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SUMMARY. This paper suggests a class of ARCH in the nonlinear mean (ARCH-NM) mod-

els. This class of models generalizes the usual ARCH-M model by considering the Box-Cox power

transformation of the conditional variance for representing the risk premium. Thus, this general-

ization provides an approach by which a flexible specification of time-varying risk premium in the

nonlinear form for ARCH is possible. Properties of this model are studied and the estimation pro-

cedure is described. The proposed model is then applied to the daily closing prices on the Bombay

Stock Exchange Sensitive Index and its performance compared with the standard ARCH-M model

using proper diagnostic checks.

1. Introduction

In a seminal paper in 1982, Engle introduced the autoregressive conditional het-
eroscedastic (ARCH) model. This model allows the conditional variance to change
over time as a function of past errors keeping the unconditional variance constant.
It has been observed that such models capture many temporal behaviours like thick
tail distribution and volatility clustering of many economic and financial variables
(see Bera and Higgins (1993), Bollerslev, Chou and Kroner (1992) and Bollerslev,
Engle and Nelson (1994) for surveys on ARCH model and its generalizations).

The basic ARCH model has been generalized in different directions. One im-
portant generalization of ARCH model is what is known as ARCH in the mean
(ARCH-M) model which was first introduced by Engle, Lilien and Robins (1987).
The effects of risk and uncertainty on the returns on asset prices have increasingly
attracted the economists and other researchers of capital markets and business
finance in recent years. As the degree of uncertainty in asset return varies over
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time, the compensation required by the risk averse economic agents for holding
risky asset must also be varying. Existence of time varying risk premia i.e., increase
in the expected rate of return due to an increase in the variance of the return, not
only in asset pricing models but also in foreign exchange markets and term structure
of interest rates, have been studied extensively (see, for instance, Amsler (1984),
Domowitz and Hakkio (1985), Merton (1986) and Pesando (1983)). Considering
a world of two assets - one is risky and the other riskless - Engle et al. (1987)
showed that the mean and the variance of the return of the risky assets move
in the same direction. They also showed that the conditional variance directly
affects the expected return on a portfolio. In order to incorporate such aspects in
the usual ARCH model framework, they suggested a new approach in which the
ARCH model is extended in a direction so that it allows the conditional variance to
influence the mean return. They also found that ”variables which apparently were
useful in forecasting excess return are correlated with the risk premia and lose their
significance when a function of the conditional variance is included as a regressor”
(p. 392). Engle et al. (1987) specified the class of ARCH-M models as follows :

yt = x′tβ + λ
√

ht + εt (1.1)

εt | Ψt−1 ∼ N(0, ht) (1.2)

ht = α0 + α1ε
2
t−1 + ... + αpε

2
t−p (1.3)

where α0 > 0 and αi ≥ 0 for all i = 1, 2, . . . , p, yt is the dependent variable, xt is
the k × 1 vector of exogenous variables which may include lagged values of the
dependent variable, Ψt−1 = {yt−1, xt−1, . . .} is the information set at t− 1, β is a
k × 1 vector of regression parameters and εt is the error term associated with the
regression.

In financial literature λ
√

ht is known as risk premium. It may be noted that the
ARCH-M specification requires the assumption of constant relative risk aversion
utility function. However, this assumption is fairly strong and may not indeed
be true in many practical situations. In most of the works on ARCH-M or close
relatives of ARCH-M models the maintained hypothesis is that the risk premium can
be expressed as an increasing function of the conditional variance of the asset return,
say, g(ht). While in most applications g(ht) =

√
ht has been used [see, for example,

Bollerslev, Engle and Woolridge (1988), Domowitz and Hakkio (1985)], Engle et
al. (1987) observed that g(ht) = ln ht worked better in estimating time varying
risk premia in the term structure. In fact, they have discussed representation of
risk premium as some function of the conditional variance. However, as pointed
out by Pagan and Hong(1991), the use of lnht is somewhat restrictive in the sense
that for ht < 1, ln ht will be negative, and for ht −→ 0, the effect on yt will
be infinite. It may be pointed out that it is not enough that the risk premium
is time varying. Since the expected rate of return will depend on the actual risk
associated with decisions about yt, it is imperative that proper functional forms of
ht are used to represent the risk premium. In fact, Backus and Gregory (1993),
in a series of numerical examples, have shown that the relation between the risk
premium and the conditional variance of the excess return can have virtually any
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shape - it can be increasing, decreasing, flat or even nonmonotonic depending on the
parameters of the economy. Thus, although theory may lead to a monotonic relation
between risk premium and conditional variance, it does not guarantee it. There are
evidences also (e.g., Glosten, Jagannathan and Runkle (1989) and Harvey (1989,
1991)) that the monotonic relation between the risk premium and the conditional
variance is not uniformly supported by the behaviour of actual prices. Given this
somewhat unsatisfactory nature of parametric representation of risk premium which
is basically an unobservable variable, some researchers like Pagan and Ullah (1988)
and Pagan and Hong (1991) have suggested nonparametric methods. However,
there are certain limitations in these methods, and hence as yet these cannot be
recommended as standard tools of investigation where risk premium is involved (for
details, see Pagan and Hong (1991)).

In the light of all these observations, it is clear that a more general and flexible
specification of risk premium is called for. In this paper we propose a generalization
of ARCH-M model in which g(ht) is assumed to have a general functional form
as given by the Box-Cox (1964) family of power transformations. It is well known
that this family of transformations encompasses all other standard functional forms
as special cases. In this paper we study the proposed model in which ht has the
usual ARCH specification as given in (1.3). It may be noted that the usual ARCH-
M specification is a special case of this generalization. Hence, for any given data
the adequacy of the usual ARCH-M model against a class of generalized ARCH-M
models as proposed by us [to be henceforth referred to as ARCH in the nonlinear
mean (ARCH-NM) models] can now be studied.

The plan of this paper is as follows. In Section 2 we describe the proposed
ARCH-NM model. The estimation of the model is described in Section 3. In Sec-
tion 4 the advantage and appropriateness of this generalized approach in ARCH
modelling is illustrated through an application of the proposed model to Bombay
Stock Exchange Sensitive Index data. The paper concludes with some final com-
ments in Section 5.

2. The Proposed Model

We propose a generalization of the usual ARCH-M specification by considering
the risk premium in equation(1.1) as being λg(ht) where g(ht) is defined as the
Box-Cox (1964) transformation of ht, i.e.,

g(ht) =
hξ

t − 1
ξ

, for ξ 6= 0

= ln ht, for ξ = 0.

(2.1)

Thus, this generalization of the ARCH-M model allows for nonlinear represen-
tation in the mean of yt through g(ht). The proposed ARCH-NM model is therefore
represented as

yt = x′tβ + λg(ht) + εt, t = 1, 2, ...., T (2.2)
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where g(ht) is as defined in(2.1), εt|Ψt−1 ∼ N(0, ht) and the conditional variance
ht has the usual ARCH specification as stated in (1.3), i.e.,

ht = α0 + α1ε
2
t−1 + .... + αpε

2
t−p

where α0 > 0, αi ≥ 0 ∀i = 1, 2, ..., p,
It may be noted at this stage that risk premium may also be negative, as dis-

cussed by Domowitz and Hakkio (1985) and Lintner (1965). However, unlike these
models where this may be so due only to the negative sign of λ, in the proposed
ARCH-NM model this may also due to g(ht) being negative. It is obvious that the
model given by (2.1) and (2.2) reduces to the standard ARCH-M model when ξ = 1
or ξ = 1/2, the resulting constants in the transformation being adjusted through
the appropriate regression parameters.

It is also evident from (2.2) that the {yt} series is autocorrelated. Hence, it
implies that the proposed model crossbreeds, as in ARCH-M model, the random
walk hypothesis which is assumed to hold for stock market returns. In fact, using a
variance ratio test Lo and MacKinlay (1988) rejected the random walk hypothesis
for weekly stock market returns. Obviously, the property of autocorrelatedness in
yt can be used to improve the accuracy of the forecasts. Empirical evidence towards
this improvement in prediction in time varying risk premia has been provided by
Shiller (1979), and Shiller, Campbell and Schoenholtz (1983) for term structure
of interest rates, and by Domowitz and Hakkio (1985), Hodrick and Srivastava
(1984) and Kendall (1989) for foreign exchange market. Unfortunately, the exact
expressions for unconditional mean, variance and autocovariances are very difficult
to obtain. However, some approximate expressions may be obtained for the ARCH-
NM (1) model by considering Taylor series expansion of g(ht) upto squared term.
For the sake of algebraic simplicity in deriving these expressions, the model for yt

in (2.2) is assumed to have no exogenous variable except the constant term. The
approximate expressions for the unconditional mean, variance and autocovariances
of yt for such a model are stated in the following two results; the derivations are
given in Appendix A.

Result 1. The approximate expressions for the unconditional mean and vari-
ance of yt are given by

E(yt) = β + λ

[
( α0
1−α1

)ξ − 1
ξ

+ (ξ − 1)
(

α0

1− α1

)ξ−2 (α0α1)2

(1− α1)2(1− 3α2
1)

]
(2.3)

and

V (yt) =
α0

1− α1
+ λ2

[
(2− ξ)

(
α0

1− α1

)2(ξ−1)
]

2(α0α1)2

(1− α1)2(1− 3α2
1)

+
λ2

4
(ξ − 1)

(
α0

1− α1

)2(ξ−1)

K0

+ λ2

[
(ξ − 1)

(
α0

1− α1

)2ξ−3

− 2
(

α0

1− α1

)2ξ−1
] {

6α3
0α

2
1(1 + 2α1 + 2α2

1)
(1− 15α3

1)(1− 3α2
1)(1− α1)2

}

(2.4)
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where K0 is appropriately defined, the expression being given in Appendix A.
Result 2. The first-order autocovariance of yt can be approximated as

Cov (yt, yt−1) = λ2

[(
α0

1− α1

)2(ξ−1)

(4− 4ξ + ξ2)

]
K1

+
λ2

2

[(
α0

1− α1

)2(ξ−1)

(ξ − 1)− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

K2

+
λ2

2

[(
α0

1− α1

)2ξ−3

(ξ − 1)− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

K3

+
λ2

4

[(
α0

1− α1

)2(ξ−2)

(ξ − 1)2
]

K4, (2.5)

where the expressions of K1,K2,K3 and K4 are given in Appendix A.
The higher order autocorrelations of yt are very cumbersome to evaluate when

Taylor series expansion of g(ht) upto squared term is considered. However, if one
considers only the first-order term of the Taylor series expansion of g(ht), then it is
easy to find that Corr (yt, yt−k)(= ρk, say) =

∑p
i=1 αiρk−i, k > p for an ARCH-NM

(p) model. As for 0 < k ≤ p, no such recursive relation exists for Corr (yt, yt−k)
and hence the expressions of these autocorrelations are to be separately obtained
for each case.

It may be noted that the expressions of E(yt), V (yt), Cov(yt, yt−1) etc. for the
standard ARCH and ARCH-M models may be obtained as special cases where
λ = 0 and ξ = 1, respectively, in the expressions in (2.3), (2.4) and (2.5). Thus, by
substituting ξ = 1 in (2.3) through (2.5), we find that

E(yt) = β + λ

(
α0

1− α1
− 1

)
(2.6)

V (yt) =
α0

1− α1
+

2(λα0α1)2

(1− α1)2(1− 3α2
1)

(2.7)

and

Cov(yt, yt−1) =
2λ2α2

0α
3
1

(1− α1)2(1− 3α2
1)

. (2.8)

We can interpret E(yt) in the context of finance models as being the uncon-
ditional expected return for holding a risky asset. Since in the absence of a risk
premium V (yt) = α0/(1−α1), the second component in (2.7) may be considered to
be due to the presence of a risk premium which makes yt more dispersed. Finally,
as we know, ARCH-M effect makes yt serially correlated and this serial correlation
is given by (2.8). As for the other special case viz. ARCH model, which can be
obtained by having λ = 0, it immediately follows from (2.3) through (2.5) that
E(yt) = β, V (yt) = α0/(1−α1) and Cov(yt, yt−1) = 0. Obviously, these correspond
to the situation where risk premium is absent.
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3. Estimation

The model is estimated by the method of maximum likelihood. The log-likelihood
based on T observations and conditional on the initial values of all variables, is given
by (omitting the constant)

L(θ | Ψt−1) =
T∑
1

lt(θ | Ψt−1) (3.1)

where

lt(θ | Ψt−1) = −(lnht)/2− ε2t /2ht, (3.2)

θ′ = (β′, λ, α′, ξ) is an 1 × m(= k + p + 3) vector of all parameters, and α′ =
(α0, α1, . . . , αp) is the 1 × (p + 1) component vector of coefficients in the ARCH
specification.

The first order condition of maximization of lt(θ) (omitting henceforth from
notation conditional on Ψt−1, for the sake of notational simplicity) yields

∂lt(θ)
∂θ

=
1

2ht

∂ht

∂θ
(ε2t /ht − 1) + εt/ht

∂β′

∂θ
xt + λ

∂g(ht)
∂θ

+ g(ht)
∂λ

∂θ
. (3.3)

It can be verified that ∂λ
∂θ is an m× 1 vector whose (k + 1)th element is one and

other elements are zeros; ∂β′

∂θ is a m× k matrix of elements of zeros and ones with
its first k×k submatrix being an identity matrix and the last (m−k)×k submatrix
being a null matrix. All other derivatives viz., ∂lt(θ)

∂θ , ∂ht

∂θ , ∂g(ht)
∂θ are m × 1 vector

each. The evaluation of ∂lt(θ)
∂θ requires the expressions of ∂ht

∂θ and ∂g(ht)
∂θ and the

latter can again be expressed in terms of ∂ht

∂θ . However, ht as well as g(ht) are all
functions of the previous innovations and all these derivatives will be of recursive
structure. The required derivatives are thus obtained by the usual assumption that
the initial values of ∂ht

∂θ and εt’s do not depend upon the parameters. All the
recursive relations are given in Appendix B.

Now let Sti = ∂lt(θ)
∂θi

, θi being the i-th element of the parameter vector θ. Then

∂L(θ)
∂θ =

∑
t

∂lt(θ)
∂θ =




S11 S21 · · · ST1

...
S1m S2m · · · STm


×




1
...
1


 = S′e (say),

where e is a T×1 vector of unity and S is a T×m matrix, the (t, i)th element of which
is ∂lt(θ)

∂θi
. The first order condition of maximization of the likelihood ensures that

∂L(θ)
∂θ = S′e = 0. The information matrix corresponding to the t− th observation is

It = E(∂lt(θ)
∂θ

∂lt(θ)
∂θ′ ) = −E(∂2lt(θ)

∂θ∂θ′ ), and the same for the sample of T observations
is given by I = E(S′S/T ). Furthermore, S′S/T is also a consistent estimator
of I under certain conditions. It may be noted that in this model conditional
mean involves the parameters of the conditional variance, and hence the information
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matrix is not block diagonal. In order to solve the nonlinear equations for obtaining
the ML estimate , we use the well known algorithm suggested by Berndt, Hall , Hall
and Hausman (1974). This BHHH algorithm can be written as :

θ(i+1) = θ(i) + η(S(i)′S(i))−1S(i)′e

where θ(i) is the estimate of θ at the i− th step of iteration,S(i) the matrix of first
order derivatives evaluated at θ(i), and η the step length parameter. This algorithm
ensures the existence of a consistent estimate of θ. If θ̂n be the maximum likelihood
estimate of θ thus obtained, then applying Crowder’s theorem (1976) we may easily
conclude that (S′S)−1/2 (θ̂n − θ0)

A∼ N(0, Im), where θ0 is the true value of the
parameter vector θ, and Im, the identity matrix of order m.

As stated in the preceding section, the adequacy of the usual ARCH-M model for
any given data can now be studied by considering the proposed ARCH-NM model
as the alternative. In other words, null hypotheses like ξ = 1 and ξ = 1/2 may be
tested against appropriate alternatives given by ξ 6= 1 and ξ 6= 1/2 respectively, in
the ARCH-NM framework. Standard asymptotic tests may be used to carry out
these hypotheses testing.

4. An Illustration

In this section we report the results of an application of the proposed model
to daily closing prices on the Bombay Stock Exchange (BSE) as measured by the
BSE Sensitive Index (SENSEX). The data cover the period October (4th week),
1989 to April (2nd week), 1996. The analysed series is the first differences of the
logarithms of SENSEX. Hence, the data represent the continuously compounded
rate of return for holding the (aggregate) securities for one day. It is evident from the
plot of this return series which is given below, that the data exhibit episodes of both
low and high volatility. Since dependence in ”squared” data signifies nonlinearity
and presence of conditional heteroscedasticity, we computed the Ljung-Box test
statistic for the ”squared” data, denoted as Q2(p), for lags upto 24. All these values
were found to be highly significant (cf. Table I), suggesting thereby the presence
of nonlinear dependence in the return data. We also obtained the skewness and
kurtosis coefficients of yt which are presented in Table I. The skewness coefficient
conveys some evidence of asymmetry in the unconditional distribution. The kurtosis
coefficient is significantly greater than 3, which indicates that the unconditional
distribution of the data has heavier tail than a normal distribution.

Further, we carried out an ARCH test which yielded the value of the test statistic
as 119.121. Obviously, this is highly significant both at 1 per cent and 5 per cent
levels of significance. Since nonlinear dependence and a heavy-tailed unconditional
distribution are typical characteristics of conditionally heteroscedastic data, we may
thus conclude that the return data may be appropriately analysed by an ARCH
model.
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Figure 1. Time plot of the logarithmic growth rate of daily BSE SENSEX

Having recognized that ARCH effect is very strong in the data, we now discuss
about the suitability of ARCH-M model or its generalization in the form of the pro-
posed ARCH-NM model, for analysing the given return data. To this end it is quite
clear from the plot that the changes in variance are similar to those hypothesized
by ARCH-M/ARCH-NM model. Since both these models yield serial correlation
in yt, we computed Ljung-Box Q(p) test statistic for all lags from 1 to 24 to find
if the data support this property. These Q(p) values are summarized in Table I.
It is evident from the values of Q(p) test statistic that the (linear) correlations are
highly significant at 1 per cent level, indicating strongly that ARCH-M or its gen-
eralization in ARCH-NM would fit the data well. In what follows we report the
empirical findings which, in fact, lend strong support to our approach in which a
wider class of models given by ARCH-NM is suggested for proper representation
of risk premium. Since it is well-known that GARCH is a better and generalized
representation of the conditional variance than ARCH, the empirical exercise was
carried out with GARCH representation for ht. In other words, ht was assumed to
be given by

ht = α0 + α1ε
2
t−1 + · · ·+ αpε

2
t−p + η1ht−1 + · · ·+ ηqht−q (4.1)

where α0 > 0, αi ≥ 0 for i = 1, 2, . . . p and ηj ≥ 0 for j = 1, 2, . . . , q.
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Table 1. Diagnostic checks of models for BSE SENSEX data

Diagnostics Observed GARCH-M GARCH-NM
Series Standardized Residuals Standardized Residuals

Skewness Coefficient 0.0209 0.4726 0.3624
Kurtosis Coefficient 4.9399 4.1904 1.6875
ARCH 119.1211* 8.6736* 0.0934
Q (4) 16.7* 25.0* 40.9*
Q (8) 22.9* 26.0* 42.7*
Q (12) 32.5* 33.1* 45.6*
Q (16) 43.3* 47.3* 57.0*
Q (20) 56.6* 54.7* 62.4*
Q (24) 59.4* 55.9* 64.6*
Q2 (4) 359.0* 34.9* 3.25
Q2 (8) 582.0* 66.3* 4.90
Q2 (12) 786.0* 134.0* 13.5
Q2 (16) 1000.0* 189.0* 17.1
Q2 (20) 1120.0* 225.0* 18.8
Q2 (24) 1210.0* 252.0* 20.5

*indicates significance at 1 per cent level.

As reported below, GARCH (1,1) turned out to be the best model from con-
sideration of maximization of the log-likelihood function. It may also be stated
here that for the purpose of this application, it was assumed that excepting for an
intercept term there is no other regressor in the model. By following the method
of estimation outlined in the preceding section for the proposed ARCH-NM model,
we found that the log-likelihood function given in (3.1) was maximized at ξ = 0.05.
However, the value of the log-likelihood function corresponding to ξ = 0 being al-
most the same as the one at ξ = 0.05, (differing in the second decimal place only),
we report the best fitted model as (with t-ratios given in parentheses)

yt = 0.0152 + 0.0018 lnht + εt, L(θ̂) = 3628.77
(2.5347) (2.4699)

ht = 0.00001 + 0.12859 ε2t−1 + 0.85151 ht−1.
(4.96431) (7.78673) (55.80221)

(4.2)
Thus, the chosen model is GARCH-NM of order (1,1) with ξ = 0. It is evident

that for this model all the parameters in ht are significant at 1 per cent level of
significance, and those in yt are clearly significant at 5 per cent level and ”almost”
significant at 1 per cent level. It may be mentioned in this context that the sig-
nificant positive value of λ is in conformity with the basic understanding in the
risk premium literature that positive value of the risk aversion parameter is quite
desirable. In order to compare this model with the standard GARCH-M model, we
computed the maximum log-likelihood value corresponding ξ = 1/2 and found it
to be only 3501.21, which is much smaller than the log-likelihood value of the cho-
sen GARCH-NM model. As regards the significance of the estimated GARCH-M
model, we find from (4.3) below that while all parameters in ht are significant, the
risk aversion parameter λ in yt is highly insignificant, the t-statistic value being only
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0.3031. Thus, not only that the standard GARCH-M model with ξ = 1/2 produces
a much smaller log-likelihood value as compared to the chosen GARCH-NM model,
but also that a straightforward GARCH-M fitting would choose an inappropriate
model for the data. In order to formally test for the adequacy or otherwise of the
standard GARCH-M model given the framework of a more generalized model as
proposed in this paper, we carried out the likelihood ratio test with the null hy-
pothesis specifying the standard GARCH-M model. The test obviously soundly
rejected the null hypothesis in favour of the proposed GARCH-NM model.

yt = −0.0005 + 0.0613
√

ht + εt, L(θ̂) = 3501.21
(−0.1272) (0.3031)

ht = 0.00002 + 0.0991 ε2t−1 + 0.3941 ht−1.
(8.3136) (8.1062) (6.3815)

(4.3)

In order to judge the goodness of the fitted GARCH-NM model and compare
it with the standard GARCH-M model, we now report in Table I the results of
diagnostic checks for the standardized residuals given by

∼
ε t = ε̂t/

√
ĥt, where ε̂t and

ĥt are the ML residual and estimated conditional variance at t, respectively. We
observe from this table that the autocorrelations of ε̂t’s are significant; this suggests
that there exist some linear correlations in the GARCH-NM standardized residuals.
In other words, the autocorrelations of yt have not been fully incorporated through
the GARCH-NM framework. It may, however, be noted from a glance at Table
I that the inference with regard to performance by Q(p) test is the same for the
usual GARCH-M (with ξ = 1/2) standardized residuals as well. Thus, irrespective
of the framework being GARCH-M or GARCH-NM, we observe that the residuals
exhibit serial correlation. In order to find if this correlation could be rectified by
including an ARMA type component in the conditional mean part of the model, we
considered an extension of the model in (2.2) by including yt−1 as an explanatory
variable. While this led to some improvement in the serial correlation of these
(standardized) residuals, the maximum value of the log-likelihood function reduced
quite significantly to 3585.97, as compared to 3628.77 for the original GARCH-NM
model of (2.2). Thus, we find, that, by ML criterion, the original GARCH-NM
model turns out to be a more appropriate model for the given data set.

As far as the autocorrelation structure of
∼2
ε t is concerned, Q2(p) based on

standardized GARCH-NM residuals show that none of the 24 test statistic values
corresponding to 24 lags is significant even at 5 per cent level. We may, there-
fore, conclude that the residuals contain no more nonlinearity. It is also evident
from Table I that Q2(p) values are highly significant with standardized GARCH-M
residuals. Thus, we observe that in terms of diagnostic checking with standardized
residuals, the chosen GARCH-NM is a better model than GARCH-M.

Finally, we investigate the normality of
∼
ε t. It is well-known that the family

of ARCH models including its various generalizations are inherently non-normal,
and hence it is expected that when appropriately estimated, the estimated models
would account for part of the non-normality in the data. We find from Table I
that the unconditional distribution of the observed series is skewed slightly to the
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right having skewness coefficient as 0.0209 and fat tailed with kurtosis coefficient
being 4.9399. A glance at Table I suggests that for both GARCH-M and GARCH-
NM standarized residuals, there are departures from normality as evidenced from
the skewness and kurtosis coefficients computed from these residuals. Obviously,
these findings were not entirely expected, at least for the GARCH-NM standard-
ized residuals which otherwise performed better than GARCH-M model. In order
to explain if these findings were due to any further conditional heteroscedasticity
remaining in the residuals, ARCH test was carried out. The test statistic values for
GARCH-NM and GARCH-M standardized residuals were found to be 0.0934 and
8.6736, respectively. The conclusions, therefore, are that while no ARCH effects
were left with GARCH-NM residuals, significant ARCH effects still remained in the
standard GARCH-M residuals.

Thus, we have established through this illustration that the suggested extension
of the standard (G) ARCH-M model (in which the risk premium component is
assumed to be a flexible function in the sense of Box-Cox transformation) can
provide improvement over the standard (G) ARCH-M model. This notwithstanding,
it is evident from this example that the fit is not entirely satisfactory from the point
of view of some criteria of model selection. The explanations may lie in the fact that
the proposed model is not nonlinear enough to model this data quite satisfactorily.
It is now recognised that correct specification of the conditional variance function is
important in several respects (see, for example, Granger and Newbold (1976) and
Hopwood, Mckeown and Newbold (1984) for relevant details in ARCH literature).
It is, in fact, clear from our discussions in Section 1 that the performance of ARCH-
M and ARCH-NM models would be affected by the specification of the functional
form of ht. In the proposed ARCH-NM model a flexible functional form is all
the more important since g(ht) appears in the conditional mean of yt. Several
alternative functional forms for ht have been suggested in ARCH framework by
Engle and Bollerslev (1986), Gweke (1986), Hentschel (1995), Higgins and Bera
(1992), Pantula (1986) and several others. We are currently exploring possible
extensions of our work along these directions.

5. Conclusions

In the literature on time-varying risk premium researchers have used conditional
variance ht or

√
ht or ln ht to represent the risk premium in the model. It is, there-

fore, natural to argue that a flexible functional form of ht for representing risk
premium should be more useful and appropriate. Some of the existing empirical
evidences lend support towards this direction. Keeping this in mind, we have pro-
posed in this paper a generalization of the ARCH-M model by allowing for nonlinear
representation in the mean of the dependent variable. This is done by considering
the Box-Cox power transformation of the conditional variance representing the risk
premium in the model. Obviously, this generalized model encompasses various other
functional forms used in the risk premium literature as special cases. The estima-
tion of this model by the method of maximum likelihood has been discussed, and
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an illustrative example in support of this generalized approach for representation of
risk premium has also been given in this paper. Our illustration of BSE SENSEX
data demonstorates that the suggested generalization provides improvement over
the standard ARCH-M model. Before we conclude, we may state that keeping in
mind the importance of functional form of ht in the performance of ARCH-NM
model, we are currently working on extending our work by considering alternative
functional forms of ht.

Appendix A

To prove Results 1 and 2, we need the unconditional expectation of ω′t =
(ε8t , ε4t , ε2t ). Engle (1982) proved that E(ωt) = (I −A)−1b, where

A =




105α4
1 420α0α

3
1 630α2

0α
2
1 420α3

0α1

0 15α3
1 45α2

1 43α2
1α1

0 0 3α2
1 6α0α1

0 0 0 α1




and b′ = (105α4
0 15α3

0 3α2
0 α0).

It is quite clear that to obtain E(ε8t ) we need only the first row of (I −A)−1, i.e.,




1
1−105α4

− 420α0α3
1

(1−105α4
1)

630α2
0α2

1(1+30α3
1)

(1−105α4
1)‘(1−15α3

1)(1−3α2
1)

− 420α3
0α1(45α5

1+30α3
1+6α2

1+1)

(1−105α4
1)(1−15α3

1)(1−3α2
1)(1−α1)




′

and therefore

E(ε8t ) =
105α4

0(1− 5α1 + 15α2
1 − 114α3

1 + 495α4
1 − 315α5

1 − 405α6
1)

(1− 105α4
1)(1− 15α3

1)(1− 3α2
1)(1− α1)

.

Similarly it may easily be checked that

E(ε6t ) =
105α3

0(1 + 2α1 + 6α2
1 + 3α3

1)
(1− 15α3

1)(1− 3α2
1)(1− α1)

,

E(ε4t ) =
3α2

o(1 + α1)
(1− α1)(1− 3α2

1)
,
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and

E(ε2t ) =
α0

1− α1
.

Proof of Result 1. As stated in the text, we take the model as

E(yt) = β + λEg(ht).

Now, the Taylor series expansion of g(ht), around E(ht) = E(ε2t )(= h̄t, say) yields

g(ht) = g(h̄t) + (ht − h̄t)g′(ht) |ht=h̄t
+

(ht − h̄t)2

2!
g′′(ht) |ht=h̄t

,

taking upto squared term only.
Therefore,

E(yt) = g(h̄t) + β + λ

{
f(h̄t) + g′′(h̄t)

V (ht)
2

}

Now, V (ht) = V (α0 + α1ε
2
t−1) = 2(α0α1)

2

(1−α1)2(1−3α2
1)

, and hence, we have

E(yt) = β + λ

[
( α0
1−α1

)ξ − 1
ξ

+ (ξ − 1)
(

α0

1− α1

)ξ−2 (α0α1)2

(1− α1)2(1− 3α2
1)

]
.

As for the variance of yt, it can easily be seen to be

V (yt) =
α0

1− α1
+ λ2[g′(h̄t)2 + h̄2

t g
′′(h̄t)2 − 2g′(h̄t)g′′(h̄t)h̄t]V (ht) +

λ2

4
g′′(h̄t)2V (h2

t ) + λ2[g′(h̄t)g′′(h̄t)− 2h̄tg
′′(h̄t)2]Cov(ht, h

2
t ).

Since V (h2
t ) = E(h4

t )− {E(h2
t )}2, we need the expressions for E(h2

t ) and E(h4
t ) for

simplifying V (yt). These latter expressions are as follows.

E(h2
t ) = α2

0(1 + α1)/(1− α1)(1− 3α2
1)

E(h4
t ) =

α4
0(1 + 3α1 + 15α2

1 − 6α3
1 − 50α3

1 − 1065α5
1 − 405α6

1 − 11335α7
1)

(1− 105α4
1)(1− 15α3

1)(1− 3α2
1)(1− α1)

+
α4

0(56700α8
4 − 9450α9

1 − 28350α10
1 )

(1− 105α4
1)(1− 15α3

1)(1− 3α2
1)(1− α1)

Therefore,

V (ht) =
α4

0(8α2
1 − 18α3

1 + 37α4
1 − 817α5

1 + 933α6
1 − 9160α7

1 + 6929α8
1)

(1− 105α4
1)(1− 15α3

1)(1− 3α2
1)2(1− α1)2

−α4
0(117555α9

1 + 154995α10
1 + 113400α11

1 − 113400α12
1 − 85050α13

1 )
(1− 105α4

1)(1− 15α3
1)(1− 3α2

1)2(1− α1)2

= K0 (say).
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We also note that Cov(ht, h
2
t ) involves E(h3

t ) which is given by

E(h3
t ) = E(α3

0 + 3α2
0α1ε

2
t−1 + 3α0α

2
1ε

4
t−1 + α3

1ε
6
t−1)

=
α3

0(1 + 2α1 + 6α2
1 + 3α3

1)
(1− 15α3

1)(1− 3α2
1)(1− α1)

.

Hence,

Cov(ht, h
2
t ) =

6α3
0α

2
1(1 + 2α1 + 2α2

1)
(1− 15α3

1)(1− 3α2
1)(1− α1)2

.

Thus we obtain the expression for V (yt) given in (2.4).
Proof of Result 2. The first order autocovariance of yt, denoted by ν1, is

ν1 = Cov[β + λg(ht), β + λg(ht−1)]
= λ2Cov[g(ht), g(ht−1)].

Again by using Taylor series expansion of g(ht), with respect to h̄t and then taking
upto the second term only, we have

ν1 = λ2

[
(4− 4ξ + ξ2)

(
α0

1− α1

)2(ξ−1)
]

Cov(ht, ht−1)

+
λ2

2

[
(ξ − 1)

(
α0

1− α1

)2(ξ−3)

− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

Cov(ht, h
2
t−1)

+
λ2

2

[
(ξ − 1)

(
α0

1− α1

)2ξ−3

− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

Cov(h2
t , ht−1)

+
λ2

4

[
(ξ − 1)2

(
α0

1− α1

)2(ξ−2)
]

Cov(h2
t , h

2
t−1).

To evaluate ν1, we note that it involves several covariances which in turn involve
the expressions for E(ht ht−1), E(ht h2

t−1), E(h2
t ht−1) and E(h2

t h2
t−1).

After algebraic simplifications, these expectation terms may be found to be as
follows.

E(htht−1) =
α2

0(1 + α1 − α2
1)

(1− α1)(1− 3α2
1)

E(hth
2
t−1) =

α3
1(1 + 2α1 + 2α2

1 − 9α3
1 − 12α4

1)
(1− α1)(1− 3α2

1)(1− 15α3
1)

E(h2
t ht−1) =

α3
0(1 + 4α1 + 6α2

1 − 15α3
1 − 42α4

1 − 36α5
1 + 90α6

1)
(1− α1)(1− 3α2

1)(1− 15α3
1)

and

E(h2
t , h

2
t−1) =

α4
0(1 + 3α1 + 7α2

1 + 6α3
1 − 38α4

1 − 51α5
1 + 511α6

1 + 315α7
1)

(1− α1)(1− 3α2
1)(1− 15α3

1)(1− 105α4
1)

−α4
0(7050α8

1 + 27209α9
1 + 60930α10

1 + 99540α11
1 + 52380α12

1 )
(1− α1)(1− 3α2

1)(1− 15α3
1)(1− 105α4

1)
.
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Using the expressions for these expectation terms, the covariances in the expression
for ν1 can be reduced to

Cov(ht, ht−1) =
2α2

0α
3
1

(1− α1)2(1− 3α2
1)

= K1(say),

Cov(ht, h
2
t−1) =

3α3
0α

2
1(1 + 4α1 + 4α2

1)
(1− α1)2(1− 3α2

1)(1− 15α3
1)

= K2(say),

Cov(h2
t , ht−1) =

α3(2α1 + 2α2
1 − 6α3

1 − 12α4
1 + 6α5

1 + 12α6
1 − 90α7

1)
(1− α1)2(1− 3α2

1)(1− 15α3
1)

= K3 (say),

and

Cov(h2
t , h

2
t−1) =

α4
0(8α3

1 + 79α4
1 + 215α5

1 + 799α6
1 − 1504α7

1 − 12201α8
1)

(1− α1)2(1− 3α2
1)(1− 15α3

1)(1− 105α4
1)

−α4
0(21146α9

1 + 11626α10
1 − 21867α11

1 − 148323α12
1 )

(1− α1)2(1− 3α2
1)2(1− 15α3

1)(1− 105α4
1)

+
α4

0(168210α13
1 − 141480α14

1 − 157140α15
1 )

(1− α1)2(1− 3α2
1)(1− 15α3

1)(1− 105α4
1)

= K4(say).

Thus, finally the expression for Cov(yt, yt−1) is given by

ν1 = K1λ
2

[
(4− 4ξ + ξ2)

(
α0

1− α1

)2(ξ−1)
]

+ K2
λ2

2

[
(ξ − 1)

(
α0

1− α1

)2(ξ−1)

− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

+ K3
λ2

2

[
(ξ − 1)

(
α0

1− α1

)2ξ−3

− (ξ − 1)2

2

(
α0

1− α1

)2ξ−3
]

+ K4
λ2

4

[
(ξ − 1)2

(
α0

1− α1

)2(ξ−2)
]

.

Appendix B

First order derivatives of L(θ | Ψt−1) in (3.1) with respect to the parameter
vector θ′ = (β′, λ, α′, ξ).

The argument of lt(θ | Ψt−1) as also the conditional sign are being dropped for
convenience.

Case I : ξ 6= 0

∂L

∂θ
=

T∑
t=1

∂lt
∂θ

=
T∑

t=1

(
∂lt
∂β′

∂lt
∂λ

∂lt
∂α′

∂lt
∂ξ

)′
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Now, ∂lt
∂θ = 1

2ht

∂ht

∂θ ( ε2t
ht
− 1) + εt

ht

∂β′

∂θ xt + λ εt

ht

∂g(ht)
∂θ + g(ht) εt

ht

∂λ
∂θ and hence

∂lt
∂β = 1

2ht

∂ht

∂β ( ε2t
ht
− 1) + ∂β′

∂θ xt
εt

ht
+ λ∂g(ht)

∂β
εt

ht

∂lt
∂λ = 1

2ht

∂ht

∂λ ( ε2t
ht
− 1) + λ∂g(ht)

∂λ
εt

ht
+ g(ht) εt

ht

∂lt
∂α = 1

2ht

∂ht

∂α ( ε2t
ht
− 1) + λ∂g(ht)

∂α
εt

ht

∂lt
∂ξ = 1

2ht

∂ht

∂ξ ( ε2t
ht
− 1) + λ∂g(ht)

∂ξ
εt

ht




(B.1)

All the above derivatives in (B.1) involve ∂ht

∂θ as well as ∂g(ht)
∂θ , and these may

be obtained as follows :

∂ht

∂β = −2
{

α1εt−1(xt−1 + λhξ−1
t−1

∂ht−1
∂β ) + ...... + αpεt−p

(
xt−p + λhξ−1

t−p
∂ht−p

∂β

)}

∂ht

∂λ = −2λ
(
α1εt−1h

ξ−1
t−1

∂ht−1
∂λ + ...... + αpεt−ph

ξ−1
t−p

∂ht−p

∂λ

)

−2 (α1εt−1g(ht−1) + ...... + αpεt−pg(ht−p))
∂ht

∂α = ηt − 2λ
(
α1h

ξ−1
t−1 εt−1

∂ht−1
∂α + ...... + αph

ξ−1
t−p εt−p

∂ht−p

∂α

)

∂ht

∂ξ = 2λα1εt−1

[
hξ−1

t−1
∂ht−1

∂ξ +
hξ

t−1lnht−1

ξ − hξ
t−1−1

ξ2

]
−

· · · − 2λαpεt−p

[
hξ−1

t−p
∂ht−p

∂ξ +
hξ

t−p
lnht−p

ξ − hξ
t−p

−1

ξ2

]

where η′t =
(
1, ε2t−1, . . . , ε

2
t−p

)
.

Since ∂g(ht)
∂θ can be easily expressed in terms of ∂ht

∂θ , substituting all these above
expressions of ∂ht

∂θ in (B.1) we have the final expression for ∂lt
∂θ as follows :

∂lt
∂β = − 1

ht

(
ε2t
ht
− 1 + 2λεth

ξ−1
t

) {
(α1εt−1ξt−1 + · · ·+ αpεt−pξt−p)

+ λ
(
α1εt−ih

ξ−1
t−1

∂ht−1
∂β + · · ·+ αpεt−ph

ξ−1
t−p

∂ht−p

∂β

)}
+ εt

ht
xt

∂lt
∂λ = − 1

ht

(
ε2t
ht
− 1 + 2λεth

ξ−1
t

) {(
αiεt−1h

ξ−1
t−1

∂ht−1
∂λ + · · ·+ αpεt−ph

ξ−1
t−p

∂ht−p

∂λ

)

+ (λ1εt−1g(ht−1) + · · ·+ αp′g(ht−p))
}

+ g(ht) εt

ht

∂lt
∂α = 1

2ht

(
ε2t
ht
− 1 + 2λεthtξ−1

){
ηt − 2λ

(
α1h

ξ−1
t−1 εt−1

∂ht−1
∂α

+ · · ·+ αph
ξ−1
t−p εt−p

∂ht−p

∂α

)}

∂lt
∂ξ = − λ

ht

(
ε2t
ht
− 1 + 2λεth

ξ−1
t

) {
α1εt−1

(
hξ−1

t−1
∂ht−1

∂ξ +
hξ

t−1lnht−1

ξ − hξ
t−1−1

ξ2

)

+ · · ·+ αpεt−p

(
hξ−1

t−p
∂ht−p

∂ξ +
hξ−1

t−p
lnht−p

ξ − hξ
t−p

−1

ξ2

)}

+λ
hξ−1

t lnhtεt

ξ − λ
hξ

t−1

ξ2
εt

ht

Case II : ξ = 0. In this case g(ht) = ln ht, and hence we can easily find that
the final expressions for the first order derivatives of lt are as follows :
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∂lt
∂β = − 1

ht
( ε2t

ht
− 1 + 2λεt)

{
(α1εt−1xt−1 + · · ·+ αpεt−pxt−p)

+λ
(
α1εt−1

∂ht−1
∂β + · · ·+ αpεt−p

∂ht−p

∂β

)}
+ εt

ht
xt

∂lt
∂λ = − 1

ht
( ε2t

ht
− 1 + 2λεt)(α1εt−1ht−1 + · · ·+ αpεt−pht−p)

− λ
ht

( ε2t
ht
− 1 + 2λεt)

(
α1εt−1

∂ht−1
∂λ + · · ·+ αpεt−pht−p

∂ht−p

∂λ

)
+ εt

∂lt
∂α = 1

2ht
( ε2t

ht
− 1 + 2λεt)

{
ηt − 1λ

(
α1εt−1

∂ht−1
∂α + · · ·+ αpεt−p

∂ht−p

∂λ

)}
.
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