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SUMMARY. A binary operation * over real numbers is said to be associative if (z *
y)*z = x x (y * z) and it is said to be reducible if x xy = z* 2z or y*x w = z * w if
and only if z = y. The operation * is said to have an identity element € if z * ¢ = =.
We characterize different classes of probability distributions under such binary operations
between random variables. Further more we characterize distributions with the almost lack
of memory property or with the strong Markov property or with the periodic failure rate
under such a binary operation extending the results for exponential distributions under

addition operation as binary operation.

1. Introduction

Summarization of statistical data without loosing information is one of
the fundamental objectives of statistical data analysis. More precisely the
problem is to determine whether the knowledge of a possibly smaller set of
functions of several random variables is sufficient to determine the behaviour
of individual random components. For instance, if X,Y, and Z are three in-
dependent random variables, we would like to know sufficient conditions if
any under which the joint distribution of U = ¢(X,Y, Z) and V = h(X,Y, Z)
determine either the individual distributions of X, Y and Z, or the family to
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which they belong when ¢(.) and h(.) are specified. The functions g(.) and
h(.) could be linear or nonlinear functions or they could be the maximum or
minimum functions etc. Problems of this nature were discussed in Prakasa
Rao (1992). We now study such characterization problems when the oper-
ation between the variables is a binary operation which is associative and
reducible with an identity.

A binary operation * over real numbers is said to be associative if (z *
y) * z = x x (y x z) for all real numbers z, y, z. The binary operation * is said
to be reducible if x xy = z x z if and only if y = z and if y * w = z *w if and
only if y = z. It is known that the general reducible continuous solution of
the functional equation is z +y = g~ (g(x) + g(y)) where g(.) is a continuous
and strictly monotone function provided x,y, z xy belong to a fixed (possibly
infinite) interval A (cf. Aczel (1966)). The function ¢ is determined up to
a multiplicative constant, that is, 7' (g1(z) + g1(%)) = g5 ' (92(z) + g2(y))
for all z,y in a fixed interval A implies go(z) = agi(x) for all = in that
interval for some o # 0. We assume here after that the binary operation
is reducible and associative with the function g(.) continuous and strictly
increasing. Further assume that there exists an identity element é € R such
that z x € = z,x € A. It is also known that every continuous, reducible and
associative operation defined on an interval A in the real line is commutative
(cf. Aczel (1966), p.267).

Examples of such binary operations are given in Muliere and Scarsini
(1987). For instance (i) if A = (—o00,00) and z *xy = = + y, then g(z) = =,
(ii) if A = (0,00) and z xy = zy,z > 0,y > 0 then g(z) = logz, (iii) if
A:(Ooo) and z xy = (2% + y* )I/O‘x>0y>0f0rsomea>0 then

glz) =2% (iv)if A= (-l,0) and zxy=z+y+zy+ Lz >—-1y > —1,
then ( ) log(1+z) (v)if A= (0,00) and z *xy = zy/(x + y),z > 0, then

g(xz) = 1/z and (vi)if A= (0,00) and z xy = (z +y)/(1 + zy),z > 0,y > 0,
then g(z) = arth x.

A characterization of the multivariate normal distribution through a
binary operation which is associative is given in Prakasa Rao (1974) and
in Prakasa Rao (1977) for Gaussian measures on locally compact abelian
groups. Muliere and Scarsini (1987) characterize a class of bivariate distri-
butions that generalize the Marshall-Olkin bivariate exponential distribution
through a functional equation involving two associative operations.

Let * be a binary operation over an interval A contained in R as de-
scribed above. Suppose X;,1 < i < 3 are independent real valued random
variables with probability distributions with support A. Define Z1 = X1 % X3
and Z; = X, X3 where Z; = g(Z;),i = 1,2. Suppose the joint distribution
of (Z1,75) is specified. We give a characterization of the probability distri-
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butions of X;,1 <4 < 3 up to changes in location with respect to the binary
operation * under certain conditions in Section 2. Explicit determination of
the distributions of individual components is discussed. The concept of the
almost lack of memory property under a binary operation * and its relation
to the periodic failure rate under the binary operation * is investigated in
Section 3. A representation for distributions with periodic failure rate un-
der the binary operation * is given. Distributions with the strong Markov
property under the binary operation * are characterized in Section 4. In
view of the relationship between the binary associative reducible operation
* and the corresponding function g(.) described earlier, most of the results
are consequences of the results in Prakasa Rao (1992, 1997) and a result due
to Lau and Rao (1982). Hence we omit the detailed proofs. For details, see
Muliere and Prakasa Rao (2002).

2.  Characterization via Binary Operations

Let * be a binary reducible associative operation over an interval A con-
tained in R and g¢(.) be the associated function. Suppose X;,1 < 7 < 3
are independent real valued random variables with probability distributions
with support A contained in R. Define 7y = X1 * X3 and Zy = X, x X3,

and ZZ = g(ZZ),’L = 1,2.

THEOREM 2.1. If the characteristic function of (Z1, Zs) does not vanish,
then the joint distribution of (Z1, Zs) determines the distributions of X1, Xo
and X3 up to changes of locations under the binary operation *.

This theorem is a consequence of Theorem 2.1.1 in Prakasa Rao (1992).
For details, see Muliere and Prakasa Rao (2002).

REMARKS: (i)The above result was proved by Kotlarski (1967) for real
valued random variables when the binary operation was the addition. It
was later generalised to other types of operations such as maximum and to
random elements taking values in abstract spaces by Kotlarski , Prakasa Rao
and others (cf. Prakasa Rao (1992)).

(ii) The above theorem can be extended to n independent random vari-
ables X;,1 < i < n in the following form: Define Z; = ¢g(X; x X,),1 <
i < n — 1 where g(.) is the function corresponding to the binary operation
*. Suppose the characteristic function of (Z1,...,7Z,_1) does not vanish.
Then the joint distribution of (Z, ..., Z,_1) determines the distributions of
X;,1 <i < n up to changes of locations under the binary operation * .
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2.1. Ezplicit determination of the distributions of individual components.
Denote the characteristic function of the bivariate random vector (7, Z2)
by ¢(t1,t2) and let ¢x(t) denote the characteristic function of a random
variable X. Then

¢(t1,t2) = ¢g(X1)(t1)¢g(X2)(t2)¢g(X3)(t1 + t2) (21)

by the independence of the random variables X;,1 < ¢ < 3. Suppose the
characteristic functions of g(X;),1 < i < 3 are nonvanishing everywhere.
Then ¢(t1,t2) is nonvanishing for —oco < 1,12 < 00. Let ;(t) = log ¢(x;()
be the continuous branch of the logarithm of ¢,(x,)(.) with¥;(0) = 0. Assume
that E(X3) = m is finite. Then it can be shown, under some technical
conditions involving interchange of limit and integration (cf. Prakasa Rao

(1992)), that lim, o 28 = im and

v3(t) = imt + /Ot %[log[¢( $(u, 0) Jlu=0dv. (2.2)

u, 0)¢(0, v)
Using this formula for y3(%), one can compute ¢y(x,)(t) and hence ¢4(x,)(t)
and ¢y(x,)(t) by using the relations

_(1,0) _ 0.1
¢g(X1)(t) = ma¢g(Xz)(t) - m

Equations (2.2) and (2.3) give the explicit formulae for computing the char-
acteristic functions of g(X;),1 < ¢ < 3 given the characteristic function of
(g(X1 * X3),9(X2 * X3)). Since the function ¢ is continuous and strictly
increasing , one can obtain the distributions of X;,1 <4 < 3.

,—00 < t < 00. (2.3)

2.2. Almost lack of memory property. Let X be a nonnegative random
variable with distribution function F'(x). Then X is said to have the lack of
memory property if

P(X>s+tX >s)=P(X >t) (2.4)

for all s,¢ > 0. If P(X > s) > 0 for all s > 0, then it follows that F(s+t) =
F(s)F(t) for all s > 0 and ¢t > 0 where F(z) = 1 — F(z). It is well known
that the only continuous solution of this equation is F(s) = exp{—As},s >0
for some A > 0. This result was generalized by Muliere and Scarsini (1987) in
the following manner. Let * be a binary operation as discussed above with
an identity € and the associated function g(.).. Suppose it is continuous,
reducible and associative. Further suppose that X is a random variable
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with the distribution function F' having support (€, ¢~ (c0)) and satisfying
the relation
P(X >s*t|X >s)=P(X > 1) (2.5)

for all s > ¢ and ¢ > é. They proved that the only continuous solution of the
above equation is F'(s) = exp{ag(s)} for some a < 0 and for é = ¢g~1(0) <
s < g 1(00).

REMARKS. Suppose the equation (2.5) holds. By choosing the binary
operation appropriately, we can get different classes of distributions (cf.
Muliere and Scarsini (1987)). For instance (i) if z * y = x + y, then we
obtain the characterization of exponential distribution through the lack of
memory property; (ii) if  x y = zy, then we obtain a characterization of
the Pareto distribution; and (iii) if z * y = (2% + y®)'/®, then we obtain a
characterization of the Weibull distribution.

A nonnegative random variable X is said to have the almost lack of
memory property if the equation (2.4) holds for a sequence s, > 0,n > 1
and for all ¢ > 0. It is known that the equation (2.4) holds for a sequence
Sp, > 0,m > 1 and for all £ > 0 if and only if there exists d > 0 such
that s, = nd except in case when P(X > d) = 0 or P(X > d) = 1. (cf.
Ramachandran and Lau (1991); Prakasa Rao (1997)).

Suppose that * is a binary associative reducible operation with an identity
& € R as discussed above and further suppose that the equation (2.5) holds
for a random variable X, with a continuous distribution function F' with
support (€, g 1 (00)), for a sequence g~ (00) > s, > é,n > 1forallg ! (c0) >
t > é. Here ¢g(.) is the continuous strictly increasing function corresponding
to the binary associative operation *. Equation (2.5) implies that

F(sp+t) = F(s,)F(t),n>1 (2.6)
for all t > 0.

A random variable X satisfying the equation (2.6) is said to have the
almost lack of memory property under the binary associative reducible oper-
ation *.

We now characterize the class of all such distributions.

THEOREM 2.2. A nonnegative random variable X with a continuous dis-
tribution function has the almost lack of memory property under a binary
operation * as described above if and only if its distribution function F is



804 PIETRO MULIERE AND B.L.S. PRAKASA RAO

of the form F(s) = p(g(s))e90) & = g=1(0) < 5 < g~ (00) where a > 0,
g(.) is the continuous strictly increasing function corresponding to the binary
operation * and p(.) is a periodic function with period d for some constant
d> 0.

2.3. Distributions with periodic failure rate under the binary operation *.
Consider a binary operation * with an identity é as described earlier. Let
g(.) be the corresponding continuous strictly increasing function such that
zxy = g Yg(z) + g(y)). Let X be a random variable with a continuous
distribution function of the form F(s) = p(g(s))e=*9®), & = ¢=1(0) < s <
g '(c0) where a > 0 and p o g(.) is periodic under the operation * with
period p > é. It is obvious that the function p(g(s)) is nonnegative for é =
g 1(0) < s < g !'(o0) and p(g(&)) = p(0) = 1. Suppose the function p(g(.))
is differentiable with respect to s. Then the probability density function of
X is given by

) = L e799) g/ (s)(ap(g(s)—p'(9(s)), E=g7'(0) < s < g~ (o0),
/) {0 ? e o othgerwise. ! (2.7)

It can be checked that the distribution function F' has periodic failure
rate with period p under the binary operation * (cf. Muliere and Prakasa
Rao (2002)). The following result holds.

THEOREM 2.3. A random variable X with a continuous probability den-
sity function has a periodic failure rate under a binary associative reducible
operation * if and only if it has the almost lack of memory property under
that operation.

For proofs of Theorems 2.2 and 2.3, see Muliere and Prakasa Rao (2002).

2.4. Representation for distributions with periodic failure rate under
binary associative operation *.  Suppose X is a random variable with
periodic failure rate A(.) with period p under a binary associative oper-
* with the associated function g(.). Suppose the support of X is
(6,9 '(00)) where g(.) is the continuous strictly increasing function corre-
sponding to *. Let F' and f denote the probability distribution function and
the probability density function of the random variable X respectively. It
is easy to see that the random variable g(X) has the distribution function
H(y)=1—-H(y) = (Fog ') (y),0 <y < oo and it has the periodic failure
rate (Ao g~')(y) with period d = g(p). For convenience, let us denote the
derivative of H(y) by h(y). Define a new random variable ¥ with probability

ation
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distribution function Hy (y) and the probability density function

)= (e &

Note that l~zy() is the probability density function of the conditional dis-
tribution of the random variable g(X) restricted to the interval [0, d]. Let

v =1—H(d) = H(d). It follows from the arguments given in Prakasa Rao
(1997) that the density function hA(y) of g(X) can be represented in the form

h(y) = hy (y - [%] d) L=y, 0<y < oo (2.9)

where [z] denotes the greatest integer less than or equal to = and v = H(d).
Further more the distrbution function of g(X) is given by

H(y) =171 4 (1 = )@ By <y - {%] d) L0<y<oo.  (210)

Equations (2.9) and (2.10) give representations for the density and the distri-
bution functions of the random variable g(X ) with a periodic failure rate with
period d and v = H(d). Let Y be a random variable as defined above and Z
be a random variable independent of Y with P(Z = k) = (1—v)y*,k > 0. It
is easy to check that the the random variable g(X) can be represented in the
form Y + dZ. For details, see Prakasa Rao (1997) and Muliere and Prakasa
Rao (2002). In particular the random variable X can be represented in the
form g~ 1(Y + g(p)Z) in distribution.

3. Distributions with Strong Markov Property under a Binary
Associative Operation *

Suppose X is a random variable with an exponential distribution and Y
be a nonnegative random variable independent of X. Further suppose that
P(X >Y) > 0. Then it is known that

PX>Y+z|X>Y)=PX >z),z>0. (3.1)

This property is known as the strong lack of memory property or the strong
Markov property of the exponential distribution (cf. Ramachandran and Lau
(1991); Prakasa Rao (1997)).

Suppose X is a random variable with the distribution function F' and the
support of X is (€,¢g ' (00)) where € is the identity corresponding to a binary
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operation * which is continuous, reducible and associative with an identity
and ¢g(.) is the continuous strictly increasing function corresponding to the
binary operation *. Let Y be a nonegative random variable independent of
X. Further suppose that P(X >Y) > 0 and P(X > s) > 0 for all s > ¢ and

PX>Y#*s|X>Y)=P(X>s),6=¢"'(0)<s<g (o). (3.2

Applying Theorem 2.5.1 in Ramachandran and Lau (1991), we obtain that

(i) F(s) = e ) for all s € (&,9 ' (00)) with parameter o > 0 if the
support of the random variable ¢(Y") is not contained in A(d) for any d > 0;
and

(ii)F(s) = p(g(s))e *9) for all s € (&g (c0)) where p(.) is right con-
tinuous and has period d if the support of g(Y') is contained in A(d) for some
d > 0 which we take it to be the largest such d.

For details, see Muliere and Prakasa Rao (2002).
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