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Abstract—Tree-based scan path architectures have recently been sug-
gested for reducing test application time or test data volume in today’s
high-density very large scale integrated circuits. However, these techniques
strongly rely on the existence of a large number of compatible sets of
flip-flops under the given test set and therefore may not be suitable for
a highly compact test set generated by an efficient automatic test pattern
generator tool. Tree-based architectures also suffer from loss of fault
coverage while achieving a significant reduction ratio for test time or data.
In this paper, to circumvent this problem, a new two-pass hybrid method is
proposed to design an efficient scan tree architecture based on approximate
compatibility. The method is particularly suitable for a highly compact test
set having fewer don’t cares and low compatibility. Finally, to reduce the
volume of scan-out data, test responses shifted out from the leaf nodes
of the scan tree are compacted by a space compactor, which is designed
specially for the proposed scan tree architecture. The compactor uses an
XOR tree, and its overhead is low. The design thus offers a solution to
both test data and response compaction. Experimental results on various
benchmark circuits demonstrate that the proposed algorithm outperforms
the earlier methods in reducing test application time significantly without
degrading fault coverage.

Index Terms—Design-for-testability, scan path, space compaction,
stuck-at faults, testing, very large scale integration.

I. INTRODUCTION

Controllability and observability of a digital circuit can be increased
by various well-known design-for-testability techniques. Among them,
the most popular one is the widely used serial full-scan methodology,
which transforms a sequential circuit into its combinational parts in
the test mode. Although the full-scan method reduces the cost of
test generation and provides high fault coverage, the inherent serial
nature of the scan path increases the test application time and energy
consumption in test mode significantly. The number of clock cycles
needed to scan in/out the test data is equal to the product of the number
of test patterns and the length of the scan chain. Hence, the test appli-
cation time (also test data volume), and consequently the usage cost
of the automatic test equipment, can be lessened either by reducing
the number of test patterns or by shortening the scan chain length,
as used in tree-based scan path architectures. A fewer number of test
patterns may however reduce the fault coverage. On the other hand, a
compact test set with high fault coverage has relatively smaller number
of don’t cares in the test patterns, which causes more incompatibility
relationships among the flip-flops. This in turn, makes the scan tree
design inefficient, i.e., it may be hard to find a tree of reasonably low
depth. As a result of these two key factors being conflicting in nature,
the design of a scan tree that targets to achieve a good reduction ratio of
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test time/data and admits high fault coverage, becomes a hard problem
to solve. Moreover, a low-depth scan tree, which is desirable from the
viewpoint of time/data reduction, is likely to have a larger number of
scan outputs, which results an increase in cost of collecting response
data. Thus, a space compactor may be needed to reduce the width of
scan-out data either for direct observation or before feeding them to a
multiple-input shift register (MISR). Hence, in a scan tree architecture,
the problems of test data/time reduction and response compaction
assume greater significance than those in a conventional serial chain.

There are several existing methods that can be employed to tackle
the problem of reducing test application time. One approach is to
configure the scan elements into multiple scan chains [1], [2] at the cost
of having an increased number of scan-in and scan-out pins. Hybrid
test generation techniques [3], [4] are computationally expensive and
are not suitable for large sequential circuits. A scan-based built-in self-
test is introduced in [5], where a scan chain is partitioned into multiple
segments by inserting XOR gates between two adjacent scan segments.
The test responses of each scan segment can be observed through an
XOR tree. However, this technique does not address the problem of
testing embedded cores used in system-on-a-chip design [6].

The Illinois Scan Architecture (ILS) has been recently proposed
to circumvent this problem [7]–[9]. The ILS is shown to be useful
for both the standalone chip and embedded cores. It does not require
any additional test pin other than the ones used in full scan. In the
ILS scan, several branches of the scan paths emanate from a single
scan-in pin of the circuit, which may however cause overloading. An
alternative approach called scan tree has been proposed [10]–[14] to
reduce the test application time or the test data volume. In such a scan
architecture, the structure resembles a tree, where one cell drives the
successor scan cells as in a tree. The flip-flops corresponding to the
leaf nodes of the scan tree are fed to an MISR for response collection
and analysis. A scan tree also requires a single scan-in pin as in full
scan or ILS. The same test data bit, however, arrives in the scan cells,
which have an equidistant common ancestor cell. Thus, in a scan tree
architecture, all the bits in each of the test vectors that are to be
loaded in the scan cells (flip-flops) lying at the same depth of the
tree must be compatible (i.e., nonconflicting) among themselves. If
the above condition is satisfied, the corresponding scan cells are also
called compatible under the given test set. The effectiveness of the
scan tree depends on the correlation among the test data of different
scan cells. The test application time in a scan tree depends on the
number of test patterns and the depth or height (i.e., length of the
longest path in the tree) of the tree. The latter strongly depends on
the compatibility of the flip-flops under the given test set. Greater
compatibility among the flip-flops is likely to reduce the depth of the
scan tree. Most of the previous works on generating a scan tree used
noncompact test patterns (containing many don’t cares) in order to
obtain a large number of compatible relationships. In these cases, the
number of test patterns considered is usually large (compared to those
generated by an optimized automatic test pattern generator (ATPG)
tool achieving the same fault coverage). The method used by Miyase
and Kajihara [10] may also handle a compact test set but requires
iterative modification of the test vectors to enhance compatibility
among the flip-flops while generating the scan tree. However, this
method may also achieve decent reduction rate without any iteration.
But all these methods may not yield a scan tree of low depth for a
highly optimal compact test set, where the number of don’t cares is
few, and/or the compatibility relationships among them are infrequent.
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Fig. 1. Designing the scan tree architecture.

Thus, they cannot exploit, while designing the scan tree, the advantage
of using such a test set of small volume without causing significant
degradation of fault coverage.

In this paper, a new graph-based two-pass algorithm is proposed to
design the scan tree architecture. The present algorithm is particularly
applicable for a compact test set, which is typically generated by
commercial ATPG tools, where the compatibility among the flip-flops
is usually low. First, the compatibility relationships among the flip-
flops are explored for a given test set, and a scan tree architecture is
designed with minimal incompatibility. Next, the same ATPG tool is
run again to generate a new test set satisfying the logical constraints
on the secondary inputs imposed by the scan tree designed above.
These vectors will be applied in the tree (i.e., broadcast) mode. To
cover the remaining hard-to-detect (HTD) faults, if any, a few test
vectors are chosen from the original test set for application in the
serial mode. Finally, to reduce the cost of response analysis, a low-
overhead space compactor is specially designed using an XOR tree
to compact the set of leaf nodes of the scan tree. Experiments on
various benchmarks reveal very encouraging results in terms of tree
depth, test time reduction, fault coverage, and compactor overhead,
which indicate that the proposed hybrid method based on approximate
compatibility works very well for scan tree design.

II. SCAN TREE ARCHITECTURE

Several tree-based scan architectures have been proposed [11], [12]
earlier to reduce the test application time. Fig. 1 presents an example
of a single scan chain consisting of six scan cells. The test vectors are
shown in Fig. 1. It is evident that for these test vectors, the scan cells
FF1 and FF6 are compatible as the column vectors [10X] and [1X1]
corresponding to them (shown in Fig. 1), where X denotes a don’t
care, are nonconflicting. A set of scan cells is said to be compatible if
every pair of scan cells in the set is compatible under the given test set.
Thus, the set {FF3, FF4, FF5} is compatible. The design of a scan
tree is based on the compatibility of scan cells. In the above example,
the groups of compatible scan cells are {FF2}, {FF1, FF6}, and
{FF3, FF4, FF5}. As FF2 is incompatible with all other scan

cells, it cannot be grouped with other scan cells. The corresponding
tree design is shown in Fig. 1, where the group of scan cells belonging
to the same level of the tree must be compatible so that they receive
the same test data bit during shift-in.

To determine the compatible scan cells from the test set, an incom-
patibility graph [11] is constructed from the test set. In the incompat-
ibility graph, a vertex corresponds to a scan cell, and an undirected
edge between two vertices exists if and only if the two scan cells are
incompatible, i.e., if the corresponding column vectors (see Fig. 1)
have conflicting bits (0 and 1) for at least one test pattern.

In Fig. 1, there are six vertices in the incompatibility graph. The
grouping of scan cells to construct the tree architecture is determined
following the chromatic partitioning of the incompatibility graph.

As mentioned earlier, a scan tree architecture will be meaningful
only when a large number of flip-flops are compatible. However, for a
compact test set with a fewer number of don’t cares, the probability of
having compatible flip-flops reduces and the situation becomes worse
when the number of flip-flops is large. One solution to the problem
is to choose an arbitrary scan tree structure a priori and then use a
constrained ATPG to generate the test patterns for the circuit. The
disadvantage of the method is that the number of test patterns will be
large and the fault coverage will be low. Another solution (known as
hybrid method) is to select a subset of the test set so that a scan tree
of reasonable depth is constructed and to apply the remaining vectors
in the serial mode [11]. However, this does not fare well for a highly
compact test set. The present paper solves this problem by adopting a
two-pass hybrid method.

III. PROPOSED ALGORITHM FOR SCAN TREE DESIGN

In this section, the theoretical formulation of the method is first
presented followed by a description of the proposed algorithm.

A. Scan Tree Organization

We start with a given compact test set (Tn) of the circuit under the
single stuck-at fault model and analyze the compatibility relationships
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Fig. 2. Test vectors (Tn) and the weighted graph.

among the flip-flops. Typically, the test set generated by efficient
commercial ATPG tools consists of very few don’t cares, which results
in more incompatibility among the flip-flops.

For example, consider the test set shown in Fig. 2, which consists
of four five-bit test vectors. The linear scan chain has five flip-flops.
According to the above description, flip-flop 1, which is denoted as
FF1, corresponds to bit 1 in each test vector, flip-flop 2, which is
denoted as FF2, corresponds to bit 2, and so on [Fig. 2(a)]. In this
example, no pair of flip-flop is compatible, and hence, the scan tree
will reduce to a single linear chain.

We define the incompatibility distance (which is denoted as d)
between two flip-flops as the number of conflicting bits in the two
corresponding column vectors when the test vectors are arranged in
rows. For the example in Fig. 2, we have the following distance values:

d(FF1, FF2) =1, d(FF1, FF3) = 2

d(FF1, FF4) =2, d(FF1, FF5) = 3

d(FF2, FF3) =3, d(FF2, FF4) = 1

d(FF2, FF5) =2, d(FF3, FF4) = 2

d(FF3, FF5) =3, d(FF4, FF5) = 1.

A complete undirected graph G(V, E), which is called weighted
incompatibility graph (WIG), is now constructed with the flip-flops
as vertices and these distance values as weights on the corresponding
edges. A zero-weight edge between two vertices denotes a compatible
pair of flip-flops. As mentioned before, in Fig. 2, there is no pair of
compatible flip-flops.

To construct the scan tree based on minimum incompatibility, we
proceed as follows. We define a w-distance WIG as the largest sub-
graph of WIG G(V,E) such that all the edges present in the subgraph
have weight w. Clearly, given w, the subgraph is unique. We extract the
subgraph with the smallest w value and continue to process subgraphs
with higher w values in steps during the construction of the scan tree.
The following steps illustrate the process.

1) Extract the largest subgraph G′(V ′, E′) of G(V, E) by extract-
ing all the edges E′ of weight w from G, and let V ′ represent
the set of corresponding vertices connected by the edges in E′.

2) Obtain the complement of the graph G′. Given a undi-
rected graph G′ = (V ′, E′), the complement of G′ is defined
as G′ = (V ′, E′), where E′ = {(u′, v′) : u′, v′ ∈ V ′, u′ �= v′,
and (u′, v′) �∈ E′}.

3) In G′, determine the minimum number of colors needed to color
the graph. Based on this chromatic partition, group the vertices
of G′, i.e., the corresponding flip-flops into nearly compatible
groups. Thus, the flip-flops grouped in this fashion will have
incompatibility distance w among themselves.

Fig. 3. (a) Subgraph G′(V ′, E′) and (b) its complement G′ = (V ′, E′).

Fig. 4. Scan tree structure of Fig. 2(a).

The above procedure based on chromatic partitioning of the com-
plementary graph G′ is essentially equivalent to the minimum clique
partitioning of the graph G. Since the decision version of this problem
is known to be NP-complete [15], we have used a fast greedy heuristic
for chromatic partitioning [16]. Other improved heuristic techniques
for coloring may also be used for more accurate results [17]. For
example, the graph G(V,E) shown in Fig. 2 can be used to find the
groups of flip-flops when the incompatibility distance is 1. For this
purpose, a subgraph G′(V ′, E′) is constructed from G, where the
weight of each edge in G′ is 1, and V ′ are those vertices that are
connected by E′ [as shown in Fig. 3(a)]. The complement of the graph
G′ is constructed as shown in Fig. 3(b). In G′(V ′, E′) (complement
of G′), |V ′| = 4, and |E′| = 3. The vertices (flip-flops) are grouped
via coloring process of the graph. The graph shown in Fig. 3(b) has
no edge between FF1 and FF2. So, they are grouped. Similarly,
{FF4, FF5} are grouped. The scan tree thus obtained is shown in
Fig. 4. The scan tree in Fig. 4 is formed where the bit difference
between the flip-flops in each group is allowed to be 1. The process
is repeated for the other higher values of w until the WIG is exhausted.
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Fig. 5. Procedure_1 to generate the scan tree.

Fig. 6. Procedure_2 to determine the new test set and the undetectable or HTD faults in ST mode.

In this way, a scan tree is built where the flip-flops lying at the same
depth of the tree will have the same incompatibility distance value
among them.

B. Algorithm to Generate the Scan Tree

In this section, an algorithm is developed to design the scan tree
architecture when the compatibility relations among the flip-flops are
low. The algorithm consists of two procedures: Procedure_1 is used
to generate the scan tree structure, based on a heuristic of graph
coloring described above; and Procedure_2 is used to determine the
fault coverage. A formal outline of Procedure_1 is shown in Fig. 5.

C. Test Generation Based on Scan Tree and Hybridization

Scan Tree (ST) Mode: Once we obtain a scan tree structure, we
rerun the same ATPG tool to generate a new set of test vectors Tst with
the logical constraints imposed on the secondary inputs of the circuit
by the grouping of scan cells. These vectors will be applied in scan
tree (broadcast) mode. The rationale behind this is as follows. Since
the same ATPG tool is being run on the same circuit-under-test (CUT)
with some input constraints determined by minimal incompatibility,
fault coverage close to the earlier one is likely to be achieved also in the
second run. We assumed single stuck-at fault model for our analysis.
Procedure_2 is used for this purpose. However, in the presence of the
constraints, some faults that were testable by the original test set may
become untestable or HTD in the scan tree mode. Procedure_2, on

termination, also identifies this hard set of faults. To achieve the same
fault coverage obtained by the original test vectors in (Tn), some of
them, which are appropriately chosen from the original set (Tn), can
be applied to the CUT in serial scan mode (described below) as in
[11] by using a simple scheme that allows to reconfigure the tree
architecture into the serial mode if needed. However, in [11], given
a test set, the scan tree is designed based on expanding a subset of
the test set and on the resulting compatibility relations among the flip-
flops. The proposed approach also differs from that described in [10],
where the tree structure is iteratively modified by changing the don’t
care/specified bits of test vectors. For a highly compact test set, these
methods may not lead to an efficient tree structure, and the actual total
test application time may not reduce significantly while preserving
high fault coverage. Procedure_2 is described in Fig. 6.
Serial Scan (SS) Mode: To generate the test vectors to be applied

in SS mode, we consider the set of faults that were detectable by the
original test set (Tn) but which have become untestable or HTD in
ST mode (obtained by Procedure_2). Next, following a simple heuris-
tic procedure, we choose a few additional vectors from the original
test set (Tn) to cover the above set of hard faults for achieving the
desired fault coverage in SS mode. The scan tree can be dynamically
reconfigured into serial mode by employing a simple hardware. The
idea is to apply the majority of test vectors in ST mode and a few in SS
mode. Fig. 7 illustrates the technique. Switching of modes can be im-
plemented by a controller, which consists of some logic and a counter
that counts the number of test patterns to be applied in ST mode.
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Fig. 7. Scan tree architecture with dynamic reconfiguration.

Fig. 8. Test vectors and hard faults as a bipartite graph G(Tn, fu) and its
subgraph.

We start with the set of undetectable/HTD faults (fu), which are
called hard faults, and the original test patterns (Tn) from which the
scan tree structure was built. The minimal number of test patterns for
SS mode can be obtained by constructing a bipartite graph whose left
set of vertices represents the vectors in the test set Tn and whose right
set of vertices represents the faults in the list fu. As shown in Fig. 8(a),
Tn = {t1, t2, t3, t4, t5, t6} denote the set of test patterns, and let
fu = {f1, f2, f3, f4} denote the set of hard faults. The testability
relation among the tests and detected faults can be described by a
bipartite graph G(Tn, fu) [18], [19], where an edge (t, f) is given if
and only if a test t detects a fault f . A fault f is said to be detected by
a test set Tn if G contains at least one edge between the members of
the set Tn and f .

In order to construct the bipartite graph, a complete fault simulation
may be done for each pattern of Tn on the hard fault set fu. Although
the set fu is usually small in size, to save simulation time, incremental
fault simulation in forward and reverse passes may be employed to
approximate the graph. An illustrative example is shown in Fig. 8(a).

Let Ts denote the set of test vectors to be applied in SS mode. Then,
the problem is to find a subset Ts of Tn such that:

1) Ts covers all nodes in fu;
2) the number of nodes in Ts is minimum.

The above problem is equivalent to the classical minimum set cover
problem, the decision version of which is known to be NP-complete
[15]. Thus, in this paper, a greedy approach, which terminates very
fast, is used to solve the above optimization problem. The proposed

heuristic is as follows. First, initialize Ts to null. We then choose the
hardest fault, for example, fh from fu, i.e., the one having the smallest
degree on the fault side of the bipartite graph; ties, if any, are resolved
arbitrarily. Now, among the test vectors of Tn that have an edge to fh,
select the one with the largest degree, again resolving ties arbitrarily.
The node corresponding to the vector, all the faults in fu detected by
it, and the relevant edges incident on the detected fault nodes are then
deleted from the bipartite graph. In the process, the degree of some
test node may also become zero. They are also deleted. The test vector
selected is added to Ts, and the process is iterated until all the hard
faults in fu are covered. It is easy to show that this heuristic procedure
to generate Ts will take O(e log e) time, where e denotes the number
of edges in the bipartite graph.

The above algorithm can be demonstrated with the help of an exam-
ple shown in Fig. 8(a). The fault f4 has the smallest degree, i.e., hardest
to detect. The (only) test pattern t4 that detects f4 is thus included in
the set Ts. Since this test also detects f2, the graph after node and edge
deletion would look like the one shown in Fig. 8(b). Next, node f1 (of
smaller degree 2) is chosen, and between t1 (of degree 1) and t3 (of de-
gree 2) that detect f1, node t3 (larger degree) is chosen. After this iter-
ation, the reduced graph becomes empty, and therefore, Ts = {t3, t4}
will be the minimal set of test patterns that detect all the hard faults fu.

The serial patterns thus obtained (Ts) cover all the faults that are
untestable by Tst but testable by the original test set (Tn). However,
each serial pattern requires full shifting of scan bits, and therefore, one
may not include all such required patterns, thereby incurring slight
loss of fault coverage. Thus, a user has the flexibility of trading off
test application time/data against certain loss of fault coverage within
acceptable limits.

The serial patterns may also detect some faults already detected
by Tst. Thus, some of the vectors in Tst may be removed to further
reduce the test application time in broadcast mode. Such vectors can
be identified by fault simulation. First, fault simulation is done for the
test patterns Ts on the complete fault list fc. This is done in order to
drop additional faults that are covered by these serial patterns. Let fds

denote the set of all faults detected by Ts in serial mode. The fault
set fds is then deleted from fc. The remaining set denoted by fdst is
actually the reduced target fault list, and these faults are to be detected
in ST mode. Incremental fault simulation of the vectors in (Tst) on
fdst in forward and reverse orders may eliminate some test vectors
from the set (Tst), thereby reducing its size. The combined set of test
patterns (T ) is finally obtained by the union of Ts and the reduced
Tst. Procedure_3, which is shown in Fig. 9, describes the method.

IV. RESPONSE COMPACTION TECHNIQUE FOR THE SCAN TREE

In the scan tree architecture, scan-out is usually implemented by
feeding the outputs of the flip-flops corresponding to the leaf nodes
of the tree to an MISR for response collection and analysis. A scan
tree of smaller depth provides better test time/data reduction, although
the number of leaf nodes of the tree will tend to increase. Thus, an
MISR will need to capture more scan-out bits as inputs per shift cycle,
which results in larger area overhead. This problem can be solved by
employing a space compactor, which will reduce the number of output
bits to be fed to the MISR. For a high-ratio compactor, an MISR
may be eliminated, and the compacted bits can be directly used for
signature analysis. An XOR tree compactor has been recently proposed
for response compaction in a scan tree architecture [20], [21]. In [20],
the authors used an XOR tree connected randomly to the leaves of scan
tree(s) for space compaction. Since this may cause high overhead and
aliasing, a technique called reconstructed scan forest has been reported
later to reduce aliasing and cost [21]. An example demonstrating the
latter approach is shown in Fig. 10, where the six leaves of the scan tree
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Fig. 9. Procedure_3 to generate the complete set of test patterns.

Fig. 10. Compactor proposed in [21].

are compacted to three outputs. The idea is to select the appropriate
nodes for XOR-ing such that they do not have any common ancestor
in the tree and thus aliasing of errors could be minimized. Further, it
is desirable that the flip-flops, from which shift-out bits reach an XOR

gate simultaneously, do not have a common combinational predecessor
in the CUT. This strategy is adopted to prevent aliasing that may occur
if the fault effect is captured by an even number of flip-flops feeding the
same XOR gate of the compactor and is not propagated out along other
routes, or if it is not observable at some other cycle. Other important
results on compactor design and techniques for minimizing aliasing
can be found in [22]–[24].

The compactor in [21] may cause aliasing when there is a flip-flop
at the root node, because an error latched therein may be cancelled out
at the compactor output. Further, any two flip-flops feeding the same
XOR gate should not have a common ancestral internal node unless an
error captured there is not propagated to other outputs. Thus, careful
selection of compactor inputs is necessary for low-overhead and low-
aliasing design. The scan tree produced by Procedure_1 has a special
property that all the paths in the tree have equal depth. Described below
is an example that illustrates how the compactor design can be greatly
simplified for the type of scan trees generated by our algorithm.

Consider the scan tree shown in Fig. 11. It has 30 nodes and six leaf
scan flip-flops. It consists of six branches labeled as a to f . Each node
is marked by an integer, which is written within that node. Let {a, f}
be the output pair to be compacted to a single bit, where an error from
the root node is to be observed. The leaf scan flip-flops of a and f
are XOR-ed, and the corresponding XOR gate is denoted as XOR1 in
Fig. 11. By observing output of XOR1 (out1), errors at the other nodes
lying on the two branches a and f can be observed, except the one
at the root node (single error), and those double errors affecting the
pair of nodes lying at the same level on the two branches. However,
instead of connecting the output of the leaf scan flip-flop of f directly
to an input of XOR1, if it is connected through a two-input AND gate as
shown in Fig. 11, then the above problem of aliasing can be avoided.
The other output of the AND gate (A1) is connected to a control line
“enable.” By setting enable = 0, we can disable the branch f at XOR1,
and responses reaching a can be directly observed at out1. During the
scan-out period, the response of the root node will reach the leaf nodes
of branches a and f at the end of the seventh shift cycle. At that time,
we need to set enable = 0 to disable the branch f , so that the error
latched at the root is not masked at out1. During other scan-out cycles,
“enable” will be set to 1. To implement this feature, we need an up-
counter that counts the number of levels in the scan tree. Initially, it
will be reset to 0, and after each shift clock cycle, its value will be
incremented by 1. After counting the highest level of the tree, it will
again be reset to 0. For example, in Fig. 11, we need a mod-7 up-
counter that counts from 0 to 6. When the value of counter becomes 6,
the enable signal is set to 0.

After that, the counter will be initialized to 0, and the enable signal
will be at logic 1. Thus, the single error at the root node will not be
aliased at the compactor output.

To complete the design of the compactor, one may now choose two
other leaves (for example, {b, e}) and connect the outputs of the two
corresponding flip-flops to another XOR gate. It may be noted that the
nearest common ancestor of these two leaf nodes is the root. As shown
in Fig. 11, the leaf scan flip-flops of branches b and e are connected to
the inputs of XOR2. Clearly, an error at root node 1 will be cancelled
at the output of XOR2. Since an error therein can be observed through
XOR1, this aliasing does not matter. Finally, the gate XOR3 is used to
compact the branches {c, d}.

In order to design the above compactor systematically, we make
use of some special properties of the scan tree. From the construction
process (Procedure_1), it is evident that the number of nodes
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Fig. 11. Proposed compactor circuit for a scan tree.

Fig. 12. Equipartitioned scan tree.

(flip-flops) in level l of the tree is equal to or smaller than those in
level l + 1. Further, the tree has equal number of nodes along all
the paths. Thus, it is always possible to construct an equipartitioned
tree as shown in Fig. 12, where in each level following the root, the

TABLE I
RESULTS ON FULL-SCAN ISCAS’89 CIRCUITS

difference in the number of nodes lying on the two sides of the vertical
partition (in dotted lines) is either 0 or 1 and the partition line does
not intersect any of the tree edges. The scan tree shown in Fig. 11 can
be reconstructed as that in Fig. 12 by slightly modifying Procedure_1,
as stated above. In other words, for any pair of leaf nodes, one
chosen from the left subset and the other from the right subset of the
partition, the only common ancestor will be the root node. This has
two implications: 1) the compactor can be easily designed by choosing
any two inputs, one from each side of the partition to feed an XOR

gate; and 2) at most one AND gate is required to guarantee no aliasing
for single errors. The compactor designed in this way will have only
one layer of two-input XOR gates, thus achieving nearly 50% space
compaction ratio.

To improve the compactor, other sophisticated techniques as in
[22]–[24] may be used. It is also shown that the aliasing probability
of single stuck-at faults in a CUT at the outputs of the XOR-tree-based
compactor is almost zero or negligible [21].

V. EXPERIMENTAL RESULTS

The proposed algorithms are implemented in C on a SUN SPARC
ULTRA-60 (450 MHz) workstation in SOLARIS 5.8 environment and
are run on several ISCAS’89 benchmark circuits. The test patterns are
generated using the TetraMax tool of Synopsys.
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TABLE II
RESULTS ON SCAN TREE ARCHITECTURE OBTAINED BY THE PROPOSED ALGORITHM

TABLE III
COMPARISON OF THE PROPOSED SCAN TREE WITH [10]

TABLE IV
RESULTS ON THE PROPOSED COMPACTOR FOR DIFFERENT BENCHMARK CIRCUITS

The experimental results for the full-scan circuits are presented in
Table I. The third and fourth columns report the number of test patterns
and the number of cycles necessary to test the CUT, respectively, in
full serial scan mode. The last column reports the corresponding fault
coverage in full serial scan mode. The test application time (cycles)
in full serial scan mode is calculated as nf × (Tn + 1), where nf is
the number of flip-flops, and Tn is the number of test patterns. This
accounts for only scan-in and scan-out cycles.

The results on scan tree design for ISCAS’89 circuits using the
proposed algorithms are shown in Table II. The columns in the table
represent the circuit name, depth of the scan tree generated by our
algorithm, the number of test patterns in ST mode (Tst), the number
of faults that cannot be detected under ST mode, the number of serial
test vectors (Ts), total fault coverage, the number of cycles necessary
to test the circuits, percentage of test time saved compared to full-
scan technique, and CPU execution time. The last two columns show
the corresponding fault coverage and test cycles needed in an earlier
approach [11]. The test application time in the scan tree is computed
as nl × (Tst + 1) + nf × (Ts + 1), where nl is the depth of the scan
tree, Tst is the number of test patterns in ST mode, and Ts is the num-
ber of test patterns in serial mode. Fault coverage (FC) is defined as

FC =
Faults detected by (Tst + Ts)

Total faults present in the circuit
× 100%.

The results show that the proposed technique significantly reduces
the test application time while achieving high fault coverage, and the
fault coverage is the same as that obtained in full serial scan mode.

In Table III, we compare the results on tree depth and the number
of test bits required in scan tree mode with those reported by Miyase
and Kajihara [10]. The scan tree generated by our algorithm has much
smaller depth compared to that in [10] for a compact test set of
comparable size. The number of scan-in bits in tree mode also reduces
significantly. However, the method in [10] does not use serial mode.
Since we aim for achieving high fault coverage, we include serial
patterns, and thus, the total test application time becomes larger than
that in [10], but it still remains much smaller than that obtained by an
earlier hybrid approach [11].

The proposed compactor, an example of which is shown in Fig. 12,
has been implemented in 0.18-µm technology (provided by the Na-
tional Semiconductor, USA) for each of the circuit as listed in Table I.
The synthesis of these circuits has been carried out by the Design
Analyzer tool of Synopsis. Table IV shows the result for the proposed
compactor. The columns in the table present the circuit name, number
of compacted outputs, number of scan outputs as in [10], area overhead
of the proposed compactor (including the AND gate and the counter),
and area overhead reported in [21]. The last column presents the
compactor area overhead for scan forest [20]. Thus, the scan-out data
volume feeding an MISR is also reduced significantly at the cost of
negligible compactor overhead.

VI. CONCLUSION

A new design of scan tree architecture that reduces test application
time and test data volume is described in this paper. The method
is particularly suitable for a highly compact test set, for which the
flip-flops may have very weak or almost no compatibility among
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themselves. The technique employs a hybrid approach of applying test
vectors in both broadcast and serial mode to generate a scan tree of
small depth and to guarantee high fault coverage. The scan tree also
leads to a simple design of an XOR tree compactor, which can be used
to compact the scan-out data as well. Experimental results show that
the method performs favorably compared to earlier schemes. In this
approach, we however did not consider the geometrical constraints
imposed by physical locations of the flip-flops while constructing the
tree and did not address the associated routing problems. Such layout-
aware design of the scan tree for reduction of test application time/test
data volume may be studied in the future.
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Efficient Design for Testability Solution Based on
Unsatisfiability for Register-Transfer Level Circuits

Loganathan Lingappan and Niraj K. Jha

Abstract—In this paper, we present a novel and accurate method for
identifying design for testability (DFT) solutions for register-transfer
level (RTL) circuits. Test generation proceeds by abstracting the circuit
components using input/output propagation rules so that any justifica-
tion/propagation event can be captured as a Boolean implication. Con-
sequently, the RTL test generation problem is reduced to a satisfiability
(SAT) instance. If a given SAT instance is not satisfiable, then we identify
Boolean implications (also known as the unsatisfiable segment) that are
responsible for unsatisfiability. We show that adding DFT elements is
equivalent to modifying these clauses such that the unsatisfiable segment
becomes satisfiable. The proposed DFT technique is both fast and accurate
as it is applicable to RTL and mixed gate-level/RTL circuits and uses exact
unsatisfiability conditions to identify the DFT solutions.

Index Terms—Design for testability, register-transfer level, satisfiability,
test generation.

I. INTRODUCTION

The complexity of automatic test-pattern generation (ATPG) for
large sequential circuits has forced designers to look for solutions that
reduce test generation time and increase fault coverage for a given
sequential circuit. Such solutions belong to the realm of design for
testability (DFT). In this paper, we propose one such DFT technique
based on unsatisfiability. The proposed technique is applicable to
register-transfer level (RTL) and mixed gate-level/RTL designs and is
very fast. In addition, it is very accurate in its ability to pinpoint exactly
the causes behind untestability.

A. Related Work

Popular DFT solutions that are widely used in the industry are full-
scan design, partial-scan design, and test point insertion [1]. In full-
scan design, each flip-flop in the given sequential circuit belongs to
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