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REFLECTING BROWNIAN MOTION IN A LIPSCHITZ DOMAIN
AND A CONDITIONAL GAUGE THEOREM

By S. RAMASUBRAMANIAN
Indian Statistical Institute, Bangalore

SUMMARY. Let {Px : x ∈ D} denote the reflecting Brownian motion in D with normal

reflection at the boundary where D is a bounded Lipschitz domain in Rd. Let q(x)dx, c(x)dσ(x)

belong to Kato class; consider the third boundary value problem for the operator
�

1
2
∆ + q

�
in D

with boundary condition determined by
�

∂
∂n

+ c
�
;(here dσ denotes the surface area measure on

∂D, and n(·) the inward normal). Let {Tt} denote the corresponding Feynman-Kac semigroup

and G the gauge function. After indicating a way of getting the integral kernel ζ for {Tt}, we

set F (x, z) =
R∞
0 ζ(t, x, z)dt, x, z ∈ D. It is proved that if F (x, z) < ∞ for some x, z ∈ D

then the gauge G is a bounded continuous function on D, and that F (·, ·) is finite and continuous

on {x 6= z}. A connection between F and conditioned Brownian motion is given; a consequence

is that if the gauge for the third boundary value problem is finite then so is the gauge for the

Dirichlet problem.

1. Introduction

Probabilistic treatment of Feynman-Kac semigroups in smooth domains has
been considered by many authors. In the context of the Dirichlet problem, fol-
lowing the lead given by Chung and Rao (1981), the literature is now quite ex-
tensive; see Ma and Song (1990), Falkner (1983), Zhao (1986) and the references
given therein. Following the probabilistic approach to the Neumann problem for
the Schrodinger operator initiated by Hsu, third boundary value problem has been
studied by Papanicolaou (1990) using reflecting Brownian motion. Gauge theorems
and connections with certain spectral properties of the operators have been estab-
lished in these works. For the Dirichlet problem, Falkner (1983) and Zhao (1986)
discuss a conditional gauge theorem making use of the conditioned Brownian mo-
tion of Doob; motivated by these, Cranston, Fabes and Zhao (1988) have studied
the conditional gauge and potential theory for Schrodinger operator with Dirichlet
boundary condition in a bounded Lipschitz domain.
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The aim of this article is to study the Feynman-Kac semigroup {Tt} associated
with the operator 1

2∆ + q in a bounded Lipschitz domain D, with the boundary
operator ∂

∂n + c, using the reflecting Brownian motion in D with normal reflection
at the boundary; here the potentials q(·) in the interior and c(·) on the boundary
can belong to generalized Kato class GKd(D); (see Section 3 for definitions).

Regarding reflecting Brownian motion (with normal reflection at the boundary)
in nonsmooth domains, though the seminal paper of Fukushima (1967) has given
a very general construction of transition density in an arbitrary open set way back
in 1967, the next major development had to wait till 1990/91 when Bass and Hsu
(1990), (1991) elaborated on this theme for Lipschitz and Hölder domains; in par-
ticular they showed that the Skorokhod equation holds and that the process can be
realized on the Euclidean closure of the domain. It is in this set up one is able to
extend the analysis of Papanicolaou (1990) to Lipschitz domains.

After briefly recalling the salient features of reflecting Brownian motion in a
Lipschitz domain D in Section 2, we indicate in Section 3 how the integral kernel
ζ for {Tt} can be defined as a continuous function on (0,∞)×D ×D; a Gaussian
upper bound for ζ is also established. The gauge function for the third boundary
value problem is

G(x) =
1
2

∫ ∞

0

∫

∂D

ζ(t, x, z)dσ(z)dt.

In Section 4 after proving the gauge theorem, we define

F (x, z) =
∫ ∞

0

ζ(t, x, z)dt.

It is shown that if F (x, z) < ∞ for some x, z then the gauge is a bounded continuous
function on D and that F is finite and continuous on D ×D off the diagonal; this
result may be called a conditional gauge theorem for the third boundary value
problem. A Harnack inequality is an immediate corollary.

A connection between F and the conditioned Brownian motion via Martin kernel
is discussed in Section 5 using a representation for positive

(
1
2∆ + q

)
-harmonic

functions with Dirichlet boundary condition due to Zhao (1986). As a consequence
it is shown that finiteness of the gauge for third boundary value problem implies
that of the gauge for the Dirichlet problem.

A few comments may be in order to put things in proper perspective. When
q(·), c(·) are smooth, negative and bounded away from zero, and D is a bounded
smooth domain, the corresponding third boundary value problem is quite classical
and has been studied by analytic methods; in such a case one can also consider
more general second order elliptic operators; see Friedman (1983), Ito (1992). The
stochastic representation of the solution can be given in terms of reflected diffusions;
the probabilistic treatment is facilitated by the exponential rate of convergence of
the transition probability of the reflected diffusion to the unique invariant measure;
see Brosamler (1976), Freidlin (1985), Ramasubramanian (1992). If q(·) ≤ −β < 0,
c(·) ≤ −β < 0 for some positive constant β, it is easily seen that the Feynman-Kac
semigroup decays exponentially fast.
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Once q(·), c(·) are not necessarily negative (as is the case in the present arti-
cle) the functionals eq(·), êc(·) (given by (3.4), (3.5)) are no longer bounded; even
well-definedness of various quantities is not clear a priori. However, a satisfactory
analysis becomes possible if the corresponding Feynman-Kac semigroup decays ex-
ponentially fast. This can be ensured if the gauge function is not infinite, when
q(x)dx, c(x)dσ(x) belong to the generalized Kato class; see Theorem 4.1. A further
refinement, which is the main result of this paper, is that the same is ensured once
the “Green function / Poisson kernel” F (x, z) for the problem is not infinite;
see (the conditional gauge theorem) Theorem 4.4 and Remark 4.2. Also the repre-
sentation (5.1) for the “Poisson kernel” F (x, z), x ∈ D, z ∈ ∂D in terms of the
conditioned Brownian motion may be of independent interest.

2. RBM in a Lipschitz Domain

Let D be a bounded Lipschitz domain in Rd, d ≥ 2. That is, D is a bounded
connected open set, and for each x ∈ ∂D there exist r > 0, a Lipschitz continuous
function Γ and an orthonormal coordinate system O (all possibly depending on x)
such that D∩B(x : r) = {y = (y1, · · · , yd−1, yd) in O : yd > Γ(y1, · · · , yd−1)}∩B(x :
r). A good source for information concerning such domains is Bass (1995).

Let {Px : x ∈ D} denote the reflecting Brownian motion in D with normal
reflection at the boundary; that is, {Px} is a family of probability measures sup-
ported on C([0,∞) : D) ⊂ C([0,∞) : Rd) so that under {Px} the canonical
process {X(t) : t ≥ 0} given by coordinate projections is a reflecting Brownian
motion with D as state space and with normal reflection at the boundary. Let
p(t, x, z), t > 0, x, z ∈ D denote its transition probability density function; note
that dPxX(t)−1

dz (z) = p(t, x, z). We make the following observations.

Remark 2.1. For any arbitrary bounded open set D without any smoothness/
regularity assumptions on the boundary, Fukushima (1967) has given a construction
of p(t, x, z) for t > 0, x, z ∈ D by the L2-method; and by standard interior regu-
larity argument it follows that p(t, ·, ·) is smooth on D ×D. A natural state space
for the associated continuous strong Markov process is the so called Kuramochi
compactification of D; (this process may be called the RBM in D); for x ∈ D, the
measure Px is the law of the process starting at x. Also p is symmetric in (x, z).

Remark 2.2. When D is a bounded Lipschitz domain Bass and Hsu (1991)
have shown that

(i) the Kuramochi compactification of D coincides with the Euclidean com-
pactification D;

(ii) p can be extended in a continuous fashion to (0,∞)×D ×D;
(iii) for any T > 0 there exist positive constants C1, C2 such that for all 0 <

t ≤ T, x, z ∈ D

p(t, x, z) ≤ C1t
−d/2 exp

(
−|x− z|2

C2t

)
; (2.1)
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(iv) there exist T0 > 0, C0 > 0 such that for all t ≥ T0, x, z ∈ D
∣∣∣∣p(t, x, z)− 1

|D|

∣∣∣∣ ≤ e−C0t. (2.2)

By Theorem 2.3, Remark 3.11 of Bass and Hsu (1991), and continuity of p
over (0,∞) × D × D note that (2.1) follows for 0 < t ≤ 1, x, z ∈ D ; then apply
repeatedly Chapman-Kolmogorov equation for p and the Gaussian kernel to get
(2.1) for 0 < t ≤ T, x, z ∈ D, for any T > 0. From (iv) it follows that there exists
T1 > 0 such that for all t ≥ T1,

inf{p(t, x, z) : x, z ∈ D} > 0. (2.3)

Perhaps (2.3) is true for any t > 0, but we do not have a proof. (In case D is a
smooth domain (2.3) can be established for any t > 0 using (parabolic) maximum
principles; see S.Ito (1992)). By (ii) and (iii) it is clear that {Px : x ∈ D} is strong
Feller.

Note that the uniform distribution on D is the unique invariant measure for
the process {Px : x ∈ D}, and (2.2) indicates the exponential rate of convergence
to it. One could say that this corresponds to a spectral gap between zero and the
rest of the spectrum of the self adjoint generator of the process (with reflection)
when the corresponding semigroup is viewed to be acting on L2(D, dx).

Remark 2.3. Again in the case of a bounded Lipschitz domain D, Bass and
Hsu (1990) have proved that under Px, the Skorokhod equation

X(t) = x + W (t) +
∫ t

0

n(X(s))dξ(s) (2.4)

holds a.s., where {W (t)} is a standard d-dimensional Brownian motion, {ξ(t)} is the
boundary local time of {X(t)}, n(·) is the unit inward normal vector field on ∂D.
Note that {ξ(t)} is the continuous additive functional associated with the surface
area measure dσ(·) on ∂D. For a Lipschitz domain, the inward normal vector field
n(·) is defined only a.e.dσ(·) on ∂D. However, as ξ(·) does not charge dσ null sets,
the integral in (2.4) is well defined. In particular {X(t)} is a continuous D -valued
semimartingale.

For any bounded measurable function f on ∂D, proceeding as in the proof of
Proposition 1.1 of Papanicolaou (1990) one can show that

Ex

[∫ t

0

f(X(s))dξ(s)
]

=
1
2

∫ t

0

∫

∂D

f(z)p(s, x, z)dσ(z)ds. (2.5)

It may be noted that the semimartingale representation (2.4) above is the same as
in Papanicolaou (1990) but it differs from that in Bass and Hsu (1990) by the factor
1
2 in the integral. It is also clear that (2.5) holds for any nonnegative measurable
function f on ∂D. Using (2.1) and a localization argument it can be shown that
there are constants K1,K2 such that

∫

∂D

p(t, x, z)dσ(z) ≤ K1t
−1/2 + K2 (2.6)



182 s. ramasubramanian

for all t > 0, x ∈ D. From (2.5) and (2.6) it is clear that

Ex(ξ(t)) ≤ K1t
1/2 + K2t. (2.7)

Remark 2.4. Though the proofs given in Bass and Hsu (1991) cover the case
d ≥ 3, the results for d = 2 can be obtained as follows. Let D be a bounded
Lipschitz domain in R2. Then D̂ = D × (0, 1) is a bounded Lipschitz domain in
R3 and {P̂(x1,x2,x3) ≡ P(x1,x2) × Qx3 : (x1, x2) ∈ D,x3 ∈ [0, 1]} is the RBM in D̂
with normal reflection at the boundary, where {Qx3 : x3 ∈ [0, 1]} is the RBM in
(0, 1). Use the results for D̂ to read off the corresponding results for D. (The author
thanks R. Bass for this remark.)

3. Feynman-Kac Semigroup {Tt}

In this section we consider the Feynman-Kac semigroup associated with the
third boundary value problem and the corresponding integral kernel.

A signed Radon measure ν on D is said to belong to the class GKd(D) if

lim
t↓0

sup
x∈D

∫ t

0

∫

D

p(s, x, y)|ν|(dy)ds = 0 (3.1)

Let q and c respectively be measurable functions on D and ∂D such that the
signed measures q(x)dx and c(x)dσ(x) belong to GKd. By (2.5) it is clear that

lim
t↓0

sup
x∈D

Ex

[∫ t

0

|c(X(s))|dξ(s)
]

= 0. (3.2)

Also

lim
t↓0

sup
x∈D

Ex

[∫ t

0

|q(X(s))|ds

]
= 0. (3.3)

Define the functionals

eq(t) = exp
(∫ t

0

q(X(s))ds

)
, (3.4)

êc(t) = exp
(∫ t

0

c(X(s))dξ(s)
)

, (3.5)

and the semigroup of operators

Ttf(x) = Ex [eq(t)êc(t)f(X(t))] (3.6)

whenever the right side makes sense. By (3.2), (3.3) we can find t0 > 0 such that

sup{Ex(A(t)) : x ∈ D} ≤ α < 1, ∀t ≤ t0
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where A(t) =
∫ t

0
|q(X(s))|ds +

∫ t

0
|c(X(s))|dξ(s). Then Khasminskii’s lemma (see

Papanicolaou (1990) or Simon (1982)) states that

sup{Ex[eq(t)êc(t)] : x ∈ D} = sup{Ex[eA(t)] : x ∈ D} ≤ 1
(1− α)

for all t ≤ t0. By the Markov property it follows that {Tt : t ≥ 0} forms a semigroup
of operators on L∞(D); and by the strong Feller property of the process we get that
Ttf is continuous for any t > 0, f ∈ L∞(D).

We now indicate how a continuous integral kernel for the semigroup {Tt} can
be obtained. Set ζ0(t, x, z) = p(t, x, z), t > 0, x, z ∈ D; for n = 1, 2, 3, · · · define

ζn(t, x, z) =
∫ t

0

∫

D

p(s, x, y)q(y)ζn−1(t− s, y, z)dyds

+
1
2

∫ t

0

∫

∂D

p(s, x, y)c(y)ζn−1(t− s, y, z)dσ(y)ds (3.7)

for t > 0, x, z ∈ D; define

ζ(t, x, z) =
∞∑

n=0

ζn(t, x, z). (3.8)

In view of the upper bound (2.1) and continuity of p, proceeding as in the proof of
Theorems 3.2, 3.4 of Papanicolaou (1990) one can establish the following.

Theorem 3.1. Let D be a bounded Lipschitz domain; let q, c respectively be mea-
surable functions on D, ∂D such that q(x)dx, c(x)dσ(x) belong to GKd(D). Then

(i) ζ is a nonnegative continuous function on (0,∞) × D × D; ζ(t, x, z) is
symmetric in x, z; ζ(t, x, z)dz ⇒ δx as t ↓ 0;

(ii) for f ∈ L1(D), t > 0, x ∈ D

(Ttf)(x) =
∫

D

f(z)ζ(t, x, z)dz; (3.9)

in particular ζ satisfies the Chapman-Kolmogorov equation;
(iii) for t > 0, Tt is a compact operator from L1(D) into C(D);
(iv) there exist positive constants K, β depending only on D, q, c such that

sup
x∈D

|(Ttf)(x)| ≤ Kt−d/2eβt‖f‖1 (3.10)

for any f ∈ L1(D).
It may be noted that in the proofs of Theorems 3.2 and 3.4 of Papanicolaou

(1990), smoothness of the domain and of p are not used. For another (but essentially
equivalent) way of obtaining the integral kernel see Ramasubramanian (1996).

For t > 0 set

M(t) = sup
x∈D

Ex

[∫ t

0

|q(X(s))|ds

]
+ sup

x∈D

Ex

[∫ t

0

|c(X(s))|dξ(s)
]

. (3.11)
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In view of (2.5) for nonnegative functions note that

M(t) = sup
x∈D

∫ t

0

∫

D

|q(y)|p(s, x, y)dyds + sup
x∈D

∫ t

0

∫

∂D

|c(y)|p(s, x, y)dσ(y)ds. (3.12)

These M(t)’s have indeed been made use of in the proof of Theorem 3.1. If
q(x)dx, c(x)dσ(x) belong to GKd(D) note that (by Markov property) M(t) < ∞
for all t, M(t) is nondecreasing in t and M(t) ↓ 0 as t ↓ 0.

Lemma 3.2. Let D, q, c be as in Theorem 3.1; let ζn. be defined by (3.7). There
exists a constant K > 0 such that

∫ t

0

∫

∂D

|ζn(s, x, z)|dσ(z)ds ≤ K(
√

t + t)(M(t))n (3.13)

for t > 0, x ∈ D,n = 0, 1, 2, · · ·
Proof. Enough to consider the case when q, c are nonnegative. In such a case

|ζn| = ζn. For n = 0, by (2.5)–(2.7) we get

l.h.s. of (3.13) =
∫ t

0

∫

∂D

p(s, x, z)dσ(z)ds ≤ K(
√

t + t).

Using (3.7), induction on n gives

∫ t

0

∫

∂D

ζn(s, x, z)dσ(z)ds

=
∫ t

0

∫

∂D

∫ s

0

∫

D

p(r, x, y)q(y)ζn−1(s− r, y, z)dydrdσ(z)ds

+
∫ t

0

∫

∂D

1
2

∫ s

0

∫

∂D

p(r, x, y)c(y)ζn−1(s− r, y, z)dσ(y)drdσ(z)ds

=
∫ t

0

∫

D

[∫ t−r

0

∫

∂D

ζn−1(s, y, z)dσ(z)ds

]
q(y)p(r, x, y)dydr

+
∫ t

0

∫

∂D

1
2

[∫ t−r

0

∫

∂D

ζn−1(s, y, z)dσ(z)ds

]
c(y)p(r, x, y)dσ(y)dr

≤ K(
√

t + t)(M(t))n−1M(t). ¤

We conclude this section with the following Gaussian upper bound for ζ.

Lemma 3.3. For any t0 > 0 there exist constants k1, k2 > 0 such that

0 ≤ ζ(t, x, z) ≤ k1t
−d/2 exp

(
−k2|x− z|2

t

)
(3.14)

for all 0 < t ≤ t0, x, z ∈ D.



reflecting brownian motion in a lipschitz domain 185

Proof. For any nonnegative continuous function f on D with ‖f‖1 = 1, by
Schwartz inequality, (2.1) and (3.10) we get

∫

D

f(z)ζ(t, x, z)dz ≤ {
Ex[e2|q|(t)ê2|c|(t)f(X(t))]

} 1
2

{∫

D

f(z)p(t, x, z)dz

} 1
2

≤ Kt−d/4eβt

[∫

D

f(z)t−d/2 exp
(
−k|x− z|2

t

)
dz

] 1
2

for all t ≤ t0, x ∈ D. Letting f approach a δ function we get the required estimate.
¤

4. The Gauge and a Conditional Gauge Theorem

The gauge for the third boundary value problem is given by

G(x) = Ex

[∫ ∞

0

eq(t)êc(t)dξ(t)
]

, x ∈ D. (4.1)

An important result concerning the gauge is the following gauge theorem.
Theorem 4.1. Let D, q, c be as in Theorem 3.1. If G(x) < ∞ for some x ∈ D,

then G is a bounded continuous function on D and inf{G(x) : x ∈ D} > 0. In
such a case there exist K, λ > 0 such that ‖Tt‖∞,∞ ≤ Ke−λt; that is, Tt decays
exponentially fast.

We need the following lemma.
Lemma 4.2. Let D, q, c be as above. Let t > 0 be such that (2.3) holds. Then

there is a constant at such that for any nonnegative measurable function f on D,

‖f‖1 ≤ at inf{Ttf(x) : x ∈ D}. (4.2)

Proof. Proceed as in the proof of Proposition 3.5 of Papanicolaou (1990); (see
also Chung and Hsu (1986)). What is really needed to make the proof go through
is that (2.3) holds for some t > 0. ¤

Proof of Theorem 4.1. By Markov property, for any t > 0

G(x) = Ex

[∫ t

0

eq(s)êc(s)dξ(s)
]

+ TtG(x).

So, if G(x) < ∞ for some x ∈ D then for any t > 0 for which (2.3) holds, by the
preceding lemma

‖G‖1 ≤ atTtG(x) ≤ atG(x) < ∞
Thus G is integrable if G(x) < ∞ for some x. As this is the crucial step in the proof
of Theorem 3.6 of Papanicolaou (1990), the first assertion can now be proved anal-
ogously. The second assertion can then be proved along the lines of Theorem 3.7 of
Papanicolaou (1990); the second assertion basically means that the first eigenvalue
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for the third boundary value problem is strictly negative if the gauge is finite; that
is, β in (3.10) can be taken to be negative. In fact, the second assertion is equivalent
to finiteness of the gauge. ¤

The next result is perhaps known to experts, but an explicit proof has not
appeared in the literature to our knowledge.

Proposition 4.3. Let D, q, c be as before. Then for any nonnegative measurable
function f on ∂D and any x ∈ D

Ex

[∫ ∞

0

eq(s)êc(s)f(X(s))dξ(s)
]

=
1
2

∫ ∞

0

∫

∂D

f(z)ζ(s, x, z)dσ(z)ds (4.3)

in the sense that the l.h.s. is finite if and only if the r.h.s. is and equality of the
two in case they are finite.

Proof. By monotone convergence theorem it is enough to show that

Ex

[∫ t

0

eq(s)êc(s)f(X(s))dξ(s)
]

=
1
2

∫ t

0

∫

∂D

f(z)ζ(s, x, z)dσ(z)ds (4.4)

for any t > 0 and any bounded measurable function f on ∂D. For n = 0, 1, 2, · · ·
set

Vn(t, x; f) =
1
2

∫ t

0

∫

∂D

f(z)ζn(s, x, z)dσ(z)ds

where ζn is defined by (3.7); Lemma 3.2 assures that Vn is well defined. By (3.7),
interchanging order of integration and (2.5)

Vn(t, x; f) =
∫ t

0

∫

D

p(r, x, y)q(y)Vn−1(t− r, y; f)dydr

+
1
2

∫ t

0

∫

∂D

p(r, x, y)c(y)Vn−1(t− r, y; f)dσ(y)dr

= Ex

[∫ t

0

q(X(r))Vn−1(t− r,X(r); f)dr

]

+ Ex

[∫ t

0

c(X(r))Vn−1(t− r,X(r); f)dξ(r)
]

(4.5)

To prove (4.4) it suffices to establish

Vn(t, x; f) = Ex

[∫ t

0

1
n!

(∫ s

0

q(X(r))dr +
∫ s

0

c(X(r))dξ(r)
)n

f(X(s))dξ(s)
]

(4.6)
for each n. We apply induction on n. For n = 0, it is clear from (2.5). For n ≥ 1
observe that (4.6) is the same as

Vn(t, x; f) = Ex




∫ t

0

∑(n)




∫

0<s1<···<sn<s

dµ(s′1, · · · s′n)


 f(X(s))dξ(s)


 (4.7)
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where dµ(s′1, · · · , s′n) is a signed measure of the form q(X(s′1))ds′1 · · · q(X(s′k))
ds′kc(X(s′k+1))dξ(s′k+1) · · · c(X(s′n))dξ(s′n), k = 0, 1, · · · , n where (s′1, · · · , s′n) is a
permutation of (s1, · · · , sn) and

∑(n) denotes summation over 2n such terms.
Therefore by (4.5), Markov property and Fubini’s theorem we get

Vn(t, x; f)

= Ex

∫ t

0

c(X(r))EX(r)

t−r∫

0

∑(n−1) ∫ (n−1)
dµ(s′1, · · · , s′n−1) f(X(s))dξ(s)dξ(r)

+ Ex

∫ t

0

q(X(r))EX(r)

t−r∫

0

∑(n−1) ∫ (n−1)
dµ(s′1, · · · s′n−1)f(X(s))dξ(s)dr

= Ex

∫ t

0

c(X(r))

t∫

r

∑(n−1)
∫

r<s1<···<sn−1<s

dµ(s′1, · · · s′n−1)f(X(s))dξ(s)dξ(r)

+ Ex

∫ t

0

q(X(r))

t∫

r

∑(n−1)
∫

r<s1<···<sn−1<s

dµ(s′1, · · · s′n−1)f(X(s))dξ(s)dr

= Ex

∫ t

0

∑(n)




∫

0<s1<···<sn<s

dµ(s′1, · · · , s′n)


 f(X(s))dξ(s)

where
∫ (n−1)

dµ(s′1, · · · s′n−1) denotes
∫

0<s1<···<sn−1<s

dµ(s′1, · · · s′n−1) . From the

above (4.7), and hence (4.6), follows. ¤
By (4.1), (4.3) we have

G(x) =
1
2

∫ ∞

0

∫

∂D

ζ(t, x, z)dσ(z)dt, x ∈ D. (4.8)

Now for x, z ∈ D, set

F (x, z) =
∫ ∞

0

ζ(t, x, z)dt. (4.9)

The main result of this section is
Theorem 4.4. Let D be a bounded Lipschitz domain. Let q(x)dx, c(x)dσ(x)

belong to GKd(D).
(a) If F (x, z) < ∞ for some x, z ∈ D, then the gauge G is a bounded

continuous function on D.
(b) In such a case (x, z) 7→ F (x, z) is finite and continuous on the set {x 6= z}.
Remark 4.1. If the hypothesis of the theorem holds then by Proposition 4.3

F (x, z) = lim
ε↓0

1
σ(Bz,ε)

Ex

[∫ ∞

0

eq(t)êc(t)Iz,ε(X(t))dξ(t)
]
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for x ∈ D, z ∈ ∂D where Bz,ε = B(z : ε) ∩ ∂D and Iz,ε is the indicator function of
Bz,ε . Similarly for x ∈ D, z ∈ D, x 6= z by Theorem 3.1

F (x, z) = lim
ε↓0

1
|B(z : ε)|Ex

[∫ ∞

0

eq(t)êc(t)IB(z:ε)(X(t))dt

]
.

This is a justification for calling the above result a conditional gauge theorem for
the third boundary value problem.

For any finite measure µ on D, write

v(x; µ) =
∫

D

∫ ∞

0

ζ(t, x, z)dtdµ(z) (4.10)

By the Chapman-Kolmogorov equation note that for any t > 0, x ∈ D

v(x;µ) =
∫

D

∫ t

0

ζ(s, x, z)dsdµ(z) + Ttv(x; µ). (4.11)

We need a few lemmas.
Lemma 4.5. Let F (x0, z0) < ∞ for some x0, z0 ∈ D. Then x 7→ F (x, z0) is a

well defined continuous function on D\{z0}.
Proof. Putting µ = δz0 in (4.11) we get for t > 0

∞ > F (x0, z0) =
∫ t

0

ζ(s, x0, z0)ds + TtF (x0, z0) (4.12)

Let t > 0 be such that (2.3) holds; then by (4.12) and Lemma 4.2 we get that
x 7→ F (x, z0), x ∈ D is an integrable function. Hence by Theorem 3.1, for such a
t we have x 7→ TtF (x, z0) is a continuous function on D. And by Lemma 3.3 it is
clear that x 7→ ∫ t

0
ζ(s, x, z0)ds is a continuous function on D\{z0}. ¤

Lemma 4.6. F (x, z) < ∞ for all x 6= z if and only if the gauge G is finite.
Proof. For any x ∈ D clearly

G(x) =
1
2

∫

∂D

F (x, z)dσ(z) (4.13)

If the gauge is finite, by (4.13), F (x, z) < ∞ for a.a. z ∈ ∂D for all x ∈ D. So by
the preceding lemma and symmetry of F (x, z) it follows that F (x, z) < ∞ for all
x 6= z.

Conversely let F (x, z) < ∞ for all x 6= z. In particular F (x0, z0) < ∞ for
some x0, z0 ∈ D. So by the preceding lemma z 7→ F (x0, z) is bounded on ∂D.
Hence by (4.13) and Theorem 4.1 the required result follows. ¤

Proof of Theorem 4.4. Proof of assertion (a) is contained in the proofs of
Lemmas 4.5 and 4.6; the only comment we make is that if F (x0, z0) < ∞ for some
x0, z0 ∈ ∂D then by symmetry and Lemma 4.5, F (z, x) < ∞ for all z ∈ ∂D for
some x ∈ D.
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It remains to prove (b). Note that continuity in each variable on the set {x 6= z}
is already established. Let H 6= D be a compact subset of D. We claim that

sup{‖TtF (·, z)‖∞ : z ∈ H} < ∞ (4.14)

for any t > 0 for which (2.3) holds. Under our hypothesis, by the proof of Lemma
4.5, x 7→ TtF (x, z) is a bounded continuous function on D for each z; by continuity
in z (4.14) now follows.

Let (x′, z′) → (x, z) with x 6= z; so we may assume that (x′, z′), (x, z) lie in
a compact set K ⊂ D ×D\{diagonal set}. Let t > 0 be large enough that (2.3)
holds. Note that

|F (x′, z′)− F (x, z)| ≤
∫ s+t

0

|ζ(r, x′, z′)− ζ(r, x, z)|ds

+ |Ts[TtF (x′, z′)− TtF (x, z)]|. (4.15)

Since the gauge is finite, by Theorem 4.1 and (4.14) the second term on the r.h.s. of
(4.15) decays exponentially fast as s →∞; and by Lemma 3.3 it is easily seen that
the first term on the r.h.s. of (4.15) goes to zero for any t + s as (x′, z′) → (x, z).
This completes the proof. ¤

Corollary 4.7. Let A be a nonempty open subset of ∂D. If

Ex

∫ ∞

0

eq(s)êc(s)IA(X(s))dξ(s) < ∞

for some x ∈ D, then the gauge is a bounded continuous function on D.

The above is immediate from Theorem 4.4. The above corollary has been proved
in Ramasubramanian (1993) when D is smooth using the conditional gauge theorem
for Dirichlet problem.

Remark 4.2. Consider the third boundary value problem

1
2
∆u(x) + q(x)u(x) = −ψ(x), x ∈ D

∂u

∂n
(x) + c(x)u(x) = −ϕ(x), x ∈ ∂D (4.16)

where n(·) denotes the inward normal, ψ,ϕ are bounded measurable functions re-
spectively on D, ∂D. A function u on D is said to be a probabilistic solution to
(4.16) if for each x ∈ D

u(X(t))− u(x) +
∫ t

0

q(X(s))u(X(s))ds +
∫ t

0

ψ(X(s))ds

+
∫ t

0

c(X(s))u(X(s))dξ(s) +
∫ t

0

ϕ(X(s))dξ(s)

= a continuous Px −martingale (4.17)
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w.r.t. the canonical filtration. By Theorem 4.8 of Papanicolaou (1990) note that
the notion of a continuous probabilistic solution coincides with that of a continuous
weak solution in the analytic/ classical sense. If the gauge is finite, essentially
mimicking the arguments in Section 4 of Papanicolaou (1990) it can be shown that

u(x) =
∫

D

ψ(z)F (x, z)dz +
1
2

∫

∂D

ϕ(z)F (x, z)dσ(z), x ∈ D (4.18)

is the continuous probabilistic solution to the inhomogeneous problem (4.16). There-
fore the function (x, z) 7→ F (x, z), x, z ∈ D may be called the “Green function”,
and the function (x, z) 7→ F (x, z), x ∈ D, z ∈ ∂D the “Poisson kernel” for the
third boundary value problem (4.16). This may be contrasted with the case of
the Dirichlet problem where the Poisson kernel is the normal derivative of the cor-
responding Green function; this is hardly surprising in view of Green’s theorem.
Of course, the point we make here is that the analogy carries over to “Kato class”
potentials (in the interior and on the boundary) and to Lipschitz domains.

Another immediate corollary to Theorem 4.4 is the following Harnack inequality.
Corollary 4.8. Let D, q, c be as before; let F (x, z) < ∞ for some x, z ∈ D. For

compact D1 ⊂ D there exist positive constants k1, k2 such that k1 ≤ F (x, z) ≤ k2

for all x ∈ D1, z ∈ ∂D.

5. Connection with Conditioned Brownian Motion

For x ∈ D, z ∈ ∂D let P̃x:z denote the law of the z-conditioned Brownian
motion starting at x; that is, the law of the Brownian motion starting at x and
conditioned to exit D at z. Under {P̃x:z} the canonical process {X(t)} is a
strong Markov process with transition density given by

k(z)(t, x, y) = M(x, z)−1kD(t, x, y)M(y, z)

where kD denotes the transition density for Brownian motion killed on exit from
D, M : D × ∂D → (0,∞) is the Martin kernel (relative to a fixed reference point
x∗). This can be considered as the diffusion killed on exit from D, with constant
dispersion I = ((δij)) and drift function y 7→ 1

M(y,z)∇yM(y, z). As D is a
Lipschitz domain it is known that the Euclidean boundary ∂D coincides with the
Martin boundary. In case D is a smooth domain the Martin kernel is the same
as the Poisson kernel for the Dirichlet problem. See Bass (1995), Falkner (1983),
Zhao (1986), Cranston, Fabes and Zhao (1988) for more information. Of course,
Ẽx:z will denote expectation w.r.t. P̃x:z.

The next result gives a connection between F and P̃x:z.
Theorem 5.1. Let the hypothesis of Theorem 4.4 hold. Let F (x, z) < ∞ for

some x, z. Then for x ∈ D, z ∈ ∂D

F (x, z) = Ex

∫ ∞

0

eq(s)êc(s)M(x,X(s))Ẽx:X(s)(eq(τ))dξ(s) (5.1)
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where τ is the first hitting time of ∂D.

We need the following lemma.

Lemma 5.2. Let the hypotheses of the theorem above hold. Let ϕ be a nonneg-
ative continuous function on ∂D such that

∫
∂D

ϕ(z)dσ(z) = 1. Set

u(x) , u(x;ϕ) =
1
2

∫

∂D

ϕ(z)F (x, z)dσ(z), x ∈ D

Then inf{u(x) : x ∈ D} > 0.

Proof. Clearly u is nonnegative; and proceeding as in the proof of Theorem
4.4 it can be shown that u is continuous. So it is enough to show that u(x) 6= 0 for
any x ∈ D.

Suppose u(x) = 0 for some x ∈ D. We can find a nonempty open subset A ⊂ ∂D
and ε > 0 such that ϕ(z) ≥ ε for all z ∈ A. Then by Proposition 4.3

0 =
1
2

∫

∂D

ϕ(z)F (x, z)dσ(z) =
1
2

∫

∂D

∫ ∞

0

ϕ(z)ζ(t, x, z)dσ(z)dt

≥ ε

2

∫

A

∫ ∞

0

ζ(t, x, z)dtdσ(z)

= εEx

∫ ∞

0

eq(s)êc(s)IA(X(s))dξ(s) ≥ 0

whence it follows

Ex

∫ ∞

0

eq(s)êc(s)IA(X(s))dξ(s) = 0.

Consequently, as eq and êc are strictly positive, we have Ex

∫∞
0

IA(X(s))dξ(s) = 0
and hence by (2.5)

∫∞
0

∫
A

p(s, x, z)dσ(z)ds = 0. But this contradicts (2.3). Hence
the claim. ¤

Proof of Theorem 5.1. Let ϕ and u be as in the preceding lemma. By
Remark 4.2 u is the continuous probabilistic solution to (4.16) with ψ ≡ 0. Put
f(z) , u(z; ϕ), z ∈ ∂D. Note that u is the continuous probabilistic solution to the
Dirichlet problem

1
2
∆u(x) + q(x)u(x) = 0, x ∈ D

u(x) = f(x), x ∈ ∂D.

Also by the preceding lemma u is bounded away from zero. Consequently (recalling
that u is also the continuous weak solution in analytic sense) by Theorem A and
Proposition B of Zhao (1986) and Theorem 5.5 of Cranston, Fabes and Zhao (1988)
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we get for any x ∈ D

u(x; ϕ) =
∫

∂D

f(z)Ẽx:z(eq(τ))M(x, z)dσ(z)

=
1
2

∫

∂D

ϕ(η)
∫

∂D

∫ ∞

0

M(x, z)Ẽx:z(eq(τ))ζ(t, η, z)dσ(z)dtdσ(η)

=
∫

∂D

ϕ(η)Eη

[∫ ∞

0

eq(t)êc(t)M(x,X(t))Ẽx:X(t)(eq(τ))dξ(t)
]

dσ(η)

Now letting ϕ approach a δ-function (on ∂D) we get (5.1). ¤
We now indicate a connection with spectral properties. Let c(x)dσ(x) ∈

GKd(D) be fixed. For q(x)dx ∈ GKd(D) let µ(q) denote the principal eigen-
value of 1

2∆ + q with boundary condition ∂u
∂n + cu = 0; and λ(q) denote the

principal eigenvalue of 1
2∆ + q with Dirichlet boundary condition. See Ma and

Song (1990), Papanicolaou (1990) for definitions.
Theorem 5.3. λ(q) ≤ µ(q).
Proof. Let ε > 0. Write µ0 = µ(q) and α(x) = q(x)− (µ0 + ε). Observe that

µ(α) = −ε < 0. By the proof of Theorem 4.1 it follows that the gauge function for
the third boundary value problem for 1

2∆ + α is bounded. So
∫ ∞

0

exp(−(µ0 + ε)t)ζ(t, x, z)dt < ∞, x 6= z,

where ζ is as before. Hence Theorem 5.1 applied to α(x)dx and c(x)dσ(x) gives
Ẽx:z(eα(τ)) < ∞ for some x ∈ D, z ∈ ∂D. This implies that the gauge function
for the Dirichlet problem for 1

2∆ + α is bounded, and hence λ(α) < 0; see Zhao
(1986) and Cranston, Fabes and Zhao (1988). Thus λ(q) < µ0 + ε. As ε is
arbitrary the result follows. ¤

Remark 5.1: The above result is well known when D is smooth, q, c are
smooth functions such that −∞ < k1 ≤ q(·), c(·) ≤ k0 < 0. See Courant and
Hilbert (1975).

Remark 5.2. It is immediately clear from the preceding theorem that finiteness
of the gauge for the third boundary value problem implies that of the gauge for the
Dirichlet problem. The converse, however, is not true; take q ≡ 0, c ≡ 0.
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