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SHARP BERRY-ESSEEN BOUND FOR THE
MAXIMUM LIKELIHOOD ESTIMATOR IN
THE ORNSTEIN-UHLENBECK PROCESS

By J.P.N. BISHWAL
Indian Statistical Institute, Calcutta

SUMMARY. The paper shows that the distribution of the normalized maximum likelihood

estimator of the drift parameter in the Ornstein-Uhlenbeck process observed over [0, T ] converges

to the standard normal distribution with an error bound O(T−1/2).

1. Introduction

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the Ornstein-
Uhlenbeck process Xt satisfying the Itô stochastic differential equation

dXt = −θXtdt + dWt, t ≥ 0, X0 = 0 . . . (1.1)

where {Wt} is a standard Wiener process with respect to the filtration {Ft}t≥0 and
θ ∈ Θ ⊆ R+ is the unknown parameter to be estimated on the basis of continuous
observation of the process {Xt} on the time interval [0, T ].

Let us denote the realization {Xt, 0 ≤ t ≤ T} by XT
0 . Let PT

θ be the measure
generated on the space (CT , BT ) of continuous functions on [0, T ] with the associated
Borel σ-algebra BT generated under the supremum norm by the process XT

0 and
PT

0 be the standard Wiener measure. It is well known that when θ is the true value
of the parameter PT

θ is absolutely continuous with respect to PT
0 and the Radon-

Nikodym derivative (likelihood) of PT
θ with respect to PT

0 based on XT
0 is given

by

LT (θ) :=
dPT

θ

dPT
0

(XT
0 ) = exp

{
−θ

∫ T

0

XtdXt − θ2

2

∫ T

0

X2
t dt

}
. . . . (1.2)

Maximizing the log-likelihood w.r.t θ provides the maximum likelihood estimate
(MLE)
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θT = −
∫ T

0
XtdXt∫ T

0
X2

t dt.
. . . (1.3)

It is well known that θT is strongly consistent and T 1/2(θT − θ) asymptotically
N (0, 1

2θ ) distributed as T → ∞ (see Basawa and Prakasa Rao (1980)). Our aim
in this paper is to obtain the Berry-Esseen bound, i.e., the rate of convergence to
normality of the MLE.

Note that (
T

2θ

)1/2

(θT − θ) = −
(

2θ
T

)1/2
ZT(

2θ
T

)
IT

. . . (1.4)

where

ZT =
∫ T

0

XtdWt and IT =
∫ T

0

X2
t dt.

In (1.4), the numerator of the normalized MLE is a normalized martingale which
converges to the standard normal variable and the denominator is its corresponding
increasing process which converges to one as T →∞.

One way of obtaining the Berry-Esseen bound in the present context is to use
the technique of Michel and Pfanzagl (1971) for the i.i.d case. Lemma-1 in Michel
and Pfanzagl (1971) states that the Berry-Esseen rate for the ratio of two processes
can be split up into three components : the Berry-Esseen rate for the numerator,
the rate of convergence of the denominator to one and a small positive number
depending on the second component. For the Berry-Esseen bound of the MLE θT ,
Mishra and Prakasa Rao (1985) used this approach. For the normal approximation
of the numerator, they embedded it in a Brownian motion by the Kunita-Watanabe
theorem and used Lemma 3.2 of Hall and Heyde (1980) on the Berry-Esseen bound
for the Brownian motion with random time. For the convergence of the denominator
to one, they used Chebyshev’s inequality. They applied these two together and
obtained the rate O(T−1/5). One can use Burkholder inequality for the convergence
of the denominator to one to improve this rate to O(T−1/4+ε), ε > 0. Note that using
Skorohod embedding method one cannot obtain any better rate than O(T−1/4)
(see Borokov (1973)). Bose (1986) used characteristic function followed by Esseen’s
lemma for the numerator. The denominator was linked with the numerator via Itô
formula. He obtained the rate O(T−1/2(log T )2). Theorem 3.4 in Bose (1986) has a
misprint and gives the rate as O(T−1/2), but by following the proof given there it is
clear that the rate is O(T−1/2(log T )2). Bose (1985) decomposed the numerator in
to two parts using Itô formula. He used normal approximation by Esseen’s lemma
for one part and rate of convergence to zero for the other part and obtained the rate
O(T−1/2 log T ). Bishwal and Bose (1995) used the approach in Michel and Pfanzagl
(1971). For the normal approximation of the numerator, they used characteristic
function followed by Esseen’s lemma. For the convergence of the denominator to
one, they obtained exponential bound using the moment generating function of the
denominator. These two together improve the rate to O(T−1/2(log T )1/2). Bishwal
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and Bose (1995) also obtained the rate O(T−1/2(log T )1/2) using different random
normings which are useful for computation of a confidence interval.

Here we improve the Berry-Esseen bound for θT to O(T−1/2) using the squeezing
technique, due to Pfanzagl (1971) developed for the minimum contrast estimators in
the i.i.d. case. This method was adopted by Prakasa Rao (1973, 1975) respectively
for the minimum contrast estimators in the independent nonidentically distributed
case and discrete time Markov processes, and by Ivanov (1976) for the least squares
estimator of the nonlinear regression parameter to obtain a Berry-Esseen bound of
the order O(n−1/2).

2. Main Results

Let Φ(·) denote the standard normal distribution function. Throughout the
paper C denotes a generic constant (perhaps depending on θ, but not on anything
else).

We start with some preliminary lemmas. The first lemma gives a useful bound
for IT . Note that

IT :=
1
θ

(∫ T

0

XtdWt +
T −X2

T

2

)
,

which is known as the energy of the O-U process.
Lemma 2.1. For every δ > 0,

P

{∣∣∣∣
2θ

T
IT − 1

∣∣∣∣ ≥ δ

}
≤ CT−1δ−2.

Proof. It is clear that Xt =
∫ t

0
e−θ(t−s)dWs. Note that

E(X2
T ) =

1− e−2θT

2θ
; E(X4

T ) =
3(1− e−2θT )2

4θ
; and E(IT ) =

2θT − 1 + e−2θT

4θ2
.

By Itô formula (see Friedman (1975)), we have

2θ
IT

T
− 1 =

2
T

∫ T

0

XtdWt − X2
T

T
.

Using this and Chebyshev inequality, we have

P

{∣∣∣∣
2θ

T
IT − 1

∣∣∣∣ ≥ δ

}

≤ 1
δ2

E

∣∣∣∣
2θ

T
IT − 1

∣∣∣∣
2

=
1
δ2

E

∣∣∣∣∣
2
T

∫ T

0

XtdWt − X2
T

T

∣∣∣∣∣

2

≤ 2
δ2

{
4

T 2
E(IT ) + E(

X4
T

T 2
)
}

=
2
δ2

{
4

T 2

2θT − 1 + e−2θT

4θ2
+

3(1− e−2θT )2

4θ2T 2

}

≤ CT−1δ−2.
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The following lemma gives the characteristic functions of the quantities in the
expression for the MLE.

Lemma 2.2. (a) Let φT (z1, z2) := E exp(z1IT + z2X
2
T ), z1, z2 ∈ C. Then

φT (z1, z2) exists for |zi| ≤ δ, 1 = 1,2 for some δ > 0 and is given by

φT (z1, z2) = exp
(

θT

2

) [
2γ

(γ − θ + 2z2)e−γT + (γ + θ − 2z2)eγT

]1/2

where γ = (θ2 − 2z1)1/2 and we choose the principal branch of the square root.
(b) Let Gt,x := − (

2θ
T

)1/2
ZT −

(
2θ
T IT − 1

)
x. Then for |x| ≤ 2(log T )1/2 and for

|t| ≤ εT 1/2, where ε is sufficiently small,
∣∣∣∣E exp(itGT,x)− exp(

−t2

2
)
∣∣∣∣ ≤ C exp(

−t2

4
)(|t|+ |t|3)T−1/2.

(c) For |t| ≤ ε1T
1
2 , where ε1 is sufficiently small, we have as T →∞,

∣∣∣∣∣E exp

{
it

(
2θ

T

)1/2 (
θIT − T

2

)}
− exp(− t2

2
)

∣∣∣∣∣ ≤ C exp(− t2

4
)(|t|+ |t|3)T−1/2.

(d) Statement (c) above holds when ( 2θ
T )1/2(θIT − T

2 ) is replaced by ( 2θ
T )1/2ZT .

Part (a) is essentially given in Liptser and Shiryayev (1978) for z1 ∈ R, z2 = 0.
A complete proof for the case z1, z2 ∈ C may be found in Bose (1986). We shall
prove part (b) in details. Proof of part (c) is very similar to part (b) and will be
omitted. Proof of part (d) is also similar and may be found in Bose (1986).

Proof. By Itô formula,

ZT = θIT +
X2

T

2
− T

2
.

Note that

E exp(itGT,x)

= E exp

[
−it

(
2θ

T

)1/2

ZT − it

(
2θ

T
IT − 1

)
x

]

= E exp

[
−it

(
2θ

T

)1/2 {
θIT +

X2
T

2
− T

2

}
− it

(
2θ

T
IT − 1

)
x

]

= E exp(z1IT + z2X
2
T + z3)

= exp(z3)φT (z1, z2).

where z1 = −itθδT,x, z2 = − it
2

(
2θ
T

)1/2
and z3 = itT

2 δT,x with δT,x =
(

2θ
T

)1/2
+ 2x

T .
Note that (z1, z2) satisfies the conditions of (a) by choosing ε sufficiently small.
Let α1,T (t), α2,T (t), α3,T (t) and α4,T (t) be functions which are O(|t|T−1/2),
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O(|t|2T−1/2), O(|t|3T−3/2) and O(|t|3T−1/2) respectively. Note that for the given
range of values of x and t, the conditions on zi for part (a) of Lemma are satisfied.

Note also that z2 = α1,T (t). Further, with βT (t) = 1 + it
δT,x

θ + t2δ2
T,x

2θ2 ,

γ = (θ2 − 2z1)1/2 = θ

[
1− z1

θ2
− z2

1

2θ4
+

z3
1

2θ8
+ · · ·

]

= θ

[
1 + it

δT,x

θ
+

t2δ2
T,x

2θ2
+

it3δ3
T,x

2θ3
+ · · ·

]
= θ[1 + α1,T (t) + α2,T (t) + α3,T (t)]

= θβT (t) + α3,T (t) = θ[1 + α1,T (t)].

Thus
γ − θ = α1,T , γ + θ = 2θ + α1,T .

Hence the above expectation equals

exp
(

z3 +
θT

2

)

×
[

2θβT (t) + α3,T (t)
α1,T exp{−θTβT (t) + α4,T (t)}+ (2θ + α1,T (t)) exp{θTβT (t) + α4,T (t)}

]1/2

=
[

1 + α1,T (t)
α1,T exp(χT (t)) + (1 + α1,T (t)) exp(ψT (t))

]1/2

where

χT (t) = −θTβT (t) + α4,T (t)− 2z3 − θT

= −2θT + α1,T (t) + t2α1,T (t).

and

ψT (t) = θTβT (t) + α4,T (t)− 2z3 − θT

= θT

[
1 + it

δT,x

θ
+

t2δ2
T,x

2θ2

]
+ α4,T (t)− itT δT,x − θT

=
t2T

2θ

[(
2θ

T

)1/2

+
2x

T

]2

= t2 + t2α1,T (t).

Hence, for the given range of values of t, χT (t)− ψT (t) ≤ −θT .
Hence the above expectation equals

exp(− t2

2
)(1 + α1,T )1/2

[
α1,T exp{−2θT + α1,T + t2α1,T }

+ (1 + α1,T (t)) exp{t2α1,T (t)}]−1/2

= exp(− t2

2
)
[
1 + α1,T )(1 + α1,T (1 + α1,T ) exp{−θT + α1,T + t2α1,T }

]

exp(t2α1,T (t)).
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Parts (c) and (d) of Lemma 2.2 give the Berry-Esseen rate for ZT and IT im-
mediately by using the Esseen’s lemma.

Corollary 2.3.

(a) sup
xεR

∣∣∣∣∣P
{(

2θ

T

)1/2

ZT ≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

(b) sup
x∈R

∣∣∣∣P
{

(
2θ

T
)1/2(θIT − T

2
) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CT−1/2.

Before we prove the results on the Berry-Esseen bound for the MLE with non-
random norming, we need the following estimate on the tail behaviour of the MLE.

Lemma 2.4.

P

{
(
T

2θ
)1/2|θT − θ| ≥ 2(log T )1/2

}
≤ CT−1/2

Proof.

P

{
(
T

2θ
)1/2|θT − θ| ≥ 2(log T )1/2

}

= P

{∣∣∣∣∣
( 2θ

T )1/2ZT

( 2θ
T )IT

∣∣∣∣∣ ≥ 2(log T )1/2

}

≤ P

{∣∣∣∣(
2θ

T
)1/2ZT

∣∣∣∣ ≥ (log T )1/2

}
+ P

{∣∣∣∣
2θ

T
IT

∣∣∣∣ ≤
1
2

}

≤
∣∣∣∣P

{
(
2θ

T
)1/2|ZT | ≥ (log T )1/2

}
− 2Φ(−(log T )1/2)

∣∣∣∣

+2Φ(−(log T )1/2) + P

{∣∣∣∣
2θ

T
IT − 1

∣∣∣∣ ≥
1
2

}

≤ sup
x∈R

∣∣∣∣P
{

(
2θ

T
)1/2|ZT | ≥ x

}
− 2Φ(−x)

∣∣∣∣

≤ sup
xεR

∣∣∣∣P
{

(
2θ

T
)1/2|ZT | ≥ x

}
− 2Φ(−x)

∣∣∣∣

+2Φ(−(log T )1/2) + P

{∣∣∣∣(
2θ

T
)IT − 1

∣∣∣∣ ≥
1
2

}

≤ CT−1/2 + C(T log T )−1/2 + CT−1

≤ CT−1/2.

The bounds for the first and the third terms come from Corollary 2.3 (a) and Lemma
2.1 respectively and that for the middle term comes from Feller (1957, p. 166).

We are now in a position to obtain the Berry-Esseen bound of the order O(T−1/2)
for the MLE.
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Theorem 2.5.

sup
x∈R

∣∣∣∣P
{

(
T

2θ
)1/2(θT − θ) ≤ x

}
− Φ(x)

∣∣∣∣ = O(T−1/2).

Proof. We shall consider two posibilities.
(i) |x| > 2(log T )1/2.

We shall give a proof for the case x > 2(log T )1/2. The proof for the case x <
−2(log T )1/2 runs similarly. Note that

∣∣∣∣P
{

(
T

2θ
)1/2(θT − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ P

{
(
T

2θ
)1/2(θT − θ) ≥ x

}
+ Φ(−x)

But Φ(−x) ≤ Φ(−2(log T )1/2) ≤ CT−2. See Feller (1957, p. 166).
Moreover by Lemma 2.4, we have

P

{
(
T

2θ
)1/2(θT − θ) ≥ 2(log T )1/2

}
≤ CT−1/2.

Hence ∣∣∣∣P
{

(
T

2θ
)1/2(θT − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CT−1/2.

(ii) |x| ≤ 2(log T )1/2.

Let AT =
{

(
T

2θ
)1/2|θT − θ| ≤ 2(log T )1/2

}
and BT =

{
IT

T
> c0

}

where 0 < c0 < 1
2θ . By Lemma 2.4, we have

P (Ac
T ) ≤ CT−1/2. . . . (2.1)

By Lemma 2.1, we have

P (Bc
T ) = P

{
2θ

T
IT − 1 < 2θc0 − 1

}
< P

{
|2θ

T
IT − 1| > 1− 2θc0

}
≤ CT−1.

. . . (2.2)
Let b0 be some positive number. For w ∈ AT ∩BT and for all T > T0 with
4b0(log T0)1/2( 2θ

T0
)1/2 ≤ c0, we have

(
T

2θ
)1/2(θT − θ) ≤ x

⇒ IT + b0T (θT − θ) < IT + (
T

2θ
)1/22b0θx

⇒ (
T

2θ
)1/2(θT − θ)[IT + b0T (θT − θ)] < x[IT + (

T

2θ
)1/22b0θx]

⇒ (θT − θ)IT + b0T (θT − θ)2 < (
2θ

T
)1/2IT x + 2b0θx

2

⇒ ZT + (θT − θ)IT + b0T (θT − θ)2 < ZT + (
2θ

T
)1/2IT x + 2b0θx

2

⇒ 0 < ZT + (
2θ

T
)1/2IT x + 2b0θx

2
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since

IT + b0T (θT − θ) > Tc0 + b0T (θT − θ)

> 4b0(log T )1/2(
2θ

T
)1/2 − 2b0(log T )1/2(

2θ

T
)1/2 = 2b0(log T )1/2(

2θ

T
)1/2 > 0.

On the other hand, for w ∈ AT∩BT and for all T > T0 with 4b0(log T0)1/2( 2θ
T0

)1/2 ≤
c0, we have

(
T

2θ
)1/2(θT − θ) > x

⇒ IT − b0T (θT − θ) < IT − (
T

2θ
)1/22b0θx

⇒ (
T

2θ
)1/2(θT − θ)[IT − b0T (θT − θ)] > x[IT − (

T

2θ
)1/22b0θx]

⇒ (θT − θ)IT − b0T (θT − θ)2 > (
2θ

T
)1/2IT x− 2b0θx

2

⇒ ZT + (θT − θ)IT − b0T (θT − θ)2 > ZT + (
2θ

T
)1/2IT x− 2b0θx

2

⇒ 0 > ZT + (
2θ

T
)1/2IT x− 2b0θx

2

since

IT − b0T (θT − θ) > Tc0 − b0T (θT − θ)

> 4b0(log T )1/2(
2θ

T
)1/2 − 2b0(log T )1/2(

2θ

T
)1/2 = 2b0(log T )1/2(

2θ

T
)1/2 > 0.

Hence
0 < ZT + (

2θ

T
)1/2IT x− 2b0θx

2 ⇒ (
T

2θ
)1/2(θT − θ) ≤ x.

Letting D±
T,x :=

{
ZT + ( 2θ

T )1/2IT x± 2b0θx
2 > 0

}
, we obtain

D−
T,x∩AT ∩BT ⊆ AT ∩BT ∩

{
(
T

2θ
)1/2(θT − θ) ≤ x

}
⊆ D+

T,x∩AT ∩BT . . . . . . . (2.3)

If it is shown that ∣∣∣P
{

D±
T,x

}
− Φ(x)

∣∣∣ ≤ CT−1/2 . . . (2.4)

for all T > T0 and |x| ≤ 2(log T )1/2, then the theorem would follow from (2.1) -
(2.3).

We shall prove (2.4) for D+
T,x. The proof for D−

T,x is analogous. Note that
∣∣∣P

{
D+

T,x

}
− Φ(x)

∣∣∣

=
∣∣∣∣P

{
−(

2θ

T
)1/2ZT −

(
2θ

T
IT − 1

)
x < x + 2(

2θ

T
)1/2b0θx

2

}
− Φ(x)

∣∣∣∣



berry-esseen bound in the o-u process 9

≤ sup
y∈R

∣∣∣∣P
{
−(

2θ

T
)1/2ZT −

(
2θ

T
IT − 1

)
x ≤ y

}
− Φ(y)

∣∣∣∣

+
∣∣∣∣Φ

(
x + (

2θ

T
)1/2b0θx

2

)
− Φ(x)

∣∣∣∣
=: ∆1 + ∆2. . . . (2.5)

Lemma 2.2 (b) and Esseen’s lemma immediately yield

∆1 ≤ CT−1/2. . . . (2.6)

On the other hand, for all T > T0,

∆2 ≤ 2(
2θ

T
)1/2b0θx

2(2π)−1/2 exp(−x2/2)

where
|x− x| ≤ 2(

2θ

T
)1/2b0θx

2.

Since |x| ≤ 2(log T )1/2, it follows that |x̄| > |x|/2 for all T > T0 and consequently

∆2 ≤ 2(
2θ

T
)1/2b0θx

2(2π)−1/2x2 exp(−x2/8) ≤ CT−1/2. . . . (2.7)

From (2.5) - (2.7), we obtain
∣∣∣P

{
D+

T,x

}
− Φ(x)

∣∣∣ ≤ CT−1/2.

This completes the proof of the theorem.
Remarks. (1) The bounds in Theorem 2.5 are uniform over compact subsets

of the parameter space Θ.
(2) The bounds in Theorem 2.5 cannot be improved further.
(3) Here we have studied the properties of the MLE in the ergodic case, i.e.,

when θ > 0. Note that in the nonergodic case i.e., when θ < 0, when normalized
by a nonrandom norming eθT , converges to a Cauchy distribution (see Kutoyants
(1994)) and when normalized by a random norming (by IT ), converges to a normal
distribution. It remains to obtain the rate of convergence in this case. Note that
in the critical case, i.e., when θ = 0, the MlE has a distribution concentrated on a
half line, precisely the distribution of the ratio of a noncentral chisquare to the to
the sum of chisquares.

(4) In a Bayesian framework, the rates of convergence of the posterior distribu-
tions and the Bayes estimators has been studied in Bishwal (1998).

(5) The rates of convergence of the conditional least squares estimator and an
approximate maximum likelihood estimator when the O-U process is observed at
discrete time points in [0, T ] has been studied in Bishwal and Bose (1998).

(6) The rates of convergence of the MLE in the nonlinear homogeneous and
nonhomogeneous equations remains open.

(7) Extention to multidimensional process and and to multiparameter case re-
mains to be investigated.
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(8) It remains to investigate the nonuniform rates of convergence to normality
which are more useful.
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