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SUMMARY. Minimum Hellinger distance and related methods have been shown to

simultaneously possess first order asymptotic efficiency and attractive robustness proper-

ties (Beran 1997; Simpson 1987, 1989a; Lindsay 1994). It has been noted, however, that

these minimum divergence procedures are generally associated with unbounded influence

functions, a property considered undesirable in traditional robust procedures. Lindsay has

demonstrated the limitations of the influence function approach in this case. Following

Lindsay’s outlier stability approach, we show in this paper that there exists a similar out-

lier resistance property for the corresponding tests of hypotheses, and that this outlier

resistance property leads to some useful and interesting results for the estimators and the

corresponding tests of hypotheses for the generalized Hellinger divergence family (Simpson

1989b; Basu et al., 1997) in discrete models.

1. Introduction

The popularity of the minimum Hellinger distance and related methods
in statistical inference (Beran 1977; Tamura and Boos 1986; Simpson 1987,
1989a, 1989b; Eslinger and Woodward 1991; Lindsay 1994; Basu and Lind-
say 1994; Basu and Sarkar 1994a,b; Markatou et al. 1998) is mainly due
to the ability of the corresponding techniques to combine the property of
asymptotic efficiency with certain attractive robustness properties. While
such methods require a nonparametric estimate of the true density, it is rel-
atively simple in discrete parametric models since one can use the ‘empirical’
density for this estimate (Simpson 1987).

At the same time, however, robust techniques constructed through some
density based minimum divergence methods such as those based on the
Hellinger distance do not generally have bounded influence functions; in fact
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their influence functions are the same as those of the maximum likelihood es-
timators – as they must be if they are to be asymptotically efficient. Many of
the authors mentioned above have discussed the limitations of the influence
function approach in measuring the robustness of these estimators. Beran
has considered the “α-influence function” of the minimum Hellinger distance
estimator, while Lindsay has looked at the outlier stability of the estimating
equations for several divergences, including the Hellinger distance. Simpson
has demonstrated nice breakdown properties for procedures resulting from
the Hellinger distance.

Here we extend Lindsay’s outlier stability approach, and show in this
paper that there exists a similar outlier resistance property for the corre-
sponding tests of hypotheses. This property leads to particularly interesting
results for the estimators and the tests of hypotheses for the generalized
Hellinger divergence (GHD) family (See Simpson 1989b and Basu et al.
1997). The inflation factors for the asymptotic chi-square distribution of
the test statistics under a parametric model contaminated by a large outlier
turn out to be simple functions of the contaminating proportion which are
reasonably close to 1 for large outliers for some members of the generalized
Hellinger divergence family.

The rest of the paper is organized as follows: minimum ‘disparity’ meth-
ods are discussed in Section 2. The outlier stability of minimum disparity
estimators are discussed in Section 3 and its consequence on the generalized
Hellinger divergence family investigated. Section 4 establishes and studies
their outlier resistance properties in the context of parametric tests of hy-
potheses based on disparities with illustrations and also demonstrates that
the chi- square inflation factor has a simple form in the case of the generalized
Hellinger divergence.

2. Minimum Disparity Estimation in Discrete Models

Consider a discrete model with density fθ(x). While our treatment will
also include random variables with finite support, as a general case we will
assume that the random variable of interest is supported on {0, 1, 2, . . .}, θ ∈
Ω, the parameter space. Let X1, . . . , Xn be a random sample from the true
distribution modeled by the above family, and let d(x) = #(Xi = x)/n be
the relative frequency (the ‘empirical density’) of the value x in the sample.
We denote d = (d(0), d(1), . . .), and the vector fθ is similarly defined.

A ‘disparity’ between d and fθ corresponding to a strictly convex, thrice
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differentiable function G on [−1,∞) is given by

ρG(d, fθ) =
∞∑

x=0

G(δ(x))fθ(x), (1)

where δ(x) = (d(x) − fθ(x))/fθ(x), the ‘Pearson residual’ at x. Notice that
ρG ≥ 0, with equality if and only if d ≡ fθ, identically. When there is no
scope for confusion we will simply write ρ for ρG. The Kullback-Leibler diver-
gence, Pearson’s chi-square, Neyman’s modified chi-square, and the squared
Hellinger distance are well known examples in the class of disparities. A fa-
mous subclass of disparities is the Cressie-Read family of power divergences
(Cressie and Read 1984) given by

Iλ(d, fθ) =
1

λ(λ + 1)

∞∑
x=0

d(x)

[(
d(x)
fθ(x)

)λ

− 1

]
, λ ∈ IR, (2)

which generates all the standard examples of common disparities stated
above as special cases.

The minimum disparity estimator θ̂ of θ based on the disparity in (1) is
then defined by the relation

ρG(d, fθ̂) = min
θ∈Ω

ρG(d, fθ) (3)

provided such a θ̂ exists. We will denote the corresponding functional by
Tρ(d) = θ̂.

Under differentiability of the model, the minimization of the above dis-
parity corresponds to solving an estimating equation of the form

−∇ρ(d, fθ) =
∞∑

x=0

(G′(δ(x))(δ(x) + 1) − G(δ(x)))∇fθ(x) = 0, (4)

where ∇ represents the gradient with respect to θ, and G′ is the first deriva-
tive of G with respect to its argument (G′′ will denote the corresponding
second derivative). Letting G′(δ)(δ +1)−G(δ) = A(δ), the estimating equa-
tion has the form ∞∑

x=0

A(δ(x))∇fθ(x) = 0. (5)

Often we choose the function G to satisfy

G′(0) = 0, G′′(0) = 1. (6)
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This can be done because the disparity in (1) may be centred and rescaled
to the form

ρG∗(d, fθ) =
∑

G∗(δ(x))fθ(x) =
∑ (

G(δ(x)) − G′(0)δ(x)
G′′(0)

)
fθ(x). (7)

This does not change the estimating properties of the disparity in the sense
that θ̂ which is the minimizer of ρG is also the minimizer of ρG∗ ; however
G∗ satisfies the conditions in (6).

Under (6), the function A(δ) satisfies A(0) = 0, and A′(0) = 1 (A′ being
the first derivative of A with respect to its argument). This function A(δ)
is called the residual adjustment function (RAF) of the disparity ρG. Since
the estimating equations of the different disparities differ only in the form
the RAF, it is clear that the RAF plays a crucial role in determining the
efficiency and robustness properties of the minimum disparity estimator. See
Lindsay for more details on minimum disparity estimation.

3. Outlier Stability of Minimum Disparity Estimators

Consider a fixed model fθ(x), the observed relative frequencies d(x) ob-
tained from a random sample generated by the unknown true distribution,
a contamination proportion ε (which will be taken to be less than 0.5 here
as well as in the rest of the paper), and let {ξj : j = 1, 2, . . . , } be a se-
quence of elements of the sample space. Consider the ε- contaminated data
dj(x) = (1−ε)d(x)+εχξj (x), χy(x) being the indicator function at y, and let
δj
θ(·) = dj(x)/fθ(x) − 1 denote the Pearson residual for the ε-contaminated

data. We will say that {ξj} constitutes an outlier sequence for the model fθ

and data d if δj
θ(ξj) → ∞ and d(ξj) → 0 as j → ∞. Lemma 9, Lindsay (1994)

shows that {ξj} constitutes an outlier sequence if and only if d(ξj) → 0 and
fθ(ξj) → 0 as j → ∞.

Let us consider the limiting behavior of the disparity measure ρ(d, fθ)
under contamination through an outlier sequence {ξj}. Let d∗ε (x) = (1 −
ε)d(x). While d∗ε (x) is not a density function, one can formally calculate
ρ(d∗ε , fθ). Following Lindsay, we note that

ρ(d∗ε , fθ) → ρ(d, fθ) as ε → 0 (8)

under mild conditions of dominated convergence. And if in addition

ρ(dj , fθ) → ρ(d∗ε , fθ) as j → ∞, (9)
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then, for extreme outliers and small contaminating fractions ε, the dis-
parity between the contaminated data dj and fθ is close to ρ(d, fθ), the
disparity obtained by simply deleting the outlier from the sample. Equa-
tion (8) exhibits a continuity property of the divergence measure that is
closely related to the notion of qualitative robustness. Equation (9) rep-
resents a key stability property of the divergence which demonstrates its
outlier rejection capability under an outlier sequence. A sufficient con-
dition for the disparity under which the convergence in (9) holds is that
G(−1) is finite and G(δ)/δ converges to zero as δ → ∞ (Lindsay 1994,
Proposition 12). (Henceforth we will denote this by condition C1). Notice
that the condition C1 is satisfied by the Cressie-Read family for λ < 0,
and therefore this subfamily has this stability property in (9). The dis-
parities of the generalized Hellinger divergence family (Basu et al., 1997),
which is the Cressie-Read family restricted to λ ∈ [−1, 0], has the form
GHDα(d, fθ) =

(
1 − ∑

x dα(x)f1−α
θ (x)

)
/ [α(1 − α)] , α ∈ [0, 1]; this fam-

ily, therefore, also satisfies condition C1 for α < 1 (the disparities for α = 0, 1
being defined through the corresponding limiting values at α = 0, 1). Here
GHD1/2 = HD, the (twice) squared Hellinger distance.

For α ∈ (0, 1) the minimization of the generalized Hellinger divergence
GHDα(d, fθ) is equivalent to maximizing Sα(d, fθ) =

∑
x dα(x)f1−α

θ (x), and
conditions (8) and (9) may be stated in terms of the convergence of the
Sα’s. Notice that Sα(d∗ε , fθ) = (1−ε)α ∑

x dα(x)f1−α
θ (x) = (1−ε)αSα(d, fθ),

so that the maximizers of Sα(d, fθ) and Sα(d∗ε , fθ) (or the minimizers of
GHDα(d, fθ) and GHDα(d∗ε , fθ)) are one and the same. Notice also that for
α = 1, one gets the likelihood disparity

LD(d, fθ) =
∞∑

x=0

[d(x)log(d(x)/fθ(x)) + (fθ(x) − d(x))] , (10)

minimization of which generates the maximum likelihood estimator (MLE)
of θ.

There is a corresponding outlier stability property of the estimating equa-
tions themselves. Let uθ be the maximum likelihood score function for the
model. If for some k > 1, Eθ[|uθ(X)|k] is finite for all θ, then any disparity
for which A(δ) = O(δ(k−1)/k), and A(−1) is finite has an outlier stability
property (Lindsay, Proposition 14) in the sense that, under the above defi-
nitions of an outlier sequence, as j → ∞∑

A(δj(x))∇fθ(x) →
∑

A(δ∗ε (x))∇fθ(x)

where δj(x) = dj(x)/fθ(x) − 1 and δ∗ε (x) = d∗ε (x)/fθ(x) − 1 (the possible θ
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subscripts have been suppressed). As the estimating equations converge, the
solutions will converge as well provided the convergence is uniform.

Lindsay, in fact, gives another set of sufficient conditions for Tj = Tρ(dj)
to converges to θ∗ = Tρ(d∗ε ) as j → ∞. Assume that: (C2) ρ(dj , fθ) and
ρ(d∗ε , fθ) are continuous in θ, with the latter having unique minimum at
Tρ(d∗ε ) = θ∗; (C3) the convergence in (9) is uniform in θ for any compact set
Θ of parameter values containing θ∗; and (C4) for each 0 < γ < 1 there exists
a subset S of the sample space such that (i) d(S) =

∑
x∈S d(x) ≥ 1 − γ,

and (ii) C = {θ : fθ(S) ≥ γ} is a compact set. Then (C1), (C2), (C3) and
(C4) (assumptions 10, 17, 18, and 19 of Lindsay, 1994) imply that Tj → θ∗

as j → ∞. Estimators having this property will be said to be ‘outlier stable’
in the sense that a large point mass contamination fails to have a serious
impact on the estimtor, and in the limit can only displace it as far as θ∗.

To illustrate the effect of an outlier sequence on the estimators within the
generalized Hellinger divergence family, we present a small numerical study
here. A sample of size 50 was generated from the Poisson (2) distribution
and the empirical density d was calculated. The largest observed value in the
sample was 5. In the following, we have determined the minimum generalized
Hellinger divergence estimates of θ under the Poisson (θ) model assuming
the observed density to be dε(x) = (1 − ε)d(x) + εχy(x), where χy(x) is
the indicator function at y, and y = 6, 7, . . . , 20 (a sequence of large values
starting with the smallest integer larger than the largest observed value).
The value of ε was chosen to to be 0.19, for the simple reason that the
contaminated test statistics for such a contamination (Section 4) are linked to
(1− ε)α times the original test statistic, and this factor becomes equal to 0.9
for the Hellinger distance (α = 0.5). For each value of α = 0.5, 0.4, . . . , 0.1,
the estimates of θ as functions of y are recorded. We chose these values of
α as the method provided a degree of downweighting equal to greater than
that of the Hellinger distance in these cases. As the patterns are similar, we
graphically exhibit the results for α = 0.5, 0.3, 0.1, by plotting the estimates
of θ as functions of y in Figure 1. The solid horizontal line represents the
value of the estimator corresponding to the uncontaminated data d. As
expected, the estimates eventually converge to that for uncontaminated data,
when the outlier is large enough. Thus a big outlier, instead of badly affecting
the estimate, does not change it at all! Although we have not presented
similar calculations for the maximum likelihood estimator, one can easily
imagine how badly they will be affected by such an outlier sequence.
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Figure 1. Behavior of the estimators of the mean under the Poisson model in the

presence of an outlier sequence.



outlier resistant minimum divergence methods 135

4. Hypothesis Testing Based on Disparities

4.1 Outlier stability. Consider the same set up as before: fθ(x) represents
a parametric model, θ ∈ Ω, and d(x) are the relative frequencies based on a
random sample of size n from the unknown true distribution. Let Tρ be the
minimum disparity functional. Consider testing the hypothesis H0 : θ = θ0

against a suitable alternative. The likelihood ratio test statistic (LRT ),
negative of twice log likelihood ratio, can be expressed as:

LRT (d) = 2n[LD(d, fθ0) − LD(d, fT )], with T = TLD(d) = MLE. (11)

The LRT has an asymptotic χ2(r) distribution under the null hypothesis,
where r is the dimension of θ. The analogous disparity test statistics for the
disparity ρ is

Dρ(d) = 2n[ρ(d, fθ0) − ρ(d, fT )] with T = Tρ(d). (12)

Consider the effect of contaminating the data d with an outlier sequence
{ξj} on the disparity test statistic. Let dj , and d∗ε be defined as in Section
3. Define the disparity test statistic Dρ to be outlier stable if

Dρ(dj) → Dρ(d∗ε ) as j → ∞. (13)

Let Tj = Tρ(dj). In the following we provide the conditions under which the
disparity test statistic Dρ is outlier stable.

Theorem 1: Let δj
θ(ξj) = ((1− ε)d(ξj)+ ε)/fθ(ξj)−1, where d(·) are the

relative frequencies from a given random sample, and {ξj} is a corresponding
outlier sequence. Suppose that the disparity ρ satisfies conditions (C1), (C2),
(C3) and (C4). Then the disparity test statistic Dρ is outlier stable.

Proof. Let θ∗ = Tρ(d∗ε ). Under the given conditions, Tj → θ∗ as
j → ∞, and by Scheffe’s theorem (see, for example, Billingsley, 1986, pp.
218) fTj (ξj) → 0 as j → ∞. For a finite sample of size n, d(ξj) = 0 whenever
j > m, for some integer m ≥ 0 depending on the sample. Notice that for
j > m,

|Dρ(dj)−Dρ(d∗ε )| ≤ 2n{|ρ(dj , fθ0)−ρ(d∗ε , fθ0)|}+2n{|ρ(d∗ε , fTj )−ρ(d∗ε , fθ∗)|
+|G(−1)fTj (ξj)| + |G(δj

Tj
(ξj))fTj (ξj)|}
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From the given conditions, |ρ(dj , fθ0)−ρ(d∗ε , fθ0)| → 0. Since condition (C2)
holds and Tj → θ∗ as j → ∞, |ρ(d∗ε , fTj ) − ρ(d∗ε , fθ∗)| → 0. As G(−1) is
finite, G(−1)fTj (ξj) also converges to zero. Note that

G(δj
Tj

(ξj))fTj (ξj) =
G(δj

Tj
(ξj))

δj
Tj

(ξj)
(dj(ξj) − fTj (ξj)

and the right hand side converges to zero from the given conditions. This
completes the proof. �

In particular, for ρ = HD (or GHD1/2), we get

Dρ(dj) → Dρ(d∗ε )

= (1 − ε)1/2Dρ(d)
(15)

so that a single outlying value, however large, cannot arbitrarily perturb the
test statistic. Here G(δ) = 2(

√
δ + 1− 1)2. For an α ∈ (0, 1), DGHDα(dj) →

(1 − ε)αDGHDα(d) as j → ∞.
We now present a small example of this outlier stability using the bi-

nomial (12, p) model. We generated a pseudo random sample of size 50
from the binomial (12, 0.1) distribution. Consider testing the hypothesis
H0 : p = 0.1 against H1 : p 	= 0.1. The likelihood ratio and the Hellinger
distance test statistics for the original data

LRT (d) = 1.23545 and DHD(d) = 1.61255.

Next we chose y = 12 and ε = 0.19, and calculated the LRT and the
Hellinger distance test statistic for the contaminated version of the data
dy(x) = (1 − ε)d(x) + εχy(x). The values now are

LRT (dy) = 124.5748 and DHD(dy) = 1.45119.

Clearly the presence of the outlier blows up the LRT , but fails to af-
fect the HD test statistic in any major way. Notice that the latter is
practically equivalent to (1 − ε)1/2[DHD(d)] = 1.45129, which is what we
should expect from (15). The values of the test statistic DGHDα(dy) for
α = 0.1, 0.2, . . . , 0.5, and y = 8, 9, 10, 11, 12 are presented in Table 1. Notice
how closely the statistics for y = 12 match with (1 − ε)α× [the uncontami-
nated statistics].
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Table 1. Observed test statistics for the Contaminated Binomial Distribution.

Model is binomial(12, p), sample size n=50.

α
0.1 0.2 0.3 0.4 0.5 LRT

Without
contamination 3.78409 2.44005 1.99613 1.76313 1.61255 1.23545

y=8 3.69676 2.32694 1.84874 1.56294 1.31025 50.27147
y=9 3.70459 2.33815 1.87053 1.61021 1.41639 66.23774
y=10 3.70516 2.33927 1.87352 1.61915 1.44437 84.00180
y=11 3.70518 2.33935 1.87382 1.62045 1.45024 103.47326
y=12 3.70518 2.33935 1.87384 1.62060 1.45119 124.57481

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(1 − ε)α×

Uncontaminated
Statistic 3.70519 2.33935 1.87385 1.62061 1.45129 –

4.2 The GHD and the chi-square inflation factor. The present section
was motivated by the fact that in empirical investigations involving the chi-
square inflation factor for the members of the generalized Hellinger diver-
gence family under point mass contaminations, sometimes the observed in-
flation factors seemed to have a remarkably close approximation based only
on α and the contamination proportion ε. Let fθ(x) be the parametric model
under consideration, t(x) be the true density and θ be a scalar parameter.
Under the set up and notations of Section 4.1, consider testing the hypothesis
H0 : T (t) = θ∗ against H1 : T (t) 	= θ∗. Under the null hypothesis,

Dρ(d) → c(t)χ2
1 (16)

in distribution (Lindsay, 1994, Theorem 6). Here

c(t) = V art(T ′(X, t, θ∗))∇2ρ(t, fθ)|θ=θ∗ ,

T ′(y, t, θ∗) being the influence function of the functional T (t) at y evaluated
under θ∗ = T (t), and χ2

1 is a χ2 random variable with 1 degree of freedom.
When the unknown t belongs to the model family, c(t) = 1. For the rest
of this section, we concentrate on the generalized Hellinger divergence and
denote TGHDα(·) by Tα(·), and the corresponding inflation factor in (16) by
cα(t). Let u′

θ(x) represent the first derivative of uθ(x) with respect to θ.

Proposition 2. For fixed θ0 ∈ Ω, assume that t(x) = (1 − ε)fθ0(x) +
εχξ(x). For fixed α ∈ (0, 1), let ξ be such that u2

θ0
(ξ)f1−α

θ0
(ξ) and u

′
θ0

(ξ)f1−α
θ0

(ξ)
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are approximately zero; then ∇2ρ(t, fθ)|θ=θ0 is approximately equal to
(1 − ε)αI(θ0) for the generalized Hellinger divergence family.

Proof.

∇2ρ(t, fθ) = ∇[−∑
tα(x)f1−α

θ (x)uθ(x)]/α

= −(1−α)
∑

tα(x)f1−α
θ (x)u2

θ(x)/α

−∑
tα(x)f1−α

θ (x)u
′
θ(x)/α

∇2ρ(t, fθ)|θ=θ0

= −(1−ε)α(1−α)
∑

u2
θ0

(x)fθ0(x)/α

−(1−α)
(
[(1−ε)fθ0(ξ)+ε]αf

(1−α)
θ0

(ξ)u2
θ0

(ξ)

−(1 − ε)αfθ0(ξ)u
2
θ0

(ξ)
)

/α−(1−ε)α
∑

u
′
θ0

(x)fθ0(x)/α

−
(
[(1−ε)fθ0(ξ)+ε]αf

(1−α)
θ0

(ξ)u
′
θ0

(ξ)−(1−ε)αfθ0(ξ)u
′
θ0

(ξ)
)

/α

= (1−ε)α [I(θ0)−(1−α)I(θ0)] /α

−(1−α)
(
[(1 − ε)fθ0(ξ) + ε]αf

(1−α)
θ0

(ξ)u2
θ0

(ξ) − (1 − ε)αfθ0(ξ)u
2
θ0

(ξ)
)

/α

−
(
[(1 − ε)fθ0(ξ) + ε]αf

(1−α)
θ0

(ξ)u
′
θ0

(ξ) − (1 − ε)αfθ0(ξ)u
′
θ0

(ξ)
)

/α

≈ (1 − ε)αI(θ0).

under the stated assumptions. �

The influence function of the minimum GHDα functional is given by
T ′

α(y) = T ′
α(y, t, θ∗) = Kα(y, θ∗)/Jα(θ∗) where

Kα(y, θ∗) = αuθ∗(y)tα−1(y)f1−α
θ∗ (y),

Jα(θ∗) = −[(1 − α)
∑

tα(x)f1−α
θ∗ (x)u2

θ∗(x) +
∑

tα(x)f1−α
θ∗ (x)u

′
θ∗(x)],

where θ∗ = Tα(t), so that V art(T ′
α(X, t, θ∗)) = V art(Kα(X, θ∗))/J2

α(θ∗) (see
Basu et al. 1997).

Proposition 3. Let t be as defined in Proposition 2, and ξ and α,
belonging to their respective spaces, be such that the conditions of Proposition
2 hold. Then V art(T ′(X, t, θ0)) is approximately equal to [(1 − ε)I(θ0)]−1.
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Proof. With t as given above,

Jα(θ0) = −(1−ε)α[(1−α)
∑

fθ0(x)u2
θ0

(x)+
∑

fθ0(x)u′
θ0

(x)]

−(1−α)
(
[(1−ε)fθ0(ξ)+ε]αf1−α

θ0
(ξ)u2

θ0
(ξ)−(1−ε)αfθ0(ξ)u

2
θ0

(ξ)
)

−
(
[(1−ε)fθ0(ξ)+ε]αf1−α

θ0
(ξ)u

′
θ0

(ξ)−(1−ε)αfθ0(ξ)u
′
θ0

(ξ)
)

≈ α(1−ε)αI(θ0)

Also, along the lines of the proof of Proposition 2, one can check that
Et[K(X, θ0)] ≈ 0. Then

V art(Kα(X, θ0)) ≈ α2 ∑
u2

θ0
(x)t2α−1(x)f2−2α

θ0
(x)

= α2(1 − ε)2α−1 ∑
u2

θ0
(x)fθ0(x)

+α2
(
u2

θ0
(ξ)[(1 − ε)fθ0(ξ) + ε]2α−1f

(2−2α)
θ0

(ξ)

−(1 − ε)2α−1u2
θ0

(ξ)fθ0(ξ)
)

≈ α2(1 − ε)2α−1I(θ0)

Combining these, the required result holds. �

Notice that for the generalized Hellinger divergence, θ∗ = Tα((1−ε)fθ0 +
εχξj ) converges to θ0 as j → ∞ for an outlier sequence {ξj}. Thus

Tα((1−ε)fθ0 + εχξ) ≈ Tα(fθ0) = θ0

for a ξ with fθ0(ξ) (and u2
θ0

(ξ)f1−α
θ0

(ξ) and u
′
θ0

(ξ)f1−α
θ0

(ξ)) sufficiently small.
Since under the conditions of Propositions 2 and 3,

V art(T ′(X, t, θ0))×∇2ρ(t, fθ)|θ=θ0 ≈ (1− ε)αI(θ)/[(1− ε)I(θ)] = (1− ε)α−1,

whenever V art(T ′(X, t, θ∗)) and ∇2ρ(t, fθ)|θ=θ∗ are close, respectively, to
V art(T ′(X, t, θ0)) and ∇2ρ(t, fθ)|θ=θ0 , cα(t) itself will be approximately equal
to (1 − ε)α−1 for such a ξ.

As an example look at the binomial (20, p) model. Let t(x)=(1−ε)fp0(x)+
εξ20(x), where p0 = 0.1 and ε = 0.19. Consider testing the hypothesis
H0 : p = p∗, where p∗ = THD(t). Direct calculation of the inflation factor
via (16) gives c0.5(t) = 1.11111 which is equal, at least up to five places after
the decimal sign, to (1 − ε)α−1 = (0.9)−1 for α = 0.5.
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