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SUMMARY. Consider the stochastic partial differential equations of the type

duε(t, x) = (4uε(t, x) + uε(t, x))dt + ε θ(t) dWQ(t, x), 0 ≤ t ≤ T

and

duε(t, x) = 4uε(t, x)dt + ε θ(t) (I −4)−1/2 dW (t, x), 0 ≤ t ≤ T

where4 = ∂2

∂x2 , θ ∈ Θ and Θ is a class of positive valued functions such that θ2(t) ∈ L2(R).

We obtain an estimator for the function θ(t) based on the Fourier coefficients uiε(t), 1 ≤
i ≤ N of the random field uε(t, x) observed at discrete times and study its asymptotic

properties.

1. Introduction

Stochastic partial differential equations (SPDE) are used for stochastic
modelling , for instance, in the study of neuronal behviour in neurophysiology
and in building stochastic models of turbulence (cf. Kallianpur and Xiong,
1995). The theory of SPDE is investigated in Ito (1984), Rozovskii (1990)
and De prato and Zabczyk (1992) among others.

Huebner et al. (1993) started the investigation of maximum likelihood
estimation of parameters for a class of SPDE and extended their results to
parabolic SPDE in Huebner and Rozovskii (1995). Bernstein -von Mises the-
orems were developed for such SPDE in Prakasa Rao (1998, 2000b) following
the techniques in Prakasa Rao (1981). Asymptotic properties of Bayes esti-
mators of parameters for SPDE were discussed in Prakasa Rao (1998, 2000b).
Statistical inference for diffusion type processes and semimartingales in gen-
eral is studied in Prakasa Rao (1999a,b).
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The problem of nonparametric estimation of a linear mutiplier for some
classes of SPDE’s is discussed in Prakasa Rao (2000a, 2001a) using the meth-
ods of nonparametric inference following the approach of Kutoyants (1994).
In all the papers cited earlier, it was assumed that a continuous observation
of the random field uε(t, x) satisfying the SPDE over the region [0, 1]×[0, T ] is
available. It is obvious that this assumption is not feasible and the problem
of interest is to develop methods of parametric and nonparametric infer-
ence based on a set of observations of the random field observed at discrete
times t and at discrete positions x. Methods of estimation based on such
data seem to lead to equations which are computationally difficult to solve.
We now consider a simplified problem. Suppose we are able to observe the
Fourier coefficients uiε(t) of uε(t, x) at discrete times. Parametric estima-
tion for some classes of SPDE’s based on such discrete data is investigated
in Prakasa Rao (2000c, 2001b) when the parameter is involved either in the
“trend” term of the SPDE or in the “trend” as well as in the “forcing” terms
of the SPDE. We now discuss nonparametric estimation of a function θ(t)
involved in the “forcing” term for a class of SPDE’s. The problem of esti-
mation of the diffusion coefficient in a SDE from discrete observations has
attracted lot of attention recently in view of the applications in mathemati-
cal finance especially for modelling interest rates. Our work here deals with
a similar probem for a SPDE. A review of recent results on parametric and
nonparametric inference for SPDE’s is given in Prakasa Rao (2001c).

2. Estimation from Discrete Observations: Example I

2.1 Preliminaries. Let (Ω,F , P ) be a probability space and consider the
process uε(t, x), 0 ≤ x ≤ 1, 0 ≤ t ≤ T governed by the stochastic partial
differential equation

duε(t, x) = (4uε(t, x) + uε(t, x))dt+ ε θ(t) dWQ(t, x) (2.1)

where 4 = ∂2

∂x2 . Suppose that θ(.) is a positive valued function with θ(t) ∈
Cm([0,∞)) for some m ≥ 1. Further suppose that θ2(.) ∈ L2(R) and that
the function θ(.) has a compact support contained in the interval [−ε, T + ε]
for some ε > 0.

Further suppose the initial and the boundary conditions are given by{
uε(0, x) = f(x), f ∈ L2[0, 1]
uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T

(2.2)
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and Q is the nuclear covariance operator for the Wiener process WQ(t, x)
taking values in L2[0, 1] so that

WQ(t, x) = Q1/2W (t, x)

and W (t, x) is a cylindrical Brownian motion in L2[0, 1]. Then, it is known
that (cf. Rozovskii (1990), Kallianpur and Xiong (1995))

WQ(t, x) =
∞∑
i=1

q
1/2
i ei(x)Wi(t) a.s. (2.3)

where {Wi(t), 0 ≤ t ≤ T}, i ≥ 1 are independent one - dimensional stan-
dard Wiener processes and {ei} is a complete orthonormal system in L2[0, 1]
consisting of eigen vectors of Q and {qi} eigen values of Q.

We assume that the operator Q is a special covariance operator Q with
ek = sin(kπx), k ≥ 1 and λk = (πk)2, k ≥ 1. Then {ek} is a complete
orthonormal system with the eigen values qi = (1 + λi)

−1, i ≥ 1 for the
operator Q and Q = (I −4)−1. Note that

dWQ = Q1/2dW. (2.4)

We define a solution uε(t, x) of (2.1) as a formal sum

uε(t, x) =
∞∑
i=1

uiε(t)ei(x) (2.5)

(cf. Rozovskii (1990)). It can be checked that the Fourier coefficient uiε(t)
satisfies the stochastic differential equation

duiε(t) = (1− λi)uiε(t)dt+
ε√

λi + 1
θ(t)dWi(t), 0 ≤ t ≤ T (2.6)

with the initial condition

uiε(0) = vi, vi =
∫ 1

0
f(x)ei(x)dx. (2.7)

2.2 Estimation. We now consider the problem of estimation of the func-
tion θ(t), 0 ≤ t ≤ T based on the observation of the Fourier coefficients
uiε(tj), tj = j2−n, j = 0, 1, . . . , [2nT ], 1 ≤ i ≤ N, or equivalently based on
the observations u(N)

ε (tj , x), tj = j2−n, j = 0, 1, . . . , [2nT ] of the projection
of the process uε(t, x) onto the subspace spanned by {e1, . . . , eN} in L2[0, 1].
Here [x] denotes the largest integer less than or equal to x.
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We will at first construct an estimator of θ(.) based on the observations
{uiε(tj), tj = j2−n, j = 0, 1, . . . , [2nT ]}. Our technique follows the methods
in Genon-Catalot et al. (1992).

Let {Vj ,−∞ < j <∞} be an increasing sequence of closed subspaces of
L2(R). Suppose the family {Vj ,−∞ < j < ∞} is an r-regular multiresolu-
tion analysis of L2(R) such that the associated scale function φ and wavelet
function ψ are compactly supported and belong to Cr(R). For a short in-
troduction to the properties of wavelets and multiresolution analysis, see
Prakasa Rao (1999a).

Let Wj be the subspace defined by

Vj+1 = Vj ⊕Wj (2.8)

and define

φj,k(x) = 2j/2φ(2jx− k),−∞ < j, k <∞ (2.9)

ψj,k(x) = 2j/2ψ(2jx− k),−∞ < j, k <∞. (2.10)

Then (i) for all −∞ < j < ∞, the collection of functions {φj,k,−∞ < k <
∞} is an orthonormal basis of Vj ; (ii) for all −∞ < j < ∞, the collection
of functions {ψj,k,−∞ < k < ∞} is an orthonormal basis of Wj ; and (iii)
the collection of functions {ψj,k,−∞ < j, k <∞} is an orthonormal basis of
L2(R).

In view of the earlier assumptions made on the function θ(t), it follows
that the function θ(t) belongs to the Sobolev space Hm(R). Let j(n) be an
increasing sequence of positive integers tending to infinity as n → ∞. The
space L2(R) has the following decomposition:

L2(R) = Vj(n) ⊕ (⊕j≥j(n)Wj). (2.11)

The function θ2(t) can be represented in the form

θ2(t) =
∞∑

k=−∞
µj(n),kφj(n),k(t) +

∑
j≥j(n),−∞<k<∞

νj,kψj,k(t) (2.12)

where
µj,k =

∫
R
θ2(t)φj,k(t)dt (2.13)

and
νj,k =

∫
R
θ2(t)ψj,k(t)dt. (2.14)
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We will now define estimators of the coefficients µj,k based on the observa-
tions {uiε(tr), tr = r2−n, j = 0, 1, . . . , [2nT ]}. Define

µ̂
(i)
j,k =

λi + 1
ε2

M−1∑
r=0

φj,k(tr)(uiε(tr+1)− uiε(tr))2 (2.15)

where M = [2nT ].
The subspace Vj is not finite dimensional. However, the functions θ2 and

the functions φ are compactly supported. Hence, for each resolution j, the
set of all k such that µj,k 6= 0 and the set of all k such that µ̂j,k 6= 0 is a
finite set Lj depending only on the constant T and the support of φ and the
cardinality of the set is O(2j).

Define the estimator of θ2(t) by

θ̂2
i (t) =

∑
k∈Lj(n)

µ̂
(i)
j(n),kφj(n),k(t) (2.16)

=
∑

−∞<k<∞
µ̂

(i)
j(n),kφj(n),k(t). (2.17)

Note that for any function f such that∫ T

0
f(t)θ2(t)dt <∞,

it can be shown that

M−1∑
r=0

f(tr)(uiε(tr+1)− uiε(tr))2
p→ ε2

λi + 1

∫ T

0
f(t)θ2(t)dt as n→∞.

Hence
µ̂

(i)
j,k

p→ µj,k as n→∞. (2.18)

Let h(.) be a continuous function on [0, T ] with compact support contained
in (0, T ) and belonging to the Sobolev space Hm′

(R) with m′ > 1
2 . Let hj

be the projection of h on the space Vj . Further more suppose that

r ∧m+ r ∧m′ > 2, j(n) = [αn] (2.19)

with
(2(r ∧m+ r ∧m′))−1 ≤ α <

1
4
. (2.20)

Note that r is the regularity of the multiresolution analysis,m is the exponent
of the Soblev space to which θ2 belongs to and m′ is the exponent of the
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Soblev space to which h belongs to. Applying the Proposition 3.1 of Genon-
Catalot et al. (1992), we obtain that the following representation holds:

Jin ≡ 2n/2
∫ T

0
h(t)(θ̂2

i (t)− θ2(t))dt

= 2n/2
M−1∑
r=0

hj(n)(tr)[(
∫ tr+1

tr
θ(s) dWi(s))2 −

∫ tr+1

tr
θ2(s) ds] +Rin

where Rin = op(1) as n→∞. Further more

Jin
L→ N (0, 2

∫ T

0
h2(t)θ4(t) dt) as n→∞ (2.21)

by Theorem 3.1 of Genon-Catalot et al. (1992). Note the estimators {θ̂i(t),
i ≥ 1} are independent estimators of θ(t) for any fixed t since the processes
{Wi, i ≥ 1} are independent Wiener processes.

Let γ(t) be a nonnegative continuous function with support contained in
the interval [0, T ]. Define

Qin = E{
∫ T

0
γ(t)(θ̂2

i (t)− θ2(t))2dt}. (2.22)

Note that Qin is the integrated mean square error of the estimator θ̂2
i (t)

of the function θ2(t) corresponding to the weight function γ(t). It can be
written in the form

Qin = B2
in + Vin (2.23)

where

B2
in =

∫ T

0
γ(t)(Eθ̂2

i (t)− θ2(t))2dt (2.24)

is the integrated square of the bias term with the weight function γ(t) and

Vin = E{
∫ T

0
γ(t)(θ̂2

i (t)− Eθ̂2
i (t))

2dt} (2.25)

is the integrated square of the variance term with the weight function γ(t).
Let

Din = E{
∫ T

0
(θ̂2

i (t)− Eθ̂2
i (t))

2dt} (2.26)

and suppose that sup{γ(t) : t ∈ [0, T ]} ≤ K. Further suppose that j(n)−n
2 →

−∞. Then it follows, by Theorem 4.1 of Genon-Catalot et al. (1992), that
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there exists a constant Ci depending on ε, λi and the functions φ, γ and θ2

such that
B2

in ≤ Ci(24j(n)−2n + 2−2j(n)(m∧r) + 2−n) (2.27)

and

Din = 2j(n)−n 2
∫ T

0
θ4(t)dt+ o(2j(n)−n). (2.28)

Further more
Vin ≤ KDin. (2.29)

Let

θ̃2
N (t) =

1
N

N∑
i=1

θ̂2
i (t). (2.30)

It is obvious that, for any function h satisfying the conditions stated above,
and for any fixed integer N ≥ 1,

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt

= N−1
N∑

i=1

Jin

= N−1
N∑

i=1

{2n/2
M−1∑
r=0

hj(n)(tr)[(
∫ tr+1

tr
θ(s) dWi(s))2

−
∫ tr+1

tr
θ2(s) ds]}+N−1

N∑
i=1

Rin

= 2n/2
M−1∑
r=0

hj(n)(tr){N−1
N∑

i=1

[(
∫ tr+1

tr
θ(s) dWi(s))2

−
∫ tr+1

tr
θ2(s) ds]}+N−1

N∑
i=1

Rin.

From the independence of the estimators θ̂i(t), 1 ≤ i ≤ N, it follows from
the Theorem 3.1 of Genon-Catalot et al. (1992) that

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt L→ N (0, 2N−1
∫ T

0
h2(t)θ4(t) dt) as n→∞.

(2.31)
We have the following theorem.
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Theorem 2.1. Under the conditions stated above , the estimator θ̃2
N (t)

of θ2(t) satisfies the following property for any function h(t) as defined earlier:

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt L→ N (0, 2N−1
∫ T

0
h2(t)θ4(t) dt) as n→∞.

(2.32)
Let γ(t) be a nonnegative continuous function with support contained in the
interval [0, T ]. Define

Qn = E{
∫ T

0
γ(t)(θ̃2

N (t)− θ2(t))2dt}. (2.33)

Note that Qn is the integrated mean square error of the estimator θ̃2
N (t)

of the function θ2(t) corresponding to the weight function γ(t). It can be
written in the form

Qn = B2
n + Vn (2.34)

where

B2
n =

∫ T

0
γ(t)(Eθ̃2

N (t)− θ2(t))2dt (2.35)

is the integrated square of the bias term with the weight function γ(t) and

Vn = E{
∫ T

0
γ(t)(θ̃2

N (t)− Eθ̃2
N (t))2dt} (2.36)

is the integrated square of the variance term with the weight function γ(t).
Let

Dn = E{
∫ T

0
(θ̃2

N (t)− Eθ̃2
N (t))2dt}. (2.37)

We have the following theorem from the estimates on {Bin, 1 ≤ i ≤ N} and
on {Din, 1 ≤ i ≤ N} given above.

Theorem 2.2. Suppose that j(n) − n
2 → −∞. Then there exists a

constant CN depending on N,φ, γ, θ2 such that

B2
n ≤ CN (24j(n)−2n + 2−2j(n)(m∧r) + 2−n) (2.38)

and

Dn = N−12j(n)−n 2
∫ T

0
θ4(t)dt+ o(N−1 2j(n)−n). (2.39)

Further more
Vn ≤ KDn (2.40)

where K = sup{γ(t) : 0 ≤ t ≤ T}.
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3. Estimation from Discrete Observations: Example II

3.1 Preliminaries. Let (Ω,F , P ) be a probability space and consider the
process uε(t, x), 0 ≤ x ≤ 1, 0 ≤ t ≤ T governed by the stochastic partial
differential equation

duε(t, x) = 4uε(t, x)dt+ ε θ(t) (I −4)−1/2 dW (t, x) (3.1)

where 4 = ∂2

∂x2 . Suppose that θ(.) is a positive valued function with θ(t) ∈
Cm([0,∞]) for some m ≥ 1. Further suppose that θ2(.) ∈ L2(R) and that
the function θ(.) has a compact support contained in the interval [−ε, T + ε]
for some ε > 0.

Further suppose the initial and the boundary conditions are given by{
uε(0, x) = f(x), f ∈ L2[0, 1]
uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T.

(3.2)

We define a solution uε(t, x) of (3.1) as a formal sum

uε(t, x) =
∞∑
i=1

uiε(t)ei(x) (3.3)

(cf. Rozovskii, 1990). Following the arguments given in the Section 2, it can
be checked that the Fourier coefficient uiε(t) satisfies the stochastic differen-
tial equation

duiε(t) = −λiuiε(t)dt+
ε√

λi + 1
θ(t)dWi(t), 0 ≤ t ≤ T (3.4)

with the initial condition

uiε(0) = vi, vi =
∫ 1

0
f(x)ei(x)dx. (3.5)

3.2 Estimation. We now consider the problem of estimation of the func-
tion θ(t), 0 ≤ t ≤ T based on the observation of the Fourier coefficients
uiε(tj), tj = j2−n, j = 0, 1, . . . , [2nT ], 1 ≤ i ≤ N, or equivalently based on
discrete observations u(N)

ε (tj , x), tj = j2−n, j = 0, 1, . . . , [2nT ] of the projec-
tion of the process uε(t, x) onto the subspace spanned by {e1, . . . , eN} in
L2[0, 1].
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We will at first construct an estimator of θ(.) based on the observations
{uiε(tj), tj = j2−n, j = 0, 1, . . . , [2nT ]}. Our technique again follows the
methods in Genon-Catalot et al. (1992) using the method of wavelets. We
adopt the same notation as in Section 2.

In view of the earlier assumptions made on the function θ(t), it follows
that the function θ(t) belongs to the Sobolev space Hm(R). Let j(n) be an
increasing sequence of positive integers tending to infinity as n → ∞. The
space L2(R) has the following decomposition:

L2(R) = Vj(n) ⊕ (⊕j≥j(n)Wj). (3.6)

The function θ2(t) can be represented in the form

θ2(t) =
∞∑

k=−∞
µj(n),kφj(n),k(t) +

∑
j≥j(n),−∞<k<∞

νj,kψj,k(t) (3.7)

where
µj,k =

∫
R
θ2(t)φj,k(t)dt (3.8)

and
νj,k =

∫
R
θ2(t)ψj,k(t)dt. (3.9)

We will now define estimators of the coefficients µj,k based on the observa-
tions {uiε(tr), tr = r2−n, j = 0, 1, . . . , [2nT ]}. Define

µ̂
(i)
j,k =

λi + 1
ε2

M−1∑
r=0

φj,k(tr)(uiε(tr+1)− uiε(tr))2 (3.10)

where M = [2nT ].
The subspace Vj is not finite dimensional. However, the functions θ2 and

the functions φ are compactly supported. Hence, for each resolution j, the
set of all k such that µj,k 6= 0 and the set of all k such that µ̂j,k 6= 0 is a
finite set Lj depending only on the constant T and the support of φ and the
cardinality of the set is O(2j).

Define the estimator of θ2(t) by

θ̂2
i (t) =

∑
k∈Lj(n)

µ̂
(i)
j(n),kφj(n),k(t) (3.11)

=
∑

−∞<k<∞
µ̂

(i)
j(n),kφj(n),k(t). (3.12)
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Note that for any function f such that∫ T

0
f(t)θ2(t)dt <∞,

it can be shown that

M−1∑
r=0

f(tr)(uiε(tr+1)− uiε(tr))2
p→ ε2

λi + 1

∫ T

0
f(t)θ2(t)dt as n→∞.

Hence
µ̂

(i)
j,k

p→ µj,k as n→∞. (3.13)

Let h(.) be a continuous function on [0, T ] with compact support contained
in (0, T ) and belonging to the Sobolev space Hm′

(R) with m′ > 1
2 . Let hj

be the projection of h on the space Vj . Further more suppose that

r ∧m+ r ∧m′ > 2, j(n) = [αn] (3.14)

with
(2(r ∧m+ r ∧m′))−1 ≤ α <

1
4
. (3.15)

Note that r is the regularity of the multiresolution analysis,m is the exponent
of the Soblev space to which θ2 belongs to and m′ is the exponent of the
Soblev space to which h belongs to. Applying the Proposition 3.1 of Genon-
Catalot et al. (1992), we obtain that the following representation holds:

J̃in ≡ 2n/2
∫ T

0
h(t)(θ̂2

i (t)− θ2(t))dt

= 2n/2
M−1∑
r=0

hj(n)(tr)[(
∫ tr+1

tr
θ(s) dWi(s))2 −

∫ tr+1

tr
θ2(s) ds] + R̃in

where R̃in = op(1) as n→∞. Further more

J̃in
L→ N (0, 2

∫ T

0
h2(t)θ4(t) dt) as n→∞ (3.16)

by Theorem 3.1 of Genon-Catalot et al. (1992). Note the estimators {θ̂i(t),
i ≥ 1} are independent estimators of θ(t) for any fixed t since the processes
{Wi, i ≥ 1} are independent Wiener processes.

Let γ(t) be a nonnegative continuous function with support contained in
the interval [0, T ]. Define
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Q̃in = E{
∫ T

0
γ(t)(θ̂2

i (t)− θ2(t))2dt}. (3.17)

Note that Q̃in is the integrated mean square error of the estimator θ̂2
i (t)

of the function θ2(t) corresponding to the weight function γ(t). It can be
written in the form

Q̃in = B̃2
in + Ṽin (3.18)

where

B̃2
in =

∫ T

0
γ(t)(Eθ̂2

i (t)− θ2(t))2dt (3.19)

is the integrated square of the bias term with the weight function γ(t) and

Ṽin = E{
∫ T

0
γ(t)(θ̂2

i (t)− Eθ̂2
i (t))

2dt} (3.20)

is the integrated square of the variance term with the weight function γ(t).
Let

D̃in = E{
∫ T

0
(θ̂2

i (t)− Eθ̂2
i (t))

2dt} (3.21)

and suppose that sup{γ(t) : t ∈ [0, T ]} ≤ K. Further suppose that j(n)−n
2 →

−∞. Then it follows, by Theorem 4.1 of Genon-Catalot et al. (1992), that
there exists a constant C̃i depending on ε, λi and the functions φ, γ and θ2

such that
B̃2

in ≤ C̃i(24j(n)−2n + 2−2j(n)(m∧r) + 2−n) (3.22)

and

D̃in = 2j(n)−n 2
∫ T

0
θ4(t)dt+ o(2j(n)−n). (3.23)

Further more
Ṽin ≤ KD̃in. (3.24)

Let

θ̃2
N (t) =

1
N

N∑
i=1

θ̂2
i (t). (3.25)

It is obvious that, for any function h satisfying the conditions stated above,
and for any fixed integer N ≥ 1,

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt

= N−1
N∑

i=1

J̃in



stochastic pde with discrete observations 13

= N−1
N∑

i=1

{2n/2
M−1∑
r=0

hj(n)(tr)[(
∫ tr+1

tr
θ(s) dWi(s))2

−
∫ tr+1

tr
θ2(s) ds]}+N−1

N∑
i=1

R̃in

= 2n/2
M−1∑
r=0

hj(n)(tr){N−1
N∑

i=1

[(
∫ tr+1

tr
θ(s) dWi(s))2

−
∫ tr+1

tr
θ2(s) ds]}+N−1

N∑
i=1

R̃in.

From the independence of the estimators θ̂i(t), 1 ≤ i ≤ N, it follows from
the Theorem 3.1 of Genon-Catalot et al. (1992) that

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt L→ N (0, 2N−1
∫ T

0
h2(t)θ4(t) dt) as n→∞.

(3.26)
We have the following theorem.

Theorem 3.1. Under the conditions stated above , the estimator θ̃2
N (t) of

θ2(t) satisfies the following property for any function h(t) as defined earlier:

2n/2
∫ T

0
h(t)(θ̃2

N (t)− θ2(t))dt L→ N (0, 2N−1
∫ T

0
h2(t)θ4(t) dt) as n→∞.

(3.27)
Let γ(t) be a nonnegative continuous function with support contained in the
interval [0, T ]. Define

Q̃n = E{
∫ T

0
γ(t)(θ̃2

N (t)− θ2(t))2dt}. (3.28)

Note that Q̃n is the integrated mean square error of the estimator θ̃2
N (t)

of the function θ2(t) corresponding to the weight function γ(t). It can be
written in the form

Q̃n = B̃2
n + Ṽn (3.29)

where

B̃2
n =

∫ T

0
γ(t)(Eθ̃2

N (t)− θ2(t))2dt (3.30)

is the integrated square of the bias term with the weight function γ(t) and

Ṽn = E{
∫ T

0
γ(t)(θ̃2

N (t)− Eθ̃2
N (t))2dt} (3.31)
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is the integrated square of the variance term with the weight function γ(t).
Let

D̃n = E{
∫ T

0
(θ̃2

N (t)− Eθ̃2
N (t))2dt}. (3.32)

We have the following theorem from the estimates on {B̃in, 1 ≤ i ≤ N} and
on {D̃in, 1 ≤ i ≤ N} given above.

Theorem 3.2. Suppose that j(n) − n
2 → −∞. Then there exists a con-

stant C̃N depending on N,φ, γ, θ2 such that

B̃2
n ≤ C̃N (24j(n)−2n + 2−2j(n)(m∧r) + 2−n) (3.33)

and

D̃n = N−12j(n)−n 2
∫ T

0
θ4(t)dt+ o(N−1 2j(n)−n). (3.34)

Further more
Ṽn ≤ KD̃n (3.35)

where K = sup{γ(t) : 0 ≤ t ≤ T}.

Remarks. It can be seen, from the Theorems 2.1 and 2.2 and from the
Theorems 3.1 and 3.2, that the limiting behaviour of the estimator θ̃2

N (t)
of θ2(t) does not depend on the “trend” terms in the SPDE’s discussed in
both the examples as long as the “trend” terms in the SDE’s satisfied by the
Fourier coefficients do not depend on the function θ(t) or any other unknown
functions. This has also been pointed out by Genon-Catalot et al. (1992) in
their work on the estimation of the diffusion coefficient for SDE’s.
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