there is no issue regarding prior distribution of yi. However, 4 must be regarded as an unknown
parameter, and in the absence of any information regarding 4, a non-informative prior has been assumed
for this parameter. So, there is no requirement for conducting sensitivity analysis of the prior on § either.
For explicit details on the modelling of response surfaces see Haslett er al. (2006).

4.0, Temporal smoothness

In Haslett er af. (2006) the modern pollen samples ¥ oand the modern climate values X are known
but the prehistoric climates, denoted here by ¥, are unknown, although the corresponding fossil pollen
samples, which we denote by v, are known. Observe that, each x; of X, as well as each component of
I, is bivariate, representing two climate vadables, GDD3S and MTCO. The bivariate components of
may be more readily denoted as %(¢ ), where the ¢ are in radiocarbon years before present (RCYBP).
In this palacochmate model, §f = 1 denotes the deepest (oldest) sample and § = 150 the most recent.
Climate change exhibits some degree of smoothness in time. Loosely speaking, climate changes
can be characterised as ‘small,” mostly, but occasionally very large. Haslett er all (2006) model this
smoothness stochastically by specifying an appropriate family of priors. Light can be shed upon this by
an examination of the ice core data shown in Figure 2. This has been obtained from the stable oxygen
isotope 4% 2 data from the ice of the GISP2 core drilled near the summit of the Greenland ice sheet (see,
e.z. Swiveretal (1995)). This provides a basis for pror information regarding the emporal properties of
the climate system of Glendalough in lreland although the data pertains to temperature over Greenland,
which is some distance away from Ireland. The varation in Figure 2 can be adequately modelled by aran-
dom walk. Butthe normal scores plotol the increments strongly suggests that the vanation 1s much longer
tiled than the normal distribution. In fact these increments are quite well described by the r-distribution
with 8 degrees of freedom. Based on exploratory analysis of the Greenland ice core data, Hasletl er al.
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Figure 2. Greenland ice cone data. Note that the ages are given in 1000 calendar years before present (ka BF)

( 2006) consider several different priors for the dependence between the unknown 3(¢ ). In partic ular, they
assume that each isof the form X0t ;) = B(rj-1) + Al el ) where A = A(rj)is amatrix; recall that eli-
muate has two dimensions in this case. The distributions of the innovations (¢ j1, £ j2) are what distinguish
different priors. They compute the posterior distributions of reconstructed climates comesponding Lo sev-
eral choices of priors on the innovations - Student’s ¢ distribution with 8 degrees of freedom, the Cauchy
distribution and the Gaussian distribution. They also consider a prior with complete temporal indepen-
dence, that is the pror here is simply uniform on the climate space with climates at different times being
independent of each other. In all cases, GDD3S and MTCO are assumed to be distributed independently
of cach other. 1t is further assumed that A; = |t; — ;-1 |A where A is diagonal with (Agpps. AmTeo)
being the diagonal elements. Thus we may look upon A as a two-dimensional mndom variable.
Formally, for priors with temporal smoothness,

(¥ | A) = meppsiE | Amareoic | A) (12)

Specifically, using the random walk model it can be wrillen as

Topps XA = I—[ EaliGops(t) | apps(ty, -1 ), oGppsit . - )
=2, 150

and similady for MTCO. By g | 1, o) wedenote the value of the pdf of a r distribution with  degrees
of freedom, evaluated at o~ (v — p1); we set g = xgpps(tj—1) and a” = ‘ﬁ‘éDD_’}U} — tj—1)*. Note that
the Cauchy is a ¢ distribution with one degree of freedom and Gaussian is a ¢ distribution with infinite
degrees of freedom.

Thus, Haslett et al. (2006) consider a prior with complete temporal independence, which we denote
by mp, in addition to the following three random walk priors:
(1) Gaussian random walk prior, denoted by .

(2) Student’s r random walk prior with d = 8 degrees of freedom, denoted by .
(3) Cavchy mandom walk prior, denoted by 1.
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For sensitivity analysis in this inverse problem, it is required 1o compute, with respect o the priors
{mii =0, 1,2, 3}, the posteriors {m;(¥| X, ¥, yv);i=10,1,2 3}

4.2, Technical difficulty associated with implementation of sensitivity analvsis

In Section 3, we have demonstrated how a modification of IRMCMC of Bhattacharya and Haslett
(2007) can be vsed as an efficient method for conducting sensitivity analysis in inverse problems.
In this particular problem, the proposal entails first simulation of (79, A© g0y =1, ., N, for
large N using regular MCMC, from the posterior mp(%, A 8| X, ¥, v). The latter corresponds to a
specific temporal smoothness prior, denoted by my. It is then necessary to reweigh towards posteriors
corresponding to the remaining temporal smoothness priors 7, using importance weights proportional

0 7 X0 mp X) to obtain {ﬁ‘"'“:.{' =i K} Regular MCMC may then be used for the simulation of
climate variables and A from m;(%, A |y, #%), and store the subsequent samples of ¥ corresponding
to the ith prior m; as {3"‘[. M i’f.KT] I

However, the idea of reweighing the samples of 8 using appropriate impornance weights is rendered
mvalid when, among the possible poors ;o on chimate, the prior g, with no wmporal smoothness, 15
also considered. Observe that mg does not consist of the two-dimensional mndom variable A and so
has dimension two less than the other priors 7y, 2, 71, which involve temporal dependence. In other
words, the joint posterior of the parameters, with respect o g is mol(X, 8| X, ¥, v); but with respect
o the priors {m;i = 1,2, 3}, the comesponding posteriors are (%, 8, A | X, ¥, v)i = 1,2, 3. Thus,
the dimensionality of the posterior mp(¥, 8| X, ¥, v) is two less than those of mi%, 8, A | X, ¥ v)ii =
1,2, 3. Since the dimensions are different, it is not possible 0 compute importance weights,
which, depending upon the choice of importance sampling density, must be of the form wy; o
mlE A X Y, vy fm(E, 8| X, . vor Lfwy fori= 1,23,

5. PROPOSAL FOR IMPLEMENTATION OF SENSITIVITY ANALYSIS WHEN PRIORS HAVE
DIFFERENT DIMENSIONALITIES

Ouwr proposal 1o handle sensitivity analysis in the case of priors with different dimensionalities is 1o
generate a sample of @ realisations from some distribution of & that adequately approximates all the
target posteriors of @ given by m(8 | X, ¥, y) = [ m(%, ¢ X, ¥, y)d%. We argue below that the saturated
postedor w8 | X, ¥)is a good candidate for approximating (8 | X, ¥, v). We can then resample from
the available sample of -realisations simply by random sampling, without computing any importance
weights. We thus consider a special case of IRMCMC deseribed in Section 3 where the weights are
equal. This solves the dimensionality problem since we no longer need o compute importance weights.,
Here are the details.

The posterior of the unknown fossil climates ¥ with temporal smoothness priors 70/ = 1,2, 3 can
be wrillen as

T(E| X, Yy) = f 7i(E AL 8] X, Y, y)dAde
- fmfi’, A E, yimf] X, ¥, ydAdd

22 fm-f.i‘, A8, vim(d| X, ¥YidAdd (13)
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In the case where no temporal smoothness is assumed (that is, with prior mg), the posterdor of ¥ is given
by

Xl X. Xy = f.n‘l’:]f.'i’, d1 X, ¥ yudd
- fm]f.'i’i 8, yimo(d | X, ¥, y)de
%fmﬁﬂﬂﬂ&&ﬂ% (14)

In both Equations (13) and (14), we assumed that the approximation 708 | X, ¥, v) = o8 | X, ¥)
holds. For large data size, as here (recall 7815 vectors of pollen counts are available), this is indeed
a valid assumption, as shown by the theoretical exposition in Chapter 5 of Bhattacharya (2004). We
first generate (typically by regular MCMC) and store a sufficiently large sample of 8 from the saturated
posterior (8 | X, ¥). Then, for fixed &, we simulate (¥, A) from (%, A |8, ¥) in the cases of priors
with temporal dependence prior m;, and store only realisations corresponding o . In the case of the
independence prior my, we generate (and store) ¥ from mp( %, A |8, v). This is centainly the basic idea of
IRMCMC as described in Section 3. The only difference is that, since importance weights are unavailable
in this case, we rely on asymplotics instead of exact computation using 1R, assuming implicitly that
the importance weights are all equal. In other words, simple random sampling of the realisations of 8
obtained from the saturated posterior may serve as an easily available alternative 1o the more precise
IR, which is unavailable.

In the next section, we compare results of sensitivity analysis obtained by IRMCMC and regular
MCMC in the case of the palacoclimate problem of Haslett et af. (2006).

6. RESULTS OF SENSITIVITY ANALYSIS IN THE CASE OF THE COMPLEX
PALAEOCLIMATE PROBLEM

We implementsensitivity analysis in thismverse palacochimate problem by two methods: regular MCMC
and our proposed IRMCMC method. With regular MCMC, after assessing the approximate convergence
tme as 1000 ilerations, we stored the next 10000 realisations of climate variables for each of the four
posteriors corresponding to the four prors my, my, T2, T1.

For IRMCMC implementation, we first obtained 10000 realisations by regular MCMC from the
saturated posterior (8 | X, ¥), afier discarding the first 1000 realisations as burn-in. Then, from the
sample of 10000 realisations of & we randomly selected 1000 values. In other words, we took N=10000
and & = 1000. For each of the randomly selected 1000 realisations of &, we obtained 10 MCMC
realisations of climate from x| v, #), where MCMC for a new & is started afresh with a new initial
value. So, for each of the four posteriors we obtained by IRMCMC K T=10000 realisations.

The real advantage of using IRMCMC is the computational speed. The total time aken o compute
the posteriors corresponding to all four priors using four regular MCMC runs wok about 22 h in a
parallel computing environment using 8 processors. But with owr proposed IRMUMC-based method,
a single regular MCMC run for the saturated posterior (8 | X, ¥) was needed. Random sampling from
the samples of # and simulating large samples from posteriors given fixed & were done at almost no
computational cost. In our case, computation of the saturated posterior took about 5 h 28 min and then
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Figure 3. Reconstructions of G5 using IBRMUMC and regular MCMO
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Figure 4, Reconstructions of MTCO using IRMCMC and regular MCMC
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using the realised values of 8 the remaining computation took just about 12 min. All computations have
been carried out in a parallel computing environment using 8 processors.

The results of sensitivity analysis using IRMCMC and regular MCMC are shown in Figures 3 and
4 respectively. The posteriors under the four different priors considered are broadly in agreement with
cach other; however, there seems 1o be an issue regarding multimodalities of the posteriors. It is clear
that the posteriors under all four priors exhibit multimodalities, but those corresponding Lo the emporal
independence prior my exhibits most variability, patticularly, in terms of the number of minor modes.
Actually, the multimodalities are to be expected in pollen-based palagoclimate reconstruction problems.
Indeed, Haslett et al (2006) remark that a source of the technical difficulty they encountered, is that of the
multimodal nature of the postedor. This multimodality anses naturally in palacoclimate studies since the
pollen species have different (andfor more than one) climate preferences; this sends conflicting signals
to the posterior forcing it to be multimodal. For detailed discussion on multimodality in palaleoclimate
studies, see Bhattacharya and Haslett (2007), Bhattacharya and Haslett (2004), Haslett er al. (2006).

The figures further show that posteriors obtained by IRMCMC exhibit more multimodalities than
those obtained by regular MCMC. Asalready argued in Section 3, due to independence of realisations of
#, IRMCMC explores the solution space more reliably than regular MCMC and hence resulis obtained
by IRMCMC are more reliable. Similar conclusion has been drawn by Bhattacharya and Haslett ( 2007),
who demonstrate in detail, in the case of a palacoclimate problem, that IRMCMC is much better suited
than regular MCMC for explonng multimodal distributions.

7. CONCLUSION

In this paper, we have discussed that sensitivity analysis in inverse problems requires more careful
attention compared 0 sensitivity analysis in forward problems. We have presented a very fast
computational methodology which is based on IRMCMC of Bhatacharya and Haslett (2007), and
have demonstrated, with application to the complex palaeoclimate model of Haslewt er al. (2006),
that it can deal very effectively with sensitivity analysis in inverse problems. Furthermore, we have
demonstrated the superiority of our proposed method over regular MCMC methods. In particular, we
have demonstrated that, compared o regular MCMC methods our proposed method 1s highly suitable
for exploration of mulimodal posteriors, and is also many times more faster.

However, in this paper, we did not concem ourselves with philosophical aspects of sensitivity analysis
in inverse problems. This may be an interesting topic for future work.

ACKNOWLEDGEMENTS

The work was done when the author was pursuing his PhD at Trinity College Dublin and was supported by
Enterprise lreland 14 grant SC/20001/171 for palaeoclimate reconstruction. The author is grateful to Professor J.
Haslett for advice on presentation of the paper. The figures are obtained using Matlab codes, which are modified
versions of basic initial codes written by Matt Whiley. The data sets used in this paper can be obtained from
httpfwww.rss.org ukd/preprints.

REFEREMCES

Athreya KB, Doss H, Sethumman 1. 1996 On the convergence of the Markow chain simulation method. The Amnals af Staristio
241 69100,



660 5. BHATTACHARYA

Berger 100, 1985, Staristiond Decision Theory and Bayesian Analysis. Springer-Verlag: New York.

Berger 10, Lisen B, Wolpert RL. 1999, Integrated likelihood methods for eliminating nuisance parameters {with discussion ).
Sratistical Science 1411 1-28.

Bhattacharya 5. 2004, fmportance Resampling MCMC: A Methodology for Cross-Validasion in fnverse Problems and
Ity Applications in Mode! Assessmenr. Doctoral thesis, Depatment of Statistics, Trinity College Dublin, Available at
httpedfaranacted iS5 tatistics! TH personal/thesis pdf

Bhattacharya 5. 2006, A Bayesian semiparametric model fororgani sm based environmental reconstruction. Envirvmmerrics 17(7):
Th3-TTa.

Bhattacharya 5, Haslett 1. 3004, Fast Cross Validation of a Palseoclimate Model using IRMCMC. Technical report, Trinity
College, Dublin, reland. Available at hitp: s tod. iedStatistics THpemsanal/fresearch. htm

Bhattacharya 5, Haslett 1. 2007, Impontance re-sumpling MCMC for cross-val idation in inverse problems. Bavesian Analyvsis. To
appedr.

CurEFh'urd [y, Cantd L, Evans DI, Opper M. 2004, Bayesian analysis of the scatterometer wind retrieval inverse problem: some
new approaches (with discussion). fosrmal af the Royel Staristical Sociery Serfes B 6631 609-626.

Drey I, Maiti T. 2002, Dirichlet multinomial distibution. In Encvelopedia of Environmerrics. El-Shaarowi A and Piegorsch W
feds). Fisher: Stuttgart. Wiley; 522-523.

[oss H. 1994, Discussion: Markoy chains for exploning posterior distibutions. Annals of Starissics 2204): 17281734,

Gl fand AE, Dey DE, Chang H. 1992, Model determination using predictive distr butions with implementation via sumpling-
hased methods (with discussion). In Savesian Saristics, vol. 4 Bemardo IM, Berger 10, Dawid AP, Smith AFM feds). Oxford
University Press: Oxford; 147-167.

Gelman A, Carlin JB, Stem HS, Rubin DR. 2004, Bavesion Data Anafvsis, (2nd edn). Chapman and Hall: Boca Raton,

Huario H, Laine M, Lehtinen M, Saksman E, Tamminen J. 2004, Markov chain Monte Carlo methods for high dimensional
imversion in remaote sensing (with discussion). Joumal af the Roval Staristical Sociery Series B 66(3): 591-607.

Huslett |, Whiley M, Bhattacharya 5, Salter-Townshend M, Wilson SF, Allen JRM, Huntley B, Mitchell FIG. 2006, Bayesian
palaencl imate reconstroction (with discussion). fosrmal af the Roval Staristical Sociery Serfes A 1693 ) 395438,

Mewton MA, Raftery AE. 1994, Approximate Bayesian inference with the weighted likelihood bootstrap (with discussion ).
dowrnal of the Roval Statistical 3aciety Series B 56(1); 348,

'Hagan A, Forster 1. 2004, Kendall 's Advanced Theory of Statistics, Bayesian Inference (Nol. 2B). Amnold: London.

Ruhin [, 1988, Using the SIR algarithm to simulate posterior distributions, In Bavesion Stamsics, vol. 3 Bernado IM, DeGroot
MH, Lindley DV, Smith AFM {eds). Oxford: New York: 395402,

Skare @, Balviken E, Holden L. 3003 Improved sampling-importance resampling and redoced bias importance sampling.
Scandivanian Jowrnal of Sratistics 30 TI9-T37.

Stem HS, Cressie N. 2000, Posteni or predictive model checks for disease mapping models. Sraristics in Medicine 19: 237723407,

Stuiver M, Grootes PM, Briziunas TE 1995, The GISP2 850 climate record of the past 16,500 years and the role of the sun,
ocean, and voleanoes. Quarernary Research 44 341354,

Tierney L. 1994, Markov Chains for exploring posterior distributions {with discussion). Arnaly af Sasistics 2240 17011702,

Wasko K, Toivonen HT, Korhola A, 2000, A Bayesian multinomial Guaussion response model for organism hased environmental
reconstuction. fowrral of Paleolinnology 24 243250,



	A methodology for sensitivity analysis647.jpg
	648.jpg
	649.jpg
	650.jpg
	651.jpg
	652.jpg
	653.jpg
	654.jpg
	655.jpg
	656.jpg
	657.jpg
	658.jpg
	659.jpg
	660.jpg

