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lems with real valued inputs is proposed. It comprises an integration of the principles of radial basis
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algorithm (GA) formulation to perform pattern classification task. The versatility of the proposed
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1. Introduction

From the days of Von Neumann [39] to the recent days of S. Wolfram [53], cellular automata (CA)
has dominated computing technology for doing computation more efficiently - in terms of speed, cost,
power dissipation, information storage, and solution quality. It has been proposed to study the general
phenomenological aspects, including communication, computation, construction, growth, reproduction,
competition, and evolution [28, 48]. CA also provides an excellent tool for modeling physical phenomena
by reducing them to their basic, elemental laws [47, 52].

Interesting computational properties of the CA model has inspired us to investigate new application
avenues. Pattern classification is an important and interdisciplinary research area spanning several dis-
ciplines such as database systems [46], machine learning [17, 35, 37], intelligent information systems,
statistics [19, 26, 44], and expert systems. Many new approaches are being introduced [34, 43], as well
as existing ones getting refined [5, 10, 22, 24, 29, 40]. However, search for new and better solutions
continues, specifically to classify large volume of datasetgenerated in the internet-worked society of
cyber-age.

In the above scenario, design of CA based model for pattern recognition are reported in [7, 25, 38,
41]. Robust model of CA based associative memory is introduced in [21, 31]. The concept of cellularity
embedded in neural network structure has given rise to the popular concept of cellular neural networks
[3, 12, 13]. Tzionas et al. [49, 51] proposed a hybrid scheme for multi-valued pattern classification using
the parallel architecture that employs a two dimensional CAcombined with a single layer perceptron
architecture. Tzionas et al. [50] also presented another variation of a CA based pattern classifier based on
a nearest neighborhood discriminant. Many concepts from the discipline of biology have been borrowed
to build the CA based clustering model. One such model mimicsthe behavior of ants to gather and sort
corpses in a self-organized manner [11, 23]. The fact that the special class of CA referred to as multiple
attractor CA (MACA) can act as a natural pattern classifier ispointed in [9]. Chattopadhyay et al. [8] have
recently refined this concept to develop CA based pattern classification model. Ganguly et al. [20, 42, 45]
further characterized the MACA basins to propose robust models for pattern classification and associative
memory. Comparison of performance of MACA based classifier and conventional schemes like decision
tree, multi-layer perceptron are investigated by Maji et al. [32, 33].

However, CA based pattern classifier proposed in [8, 20, 32] can handle attributes expressed as binary
patterns even though real life applications demand classification of data involving real numbers. For
the classifiers designed to handle binary data, an explicit or implicit discretization procedure is applied
to cluster the continuous data of real numbers to a set of subintervals. However, most discretization
procedures suffer from user’s bias in generating the subintervals [14, 27]. Also, since discretization is
performed on a finite training set, it is doubtful whether theclustered subintervals encapsulate the real
distribution. Thus, some information may be lost in the transformation from continuous domain to finite
subintervals and that will invariably degrade the quality of solution.

In this background, design of pattern classifier based on a special class of CA, termed as fuzzy CA
(FCA), has been explored in [30] to address the problem of classification of patterns of real valued data.
FCA is a conventional CA with fuzzy logic applied as next state function of a cell [1, 6, 18]. Design of
tree-structured pattern classifier based on a special classof FCA, termed as fuzzy multiple attractor CA
(FMACA), has been proposed in [30]. In general, FMACA based pattern classifier can handle continuous
attributes due to their powerful nonlinear processing ability. Therefore we believe that a strong learning
paradigm can be attained through FMACA based pattern classifier.
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In the current paper, we consolidate and refine the design approach of [30] while integrating the
principles of radial basis function (RBF) and fuzzy cellular automata (FCA) for designing an efficient
pattern classifier. The major contributions of this paper are summarized below:

1. A hybrid pattern classifier is proposed based on the theoryof RBF and FMACA.

2. Two new operators, dependency vector (DV) and derived complement vector (DCV), are intro-
duced for analysis and synthesis of FMACA.

3. The analysis of FMACA based on DV and DCV is next combined with genetic algorithm (GA) to
formulate an elegant evolutionary scheme. The genetic operators are implemented in such a way
that they help to preserve the structure of FMACA.

4. Extensive experimental results establish that the classification accuracy of the proposed hybrid
scheme is comparable while its memory overhead and retrieval time are very lesser compared to
conventional classification algorithms.

In order to realize specified objectives, we introduce FCA preliminaries including FMACA funda-
mentals in Section 2. The concept of DV and DCV is introduced in Section 3. Design of pattern classifier
based on RBF and FCA is presented in Section 4. An evolutionary synthesis scheme is next presented in
Section 5 employing DV and DCV. Finally, applications of theproposed classifier in image classification,
finding splice-junction and protein-coding regions of DNA sequences are reported in Section 6.

2. Fuzzy Cellular Automata

An elementary FCA [6, 18] is a linear array of cells which evolves in time. Each cell of the array assumes
a stateqi, a rational value in the interval[0, 1] (fuzzy states) and changes its state according to a local
evolution function on its own state and states of its two neighbors. The global evolution results from
synchronous application of the local rule to all cells of thearray. In a FCA, the conventional Boolean
functions are evaluated as follows:

Boolean Function Operation FCA Operation

OR a + b min{1, a + b}

AND ab a · b

NOT a (1 − a)

Herea andb are two states having rational values in the interval [0, 1].The resulting local rule of FCA is
a real valued function [6, 18]. In a 3-neighborhood FCA, there are total 256 distinct next state functions
(rules). Ann-cell FCA is configured with the rule vectorR= < R1, · · · , Ri, · · · ,Rn > whereith cell
is configured with ruleRi; eachRi being one of the possible 256 rules. Out of 256 rules, there are only
16 rules with OR and NOR logic [30]. A FCA rule involving NOR logic is referred to as complemented
FCA rule; otherwise, it is a non-complemented FCA rule.

For ann-cell FCA, ann-tuple rule vectorR with only OR and NOR rules can be represented by an
n × n matrix T and ann-dimensional binary vectorF [30]. If Pi(t) represents the state assignment of
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theith cell of a FCA attth instant of time, the state ofith cell at(t + 1)th instant of time is

Pi(t + 1) =| Fi − min{1,

n
∑

j=1

Tij · Pj(t)} | (1)

whereT is ann × n binary matrix andF is ann-bit binary vector, termed as complement vector (CV).

Example 2.1. For rule vector< 238, 1, 238, 3 >, T corresponds to rule vector< 238, 254, 238, 252 >.
In this example, 2nd and 4th cells employ complemented rules. Hence,

T =













1 1 0 0

1 1 1 0

0 0 1 1

0 0 1 1













F =













0

1

0

1













Next subsection introduces FMACA. The classifier proposed in Section 4 is built around this FCA.

Fuzzy Multiple Attractor CA

A FMACA is a special class of FCA that can efficiently model an associative memory to perform pattern
classification task [30]. Its state transition behavior consists of multiple components - each component,
as noted in Fig.1, is an inverted tree. A node with self loop isreferred to as an attractor state. The states
in the tree rooted on an attractor form an attractor basin. The states in a basin other than the attractor are
referred to as transient states in the sense that a FMACA finally settles down in one of its attractor state
after passing through such transient states.

An n-cell FMACA with k-attractor basins can be viewed as a natural classifier [30].It classifies a
given set of patterns intok distinct classes, each class containing the set of states inthe attractor basin.
The following example illustrates a FMACA based two class classifier.

Example 2.2. Let us have two pattern setsS1 ={(0.00, 0.00, 0.50), (0.00, 0.25, 0.00), (0.25, 0.25, 0.00),
(0.00, 0.50, 0.00), (0.00, 0.00, 0.00), (0.25, 0.00, 0.00),(0.50, 0.00, 0.00), (0.00, 0.00, 0.25), (0.00, 0.00,
0.75), (0.00, 0.50, 0.25)} (Class I) andS2 ={(0.75, 1.00, 0.00), (1.00, 0.75, 0.50), (1.00, 1.00, 1.00),
(0.75, 1.00, 1.00), (1.00, 1.00, 0.75), (1.00, 0.75, 1.00),(0.50, 0.75, 1.00), (1.00, 0.75, 0.75), (0.75, 1.00,
0.75), (0.75, 0.75, 1.00)} (Class II) with three attributes. In order to classify thesetwo pattern sets into
two distinct classes - Class I and II respectively, we have todesign a FMACA such that the patterns of
each class falls in distinct attractor basins of a FMACA.

The FMACA of Fig.1 is able to classify the patterns into distinct attractor basins where Class I (S1)
is represented by one set of attractor basins with attractors {(0.00 0.00 0.00), (0.25 0.25 0.00), (0.50
0.50 0.00) and (0.75 0.75 0.00)} in Fig.1 while Class II (S2) is represented by the remaining basin with
attractor{(1.00 1.00 0.00)}. When the FMACA is loaded with an input pattern sayP =(0.75 0.75 0.50)
and is allowed to run in autonomous mode, it travels through anumber of transient states and ultimately
reaches an attractor state (1.0 1.0 0.0) - the attractor representing Class II.

To identify the class of an input patternP, the FMACA is initialized withP and operated ford time
steps whered is depth of the FMACA. In maximum ofd time steps, the FMACA reaches the attractor
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T  = F  =  0  0  0

Figure 1. State space of a 3-cell 5-state FMACA divided into five attractor basins

state. The state of the pivot cell (PC) of attractor points tothe memory location that stores the class
information of the input patternP. The concept of PC has been formalized in Definition 3.2 of Section
3.1 subsequent to characterization of FMACA attractor basins. For the example FMACA of Fig.1, 2nd
cell is the PC.

However, ann-cell FMACA can be characterized by itsn × n T matrix and its complement vector
F . So, generation of an attractor stateP(t + d) from any stateP(t) involves O(n3) complexity. Con-
sequently, the identification of the class in which any stateP belongs, involves O(n3) complexity. In
order to ensure the scalability of present day’s classification on very large datasets, linear complexity of
algorithm is highly desirable. This motivates us to undertake new characterization of FMACA with the
help of some linear operators other thanT andF . Next section presents the characterization of FMACA.

3. Characterization of FMACA

In this section, we characterize attractor basins of FMACA.The analysis reported in this section bring
down the complexity from O(n3) to O(n) to identify the basin and consequently class of a pattern.

3.1. Non-complemented FMACA

The characterization of non-complemented FMACA proceeds under the following conjecture that is
derived out of extensive experimentation.

Conjecture 1. If the number of attractor basins (k) of a FMACA is equal toKm whereK is the number
of fuzzy states andm = 1, 2, · · · , n, there existm dependency relations among all vectors of each basin.
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Example 3.1. Fig.1 is used to illustrate the above concept. Consider ann-dimensional (=3) vector space
with K (=5) fuzzy states, - that is, 0.00, 0.25, 0.50, 0.75 and 1.00.Then, total possible vectors in the
vector space isKn (= 53 = 125). Then-dimensional vector space is divided into 5 basins (k) - Basin I,
II, III, IV and V. That is, k = K andm = 1. If the vectors of any basin is conceived as a system of
equations with three variables (x1, x2, x3), then

min{1, x2 + x3} =































0.00, for Basin I

0.25, for Basin II

0.50, for Basin III

0.75, for Basin IV

1.00, for Basin V

Let a patternP = (1.00 0.50 0.00) ∈ Basin III. In this case,min{1, x2 + x3} = min{1, 0.50} = 0.50.

In the above context, we next introduce the term dependency vector (DV).

Definition 3.1. The dependency vector (DV) represents each individual dependency relation satisfied by
all the vectors in each attractor basin. The DV for the illustrative Example 3.1 is< 011 >. The bits in
the DV represents the variable in the sequence< x1x2x3 >. The 1’s in the DV specify the dependent
variables. In Example 3.1,x2 andx3 are dependent variables. The OR of the corresponding variables in
all the vectors of an attractor basin is equal to one of the fuzzy states. Here, OR (addition) implies that
(a + b) = min{1, (a + b)}.

Thus, in ann-dimensional vector space withK-fuzzy states, a FMACA havingk-attractor basins can
be characterized bym number of DVs ifk = Km, wherem = 1, 2, · · · , n. For ease of subsequent
discussions, we next introduce a few terminologies.

• K represents the number of fuzzy states.

• qi represents a fuzzy state,qi ∈ [0, 1]. That is,qi = i
K−1

, wherei = 0, 1, · · · ,K−1. For example,
if K = 4, a cell of a FMACA can assume a stateqi out of 4 fuzzy states -q0 = 0.00, q1 =
0.33, q2 = 0.67 andq3 = 1.0.

• Vqi
represents a basin in which sum (OR) of the dependent variables of any vectorv ∈ Vqi

is qi.

• w̃ represents the number of dependent variables of a DV - that is, the number of 1’s of DV is̃w.

Valid Dependency Vector

A 3-neighborhood FMACA whose next state depends on itself, its left and right neighbors, cannot pro-
duce all the variations of DV. The structure of DVs generatedby FMACA is next elaborated with illus-
trative example.

Axiom 1. In case of a 3-neighborhood FMACA, a DV contains 1’s in successive positions. That is, a
3-neighborhood FMACA can generate a DV with a running sequence of 1’s like<000 · · · 11111· · ·
0000>.
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Example 3.2. Some examples of DVs which can be generated by a 3-neighborhood FMACA are<

001111000 >, < 1111000 >, < 001111 >, < 001000 > and< 11111 >.

Consider ann-cell K-attractor basins FMACA with a DV of the form<00 · · · 1111 · · · 1111 · · ·
000>. The DV contains runs of 1’s fromith to jth positions. The regionith to jth cell is defined as the
dependent region (DR) of that FMACA, whileith andjth cells are termed as first cell (FC) and last cell
(LC) of DR respectively. For ease of subsequent discussions, theith andjth positions are referred to as
first cell position (FCP) and last cell position (LCP) respectively. Consequently,kth bit of DV is

DVk =

{

1, if FCP ≤ k ≤ LCP

0, otherwise
(2)

Let qm represents a fuzzy state whereqm = m
K−1

andm = 0, 1, · · · ,K − 1. For an attractor basinVqm
,

any vectorv ∈ Vqm
must satisfy the relation

min{1,

j
∑

k=i

xk} = qm (3)

In this context, we next introduce pivot cell of an attractor.

Definition 3.2. The pivot cell (PC) of an attractor of a basin is in between FCPand LCP of the DR. If
qm represents state of the PC of attractor of basinVqm

, then

qm = state of PC = min{1,

j
∑

k=i

xk}

Example 3.3. In Example 3.1 (Fig.1),DV =< 011 >, w̃=2. In this case, FCP=2, LCP=3 and PCP=2.

The pivot cell position (PCP) of an attractor may be in between FCP and LCP of the DR. TheT
matrix corresponding to a DV depends on PCP. The state of PC represents an attractor basin uniquely. It
yields the address of memory that stores basin information.

The characterization based on DV establishes that a non-complemented rule vectorR=< R1, · · · ,
Ri, · · · , Rj , · · · , Rn > can generate a DV in which successive 1’s are placed in between ith to jth

positions. The rule vectorR depends on the number of dependent variablesw̃ of DV and PCP of the
DR. This leads to three specific cases of rule vectors.

1. If DV contains single 1 at theith position (w̃=1),

• Ri = 204; and

• R1 = · · · = Ri−1 = Ri+1 = · · · = Rn = 0.

2. If w̃ ≥ 2, then

(a) for PCP=FCP=i

• Ri = 238;

• Ri+1 = Ri+2 = · · · = Rj−1 = 170; and

• R1 = · · · = Ri−1 = Rj = Rj+1 = · · · = Rn = 0.
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(b) for PCP=LCP=j

• Rj = 252;

• Ri+1 = Ri+2 = · · · = Rj−1 = 240; and

• R1 = · · · = Ri−1 = Ri = Rj+1 = · · · = Rn = 0.

3. If w̃ ≥ 3, then for PCP=x

• Rx = 254 wherei < x < j;

• Ri+1 = Ri+2 = · · · Rx−1 = 240;

• Rx+1 = · · · = Rj−1 = 170; and

• R1 = · · · = Ri = Rj = · · · = Rn = 0.

To achieve wide variations in state transition behavior, wenext characterize complemented FMACA.

3.2. Complemented FMACA

This subsection analyzes the state transition behavior of complemented FMACA with reference to its
non-complemented counterpart. While the number of attractor basins and the number of state vectors
in each basin of a complemented FMACA is same as that of non-complemented counterpart, there is a
movement of vectors from one basin to another. That is, the structure of state space in terms of attractor
basins is identical while the states covered by the basins differ as illustrated below.

Example 3.4. Fig.2 illustrates an example where some patterns are moved from one basin to another.
Here,F has been changed from[0 0 0] to [0 1 1], while T remains same.
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Rule Vector:  < 238, 170, 0 >

(a) Non−complemented rule with all 0’s F Vector

Rule Vector:  < 238, 85, 255 >

(b) Complemented rule with non−zero F Vector

Figure 2. Modification of state transition behavior

Fig.2(a) represents state transition diagram of a 3-cell 3-state FMACA configured with non- comple-
mentedR = < 238, 170, 0 >. In this case, DV is< 111 >, - that is, DR is from 1st to 3rd positions.
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Thus, any vectorv ∈ Vqm
must satisfy Relation 3 whereqm = 0.0, 0.5, 1.0. That is,

min{1,

3
∑

k=1

xk} =











0.0, for Basin I(V0.0)

0.5, for Basin II (V0.5)

1.0, for Basin III (V1.0)

The following discussion analyzes the effect ofn-dimensional complement vector (CV)F on the
state transition diagram of ann-cell FMACA. Analysis is based on the DR of a DV with a running
sequence of 1’s from FCP to LCP. Each 1 in the sequence refers to dependency of the corresponding cell
and consequently a dependent variable in the complemented FMACA while PCP refers to the pivot cell
position. The characterization is based on PCP.

Conjecture 2. For a non-complemented rule vectorR = <R1, · · · , Ri, · · · , Rj , · · · , Rn>, if Ri toRj

is the DR - that is, the DV contains runs of 1’s fromith to jth positions, then there exists a complemented
rule vectorŔ where

• RPC (rule for pivot cell) remains same as that of non-complemented FMACA;

• in the DR, the number of complemented rules in each side of thePC is even; and

• any ruleR1 toRi−1 andRj+1 toRn may be complemented,

then, the structure of state space in terms of number and sizeof attractor basins of complemented
FMACA remain identical to its non-complemented counterpart.

If complement (NOR) rules are applied on cells out side the DR(1 to (i − 1) and (j + 1) to n),
Relation 3 remains same for each basin. But, if NOR rules are applied on the cells of DR (i to j), the
number of NOR rules in each side of PCP must be even. In this case, if NOR rules are applied pairwise
on (́i1, j́1), (́i2, j́2), (́i3, j́3), · · · and(i1, j1), (i2, j2), (i3, j3), · · · cell positions where

1 ≤ i ≤ í1 < j́1 < · · · < PCP < i1 < j1 < · · · ≤ j ≤ n

then,v ∈ Vqm
satisfies the relation

min{1, A + B} = qm (4)

A = {

í1−1
∑

k=i

xk +

j́1−1
∑

k=í1

(1 − xk) +

í2−1
∑

k=j́1

xk +

j́2−1
∑

k=í2

(1 − xk) + · · · +
PC
∑

k=j́3

xk}

B = {

i1
∑

k=PC+1

xk +

j1
∑

k=i1+1

(1 − xk) +

i2
∑

k=j1+1

xk +

j2
∑

k=i2+1

(1 − xk) + · · · +

j
∑

k=j3+1

xk}

Thus, the number of attractor basins and number of vectors ineach basin remain same. Only some state
vectors will move from one attractor basin to another.

In the above context, we next introduce a parameter, termed as derived complement vector (DCV),
which is derived from both DV and CV. To identify an attractorbasin in O(n) time complexity, the DCV
is employed. The details of this identification process is reported in Section 3.3.
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Definition 3.3. If a DV contains runs of 1’s fromith to jth positions andF contains 1 at(́i1, j́1), (́i2, j́2), · · ·
and(i1, j1), (i2, j2), · · · positions, then,kth bit of DCV is

DCVk =











1, k = í1, (́i1 + 1), · · · , (j́1 − 1), í2, · · · , (j́2 − 1), · · · ,

(i1 + 1), (i1 + 2), · · · , j1, (i2 + 1), · · · , j2, · · · ,

0, otherwise

(5)

whereDCV is termed as derived complement vector.

Thus, from Relation 4, any vectorv ∈ Vqm
of an attractor basin (Vqm

) must satisfy the relation

min{1,

j
∑

k=i

| DCVk − xk |} = qm (6)

Fig.2 is used to illustrate the effect of DCV on state space covered by a complemented FMACA.

Example 3.5. Fig.2(a) represents state transition diagram of a 3-cell 3-state FMACA configured with
non-complemented rule vectorR = < 238, 170, 0 >. Here, PCP=FCP=1. As per Conjecture 2, the only
possible complemented rule vector ofR is Ŕ =< 238, 85, 255 > where

• R1 = RPC = 238 remains same; and

• complemented rules in the DR are rule 85 and 255.

That is,F =< 011 >. As per Definition 3.3,DCV =< 001 >. Fig.2(b) represents the state transition
behavior of a 3-cell FMACA with rule vectoŕR =< 238, 85, 255 >. It has identical number of attractor
basins, with each basin having number of states identical tothat of non-complemented FMACA shown
in Fig.2(a). In this case, any vectorv ∈ Vqm

must satisfy Relation 6. That is,

min{1,

2
∑

k=1

xk + (1 − x3)} =











0.0, for V0.0

0.5, for V0.5

1.0, for V1.0

The characterization of complemented FMACA based on DCV establishes the fact that the state
space of a non-complemented FMACA can be altered while keeping number of attractor basins and
number of states in each basin identical. This can be achieved by designing complemented FMACA as
per the above formulation.

Valid Derived Complement Vector

In case of a 3-neighborhood FMACA, if a DV contains successive 1’s in betweenith to jth cells, then
the PCP may be anywhere in betweenith to jth positions marked as FCP and LCP respectively. As per
Conjecture 2 and Definition 3.3, the valid DCV depends on the PCP.

1. If PCP=FCP, then the DCV is given by

DCVk ∈

{

{0, 1} if (FCP + 1) < k ≤ LCP

{0} otherwise
(7)
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2. If PCP=LCP, then

DCVk ∈

{

{0, 1} if FCP ≤ k < (LCP − 1)

{0} otherwise
(8)

3. If FCP< PCP< LCP, then

DCVk ∈

{

{0, 1} if FCP ≤ k < (PCP − 1) and(PCP + 1) < k ≤ LCP

{0} otherwise
(9)

Example 3.6. Examples of DCVs which can be generated by a 3-neighborhood complemented FMACA
with DV =< 0011111100 > are< 0000101000 >, < 0000110100 >, < 0010010000 >, and<

0010000100 >.

The following formulation provides the application of DV and DCV to identify basin of FMACA.

3.3. Identification of Attractor Basins

As per Section 3.1, for non-complemented FMACA, ifDV is an n-bit dependency vector of ann-
dimensional vector space andP is a pattern belonging toVqm

, then

qm = state of PC = min{1,
n

∑

i=1

DVi · Pi} (10)

As per Section 3.2, for complemented FMACA, ifDV andDCV represent dependency vector and
derived complement vector respectively, andP belonging toVqm

, then

qm = state of PC = min{1,
n

∑

i=1

| DCVi − DVi · Pi |} (11)

In Section 2, when the FMACA (T andF ) is loaded withP, it travels through a number of states
equal to depthd of the FMACA and ultimately reaches an attractorṔ , i.e.,

P(1) =| F − T · P(0) |; P(2) =| F − T · P(1) |; Ṕ = P(d) =| F − T · P(d − 1) |

whereT is ann×n matrix,F is ann-dimensional CV, andd ' n. The stateqm of PC of attractor of the
basin whereP belongs is identified accordingly which represents the basin Vqm

. The complexity of this
algorithm is O(n3), n being the size of the patterns. Whereas in the proposed scheme, the state of PC of
attractor of the basin whereP belongs is given by

qm = min{1,

n
∑

i=1

| DCVi − DVi · Pi |} (12)

So, the complexity of this approach is O(n). Thus, to identify attractor basinVqm
of a patternP, DV

andDCV can be employed rather thanT andF which reduce complexity from O(n3) to O(n).
Next we present the design of a hybrid pattern classifier based on the principles of radial basis func-

tion (RBF) and FMACA to classify a given set of patterns intoK classes.
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4. RBFFCA: A Hybrid Pattern Classifier

The RBFFCA is a hybrid pattern classifier based on the theory of RBF and FCA. It consists of three layers
with entirely different roles. The input layer is made up of source nodes (sensory units) that connect the
system to its environment. The second layer, the only hiddenlayer, applies a nonlinear transformation
from the input space to hidden space. The output layer is quasi-linear, supplying the response of the
system to the activation pattern (signal) applied to the input layer.

Layer
Input Output

Layer

n RBFs

Hidden Layer
consists of

FCA

GA
&

Figure 3. Architecture of RBFFCA based hybrid pattern classifier

Fig.3 represents the architecture of RBFFCA. It consists ofthree layers - input, hidden, and output
layers denoted asxi (i = 1, 2, · · · , n0), yj (j = 1, 2, · · · , n), andok (k = 1, 2, · · · ,K) respectively. The
first layer is composed of input (source) nodes whose number is equal to the dimensionn0 of the input
vectorx. The second layer is a hidden layer, composed of nonlinear units that are connected directly to
all of the nodes in the input layer. There is one hidden unit for each data pointxl, l = 1, 2, · · · , N , where
N is the size of training samples. The activation functions ofthe individual hidden units are defined by

G(x, tj) = exp(−
||x − tj ||

2

2σ2
j

) (13)

whereG(x, tj) is the multivariate gaussian function,tj andσj denote the center and width of the func-
tion, andj = 1, 2, · · · , n wheren < N . The output layer consists ofK units, K being the number
of classes. This layer is fully connected to the hidden layerby FCA. The FCA provides an appropriate
mappings of patterns of hidden layer into output layer. The desired FCA is evolved through GA.

4.1. Learning Phase of RBFFCA

The hybrid learning process consists of two stages:

1. Self-organized learning stage: The purpose of this stageis to estimate appropriate locations for the
centers of the radial basis functions in the hidden layer.

2. Supervised learning stage: It completes the design by finding the desired FCA for the output layer.
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4.1.1. Design of RBF

For the self-organized learning process, k-means clustering algorithm is used [15]. The k-means al-
gorithm places the centers of the radial basis functions in only those regions of the input space where
significant data are present. Letn denotes the number of radial basis functions. The determination of
a suitable value forn may require extensive experimentation. Let{tj(s)}

n
j=1 denote the centers of the

radial basis functions at iterations of the algorithm. Then, the k-means clustering algorithm proceeds as
follows:

Algorithm 1. k-means clustering

1. Choose random values for initial centerstj(0) in such a way that these initial values be different.

2. Draw a sample vectorx from the input space with a certain probability. The vectorx is input into
the algorithm at iterations.

3. Let j(x) denotes the index of the best-matching (winning) center forinput vectorx. Find j(x) at
iterations by using the minimum-distance euclidean criterion:

j(x) = arg mink||x(s) − tj(s)|| (14)

wheretj(s) is the center of thejth radial basis function at iterations andj = 1, 2, · · · , n.

4. Adjust the centers of the radial basis functions, using the update rule:

tj(s + 1) =

{

tj(s) + η[x(s) − tj(s)] j = j(x)

tj(s) otherwise
(15)

whereη is a learning rate parameter that lies in the range0 < η < 1.

5. Increments by 1, go back to Step 2, and continue the procedure until no noticeable changes are
observed in the centerstj.

Having identified the individual centers{tj}n
j=1 of the gaussian radial basis functions and their

widths {σj}
n
j=1 using the k-means algorithm, the next and final stage of the hybrid learning process

is to find out desired fuzzy cellular automata (FCA) for the output layer.

4.1.2. Design of FCA

A special class of FCA, termed as FMACA, is used to design the proposed pattern classifier. Suppose,
we want to design a FMACA based classifier for a training setS = {S1, · · · , Si, · · · , SK} partitioned
into K classes, whereSi represents the set of elements of classi. First, a FMACA withk-attractor basins
is generated, wherek ≥ K. The elements of the training setS get distributed intok-attractor basins.
Distribution of the training setS in k-attractor basins is then evaluated. Let,Ś be the set of elements in
ith (i = 1, 2, · · · , k) attractor basin. Then labelith-basin asjth class, if the number of elements ofjth

class inŚ is maximum. For ease of subsequent discussions, we introduce following terminologies.



382 P. Maji and P.P. Chaudhuri / RBFFCA

• K denotes number of classes in the training setS.

• k denotes number of attractor basins of a FMACA in which the datasetS is to be distributed.

• Nij represents the number of elements of classj covered byith attractor basin, wherei =
1, 2, · · · , k andj = 1, 2, · · · ,K.

• Mi indicates the distribution of class elements in theith attractor basin.

The diversity ofith attractor basin of ann-cell FMACA is given by

Mi =
max{Nij}
∑K

j=1
Nij

(16)

The ith (i = 1, 2, · · · , k) attractor basin indicates the classj (j = 1, 2, · · · ,K) for which Nij is maxi-
mum. The classification accuracyF of the FMACA is determined by the percentage of patterns which
are correctly classified into different attractor basins. That is,

F =
1

k

k
∑

i=1

Mi =
1

k

k
∑

i=1

max{Nij}
∑K

j=1
Nij

(17)

To determine the overall best distribution, classificationcan be done by a simple application of the
FMACA to the training set. The complexity lies in determining the best distribution for each basin. The
desired FMACA is evolved through GA. Details of GA formulation are reported in Section 5.

4.2. Identification Phase

Let, x be an input pattern with dimensionn0 whose class is to be identified by RBFFCA based hybrid
pattern classifier. The input patternx(x1, x2, · · · , xn0

) is first transformed inton-dimensional pattern
y(y1, y2, · · · , yn) where

yj = exp(−
||x − tj||

2

2σ2
j

) (18)

andtj andσj represent the center and width of thejth RBF respectively andj = 1, 2, · · · , n. Next,y is
loaded with the DV and DCV of FMACA which returnqm, the state of the attractor’s pivot cell (PC) of
an attractor basin wherey belongs. Combining Equations 12 and 18, we obtain

qm = min{1,

n
∑

j=1

| DCVj − DVj · exp(−
||x − tj ||

2

2σ2
j

) |} (19)

The value ofqm yields the address of the memory that stores the class information of input patternx.

5. Synthesis of FMACA: A GA Formulation

The basic structure of GA revolves around the concept of evolving successive solutions according to
their fitness. The fitness function for FMACA is elaborated next.
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5.1. Fitness Function

The fitnessF of a particular FMACA in a population is determined by the percentage of patterns which
are correctly classified into different attractor basins. That is,

F =
1

k

k
∑

i=1

max{Nij}
∑K

j=1
Nij

(20)

wherek andK represent the number of attractor basins and the number of classes in the training set;
andNij depicts the number of patterns of classj covered byith attractor basin. Thus,F represents the
capability of the evolved FMACA for classifying the given input pattern set into separate set of basins.

For the purpose of evolution, each solution (the solution isa FMACA) has to be encoded in bit string
format (chromosome). Three major functions - random generation of initial population (IP), crossover
and mutation, as developed in the current GA formulation, are next discussed.

5.2. Chromosome

The scheme to generaten-cell FMACA employs a chromosome consisting of:

1. a symbol string of numerical digits consists ofm number of DVs each corresponding to anni×ni

T matrix, wheren1 + n2 + · · ·nm = n; and

2. a symbol string of numerical digits consists ofm number of DCVs representingn-dimensional
complement vectorF .

F2 0  1  0  1=

0  0  0  0  0
0  1  1  0  0
0  0  0  1  0
0  0  0  0  0
0  0  0  0  0

1  1  0  0
0  0  1  0
0  0  0  1
0  0  0  0

n1 n1n2 n2

F1 F2
F1

Rule Vector R = < 0, 238, 85, 255, 255, 238, 85, 170, 255 >

0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0

0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0

=

0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0

0  0  0  0  0
0  0  0  0  0
0  0  0  0  0
0  0  0  0  0

=T

T1

T2

0  0  0  0  0
0  1  1  0  0
0  0  0  1  0
0  0  0  0  0
0  0  0  0  0

=T1

1  1  0  0
0  0  1  0
0  0  0  1
0  0  0  0

T2 =

0 1 1 1 2 2 2 20 200 01

1 2

(a) FMACA rule vector, corresponding T matrix, and CV (F)

(b) Associated DVs, DCVs, and equivalent chromosome format

0 0 20

F  = =0  0  1  1  1 0  1  0  1 0  0  1  1  1=

1DV DV DCV 2DCV

Figure 4. An example chromosome for GA formulation

So, the length of the chromosome is2n wheren is the number of cells in a FMACA. In essence, the
m DVs/DCVs are concatenated together to form the final DV/DCV.The final DV/DCV represents the
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multiple dependency of the variables if there exists. The DV/DCV of a FMACA with Km attractor
basins can be derived from them number of DVs/DCVs of the FMACA withK attractor basins. A final
DV/DCV has the constituent DVs/DCVs placed in non-overlapping positions. If two DVs areDV1 =<

01110 > and DV2 =< 1111 >, then the corresponding final DV is given byDV = [011102222].
Similarly, if two DCVs areDCV1 =< 00010 > and DCV2 =< 0011 >, then the corresponding
final DCV is given byDCV = [000100022]. In general, theith dependency relation in a DV/DCV is
represented withi (i = 1, 2, · · · ,m) inserted in place of corresponding dependent variables.

Fig.4 represents a 18-bit chromosome corresponding to the rule vector<0, 238, 85, 255, 255, 238,
85, 170, 255>. While Fig.4(a) represents theT matrix and theF ; Fig.4(b) represents the equivalent
chromosome format of FMACA (DVis andDCVis).

5.3. Random Generation of Initial Population

To form the initial population, it must be ensured that each solution randomly generated is ann-cell
FMACA with k = Km attractor basins wherek andK represent the number of attractors of FMACA
and the number of fuzzy states respectively. The chromosomes are randomly synthesized according to
the following steps.

1. Randomly partitionn into m number of integers such thatn1 + n2 + · · · + nm = n.

2. For eachni, randomly generate a valid DV (DVi) and a valid DCV (DCVi).

3. Synthesizen-bit DV through concatenation ofm number ofDVis for first part.

4. Synthesizen-bit DCV through concatenation ofm number ofDCVis for second part.

5. Synthesize a chromosome through concatenation of first and second part.

Fig.4(b) represents a randomly generated 18 bit chromosomethat refers to theT matrix and the
complement vectorF shown in Fig.4(a). The9 × 9 T matrix is obtained from two matrices (T1 and
T2) of length 5 and 4 respectively by block diagonal form (BDF).The 9-bitF is produced through the
concatenation of two CVs (F1 andF2) of length 5 and 4 respectively.

5.4. Crossover Algorithm

Fig.5 illustrates the crossover process employed in the GA evolution. Two chromosomes (FMACA1
and FMACA2) are shown in Fig.5. The single crossover point is selected randomly which is 8 in this
case. The first 8 symbols of first part are taken from FMACA1, while the rest 2 symbols are taken from
FMACA2 to form the new DV for FMACA3. Similarly, in the second part, first 8 symbols of FMACA1

and rest 2 symbols of FMACA2 are merged together to form then-dimensional DCVDCV3 (Fig.5).
The resultant chromosome (FMACA3), as explained below, violates the chromosome format in the

7th, 8th and 9th positions of first part (encircled in Fig.5).In Fig.5, the DV is [1110022322] where 2 and
3 are interleaved, which is invalid. The resultant valid chromosome after local recoding of symbols is
shown in Fig.5 (FMACA4).
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0  1  1  0 0  0  0 0  1  1=F

F1 = 0  1  1  0

F2 = 0  0  0

F3= 0  1  1

F = 0  0  1  0  1  01

F = 0  1  0  12FMACA 1

FMACA 1

FMACA 2

FMACA 2

1 1 1 0 0 2 2 3 3 3 0 0 01 0 0 0 0 30

1 1 1 0 0 2 2 3 0 0 01 0 0 0 02 2 2 2

1 1 2 0 0 0 0 00 1 1 0 222 0 1 1 2 2

1 1 1 0 0 2 2 0 0 01 0 0 0 02 2 2 22

FMACA 3

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1  1  0  0
0  0  1  0
0  0  0  0
0  0  0  0

0  0  0
0  0  0
0  0  0
0  0  0
0  0  0
0  1  1
0  0  0

0  0  0  0
0  0  0  0
0  0  0  0
0  0  0  0 0  0  0 1  1  0

0  0  1
0  0  0

0  0  0
0  0  0
0  0  0
0  0  0
0  0  0
0  0  0
0  0  0

0  0  0
0  0  0

0  0  0  0
0  0  0  0

F = 0  0  1  0  1  0 0  1  0  1

0  1  1  0  0  0  0  1  0  1F =

2F = 0  0  0  1  0  1F1 = 0  1  1  0

R1 = < 238,85,255,0,0,238,0,238,85,255 > R2 = < 0,238,85,170,255,0,238,85,170,255 >

FMACA 4

FMACA 4

=T
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=T1
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0  1  1
0  0  0

=T2
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0  0  0

=T3
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0  0  0  0  0  0
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0  0  0  0  0  0

=1T
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0  0  0  0

=2T
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=T2

Figure 5. An illustration of crossover technique

5.5. Mutation Algorithm

As per the analysis reported in Section 3, if in a DV, the valueof w̃ (number of 1’s in a DV) is greater
than 2, there exists a validF andDCV . In mutation, we first randomly select a chromosome. If theith

DV DVi of the selected chromosome contains successive 1’s fromii (FC) to ji (LC) cell positions and
w̃i (of DVi) ≥ 2, then we randomly select a mutation pointx and flip thexth position, where

(FCP + 1) < x ≤ LCP if PCP = FCP; (FCP + 1) ≤ x < (LCP − 1) if PCP = LCP;

(FCP + 1) ≤ x < (PCP − 1) or (PCP + 1) < x ≤ LCP if FCP < PCP < FCP

So, in this case, theT matrix and the DV remain same, onlyF and DCV has been changed.
Fig.6 represents an example of mutation technique on a randomly selected chromosome (FMACA1).

A single mutation point (5th position) is randomly selectedfrom the second part of the chromosome
(FMACA1). The FMACA2 is the mutated version of FMACA1.

5.6. Selection

Selection is done by the roulette wheel method. The probabilities are calculated on the basis of ranking
of the individuals in terms of the fitness function, instead of the fitness function itself. Elitism is incorpo-
rated in the selection process to prevent oscillation of thefitness function with generation. The fitness of
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F = 0  1  0  12

F = 0  0  1  0  1  0 0  1  0  1

F = 0  0  1  0  1  01
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Figure 6. An illustration of mutation technique

the best individual of a new generation is compared with thatof the current generation. If the later has a
higher value the corresponding individual replaces a randomly selected individual in the new population.

The experimental results reported next confirm that the GA evolution provides the desired direction
to arrive at the best FMACA to perform the pattern classification task.

6. Performance Analysis

This section presents the application of RBFFCA based pattern classifier in different applications. The
major metric for evaluating classifier performance is classification accuracy. We also report retrieval time
and memory overhead required to store RBFFCA based classifier as secondary metrics for performance
evaluation. In all of our experiments, the GA parameters used are as follows:

Maximum generation : 100

Population size : 100

Chromosome length : 2n where n is the

number of RBFs

Probability of crossover : 0.8

Probability of mutation : 0.001
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The parameters are held constant across all runs. Unbiased initial population is generated randomly
spreading over entire variable space in consideration. Allthe experiments are performed in SUN with
Solaris 5.6, 350 MHz clock.

To analyze the performance of RBFFCA, the experimentation has been done in two parts.

1. In the first part, we have used the synthetic dataset proposed in [2].

2. In the second part, we perform the experiment on some of theSTATLOG datasets [36] available
from http://www.ics.uci.edu/∼mlearn and different DNA dataset proposed by Fickett et.al [16].

6.1. Synthetic Database

An often used benchmark in classification is STATLOG [36]. However, due to lack of a classification
benchmark containing large datasets, we use the synthetic database proposed in [2] for our experiments.
Each record in this synthetic database consists of nine attributes. Ten classification functions were also
proposed in [2] to produce databases with distributions with varying complexities. In this subsection,
we present the results of RBFFCA for these functions. All these functions divide the database into two
classes. Attributes values are randomly generated.

Experimental Results

Table 1 presents the classification accuracy of RBFFCA for each of the ten functions proposed in [2]. It
also shows a comparison with radial basis function neural network (RBFN). In all cases, 50 percent of
the samples are used as training set and the remaining samples are used as test set. Ten such independent
runs are performed and the mean value and standard deviationof the classification accuracy, computed
over them, are presented in Table 1. The parameters used in this experiments are as follows:

Number of hidden nodes for RBFFCA : 50

Number of hidden nodes for RBFN : 50

Number of fuzzy states for RBFFCA : 101

The value of m for RBFFCA : 1

The results corresponding to memory overhead and retrievaltime of RBFFCA and RBFN are as follows:

Memory overhead of RBFFCA : 24.02 KB

Memory overhead of RBFN : 32.19 KB

Retrieval time of RBFFCA for N = 10000 : 291 ms

Retrieval time of RBFN for N = 10000 : 327 ms

Retrieval time of RBFFCA for N = 100000 : 382 ms

Retrieval time of RBFN for N = 100000 : 617 ms



388 P. Maji and P.P. Chaudhuri / RBFFCA

Table 1. Classification Accuracy of RBFFCA and RBFN on Synthetic dataset

Fn Size of RBFFCA RBFN

No Dataset Training Testing Training Testing

Mean Sd. Dv. Mean Sd. Dv. Mean Sd. Dv. Mean Sd. Dv.

1 10000 83.2 0.25 81.7 0.09 84.1 0.33 79.6 0.12

100000 83.0 0.12 80.2 0.04 83.8 0.13 78.2 0.30

2 10000 81.7 0.10 78.3 0.31 80.6 0.15 75.3 0.21

100000 82.1 0.07 77.8 0.11 81.9 0.04 76.6 0.04

3 10000 80.9 0.12 78.5 0.20 82.5 0.04 72.1 0.17

100000 82.3 0.01 80.1 0.01 83.1 0.16 79.8 0.02

4 10000 85.4 0.13 81.9 0.06 84.8 0.01 78.3 0.31

100000 83.7 0.20 82.0 0.30 85.2 0.06 81.6 0.07

5 10000 81.6 0.31 80.2 0.11 80.4 0.31 76.7 0.12

100000 81.1 0.11 78.9 0.02 79.3 0.11 78.2 0.03

6 10000 84.0 0.08 82.4 0.05 82.8 0.08 81.9 0.01

100000 84.5 0.17 81.8 0.15 82.0 0.02 79.0 0.22

7 10000 83.9 0.04 81.6 0.17 81.6 0.12 81.1 0.10

100000 83.6 0.02 80.3 0.19 82.4 0.03 78.5 0.02

8 10000 82.8 0.21 78.4 0.11 83.6 0.09 73.2 0.01

100000 81.5 0.02 77.7 0.01 83.7 0.10 74.1 0.27

9 10000 84.1 0.03 83.8 0.00 79.5 0.20 79.7 0.14

100000 85.4 0.09 83.2 0.16 86.1 0.11 75.3 0.02

10 10000 82.6 0.11 79.1 0.03 82.3 0.02 74.4 0.01

100000 82.8 0.20 78.6 0.08 82.1 0.22 78.3 0.23

The time required to generate RBFFCA and RBFN for a given dataset are as follows:

Learning time of RBFFCA for N = 10000 : 1357 ms

Learning time of RBFN for N = 10000 : 872 ms

Learning time of RBFFCA for N = 100000 : 2689 ms

Learning time of RBFN for N = 100000 : 1207 ms

All the results reported above and in Table 1 clearly establish the fact that RBFFCA performs better
than RBFN with lesser memory overhead and retrieval time irrespective of the functions and size of the
dataset. Though the generation time of RBFFCA is greater than that of RBFN, this is not an important
design consideration. Because usually the classifier is generated once and used over and over again. So,
the higher classification accuracy with lesser retrieval time and memory overhead mainly establish the
significance of RBFFCA. Next the application of RBFFCA in satellite image classification is presented.
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6.2. Satellite Image Classification

The original Landsat data for this database is generated from data purchased from NASA by the Aus-
tralian Centre for Remote Sensing, and used for research at the University of New SouthWales. The
sample database is generated taking a small section (82 rowsand 100 columns) from the original data
[36]. The data are divided into train and test set with 4435 examples in train set and 2000 in test set.

6.2.1. Experimental Results

The results on dataset reported earlier are presented in Table 2 in respect of classification accuracy.
Column I of Table 2 represents the number of hidden units (that is, the number of gaussian radial basis
functions) while Columns II and III depict the number of fuzzy states and the value ofm. Columns
IV and V show the mean value and standard deviation of the classification accuracy of both training
and test dataset respectively. The classification accuracyof training and testing confirm that the evolved
RBFFCA based hybrid pattern classifier can generalize the satellite database irrespective of the number
of hidden units, number of fuzzy states and the value ofm.

Table 2. Classification Accuracy of RBFFCA on SatImage dataset

Hidden Value Value Training (%) Testing (%)

Units of K of m Mean Sd. Dv. Mean Sd. Dv.

25 11 1 78.4 0.11 74.9 0.06

2 79.1 0.17 76.3 0.12

101 1 83.2 0.16 80.1 0.02

2 81.9 0.07 79.4 0.17

50 11 1 90.4 0.14 88.1 0.01

2 88.6 0.23 87.0 0.07

101 1 89.6 0.13 84.1 0.21

2 89.9 0.08 85.8 0.13

75 11 1 90.1 0.21 85.1 0.01

2 91.5 0.18 82.3 0.20

101 1 89.4 0.31 81.9 0.16

2 87.0 0.42 82.8 0.33

6.2.2. Comparison of Different Algorithms

Table 3 compares the performance of RBFFCA with that of conventional classification algorithms like
RBFN [24, 29], MLP (multilayer perceptron) [24, 29], C4.5 [40], FCATree (fuzzy cellular automata
tree) [30], CATree (cellular automata tree) [33] in terms ofclassification accuracy, memory overhead,
and retrieval time.

Column II of Table 3 represents the classification accuracy while Columns III and IV depict the
memory overhead and retrieval time of different algorithms. The experimental results of Table 3 clearly



390 P. Maji and P.P. Chaudhuri / RBFFCA

Table 3. Comparison of Different Classification Algorithms

Different Classification Memory Retrieval

Algorithms Accuracy (%) Overhead (KB) Time (ms)

RBFFCA 88.1 9.16 484

RBFN 87.9 10.17 502

MLP 86.2 11.33 716

C4.5 85.2 709.72 2255

FCATree 81.9 189.62 2419

CATree 87.6 222.74 4943

establish the fact that the classification accuracy of RBFFCA is higher while its memory overhead and
retrieval time are lesser compared to that of different classification algorithms.

Next subsection presents the application of RBFFCA for finding splice-junction in DNA sequences.

6.3. Identification of Splice-Junction in DNA Sequence

In bioinformatics, one of the major task is the recognition of certain DNA subsequences important in the
expression of genes. Basically, a DNA sequence is a string over alphabet D={A,C,G,T}. DNA contains
the information by which a cell constructs protein molecules. The cellular expression of protein proceeds
by the creation of a ‘message’ ribonucleic acid (mRNA) copy from the DNA template. This mRNA is
then translated into a protein. One of the most unexpected findings in molecular biology is that large
pieces of the mRNA are removed before it is translated further [4]. The utilized sequences are known as
exons while the removed sequences are known as introns, or intervening sequences. The points at which
DNA is removed are known as splice-junctions. The splice-junction problem is to determine into which
of the following three categories a specified location in a DNA sequence falls: (1) exon/intron borders,
referred to as donors (2) intron/exon borders, referred to as acceptors and (3) neither.

6.3.1. Description of Dataset

The dataset used in this problem is a processed version of theIrvine Primate splice-junction database
[36]. Each of the 3186 examples in the database consists of a window of 60 nucleotides, each represented
by one of four symbolic values ({A,C,G,T}) and the classification of the middle point in the window as
one of intron-exon boundary, or neither of these. Processing involved the removal of a small number of
examples(4), conversion of the original 60 symbolic attributes to 180 binary attributes and the conversion
of symbolic class labels to numeric labels. The training setof 2000 is chosen randomly from the dataset
and the remaining 1186 examples are used as the test set.

6.3.2. Experimental Results

The experimental results on DNA dataset reported earlier are presented in Table 4 and subsequent dis-
cussions analyze the results in respect of classification accuracy.
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Column I of Table 4 represents the number of hidden units while Columns II and III depict the number
of fuzzy states and the value ofm. Columns IV and V show the mean value and standard deviation of
the classification accuracy of both training and test dataset respectively. The classification accuracy of
training and testing confirm that the evolved RBFFCA can generalize the DNA database irrespective of
the number of hidden units, number of fuzzy states and the value ofm.

Table 4. Classification Accuracy of RBFFCA on DNA dataset

Hidden Value Value Training (%) Testing (%)

Units of K of m Mean Sd. Dv. Mean Sd. Dv.

25 11 1 88.2 0.23 81.9 0.28

2 89.3 0.18 79.4 0.31

101 1 84.8 0.31 77.2 0.10

2 86.4 0.02 87.6 0.27

50 11 1 93.8 0.05 88.1 0.23

2 93.9 0.09 90.2 0.07

101 1 96.1 0.17 92.9 0.03

2 96.4 0.12 91.3 0.11

75 11 1 95.7 0.15 89.8 0.20

2 95.2 0.32 88.1 0.30

101 1 91.6 0.11 86.5 0.17

2 92.7 0.22 89.2 0.34

6.3.3. Comparison of Different Algorithms

Table 5 compares the performance of RBFFCA with RBFN, MLP, C4.5, FCATree, CATree, etc. in terms
of accuracy, memory overhead, and retrieval time.

Column II of Table 5 represents the classification accuracy while Columns III and IV depict the
memory overhead and retrieval time of different algorithms. The experimental results of Table 5 clearly
establish the fact that the classification accuracy of RBFFCA is comparable to different algorithms while
its memory overhead and retrieval time are lesser compared to that of different algorithms.

6.4. Identification of Protein Coding Region in DNA

This subsection presents the application of RBFFCA for finding protein-coding (exon) regions in anony-
mous sequences of DNA. The idea of the new method is to use the framework of RBF and FCA. The
new method is evaluated for few sequences and an analysis regarding the accuracy is also presented.

6.4.1. Description of Dataset

The data used for this study are the human DNA data collected by Fickett and Tung [16]. The bench-
mark human data includes three different datasets. For the first dataset, non-overlapping human DNA
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Table 5. Comparison of Different Classification Algorithms

Different Classification Memory Retrieval

Algorithms Accuracy (%) Overhead (KB) Time (ms)

RBFFCA 92.9 28.71 298

RBFN 93.9 34.19 876

MLP 91.4 37.22 1184

C4.5 93.3 1067.96 655

FCATree 88.1 51.22 491

CATree 86.4 50.86 494

sequences of length 54 have been extracted from all human sequences, with shorter pieces at the ends
discarded. Every sequence is labeled according to whether it is entirely coding, entirely non-coding,
or mixed, and the mixed sequences (i.e., overlapping the exon-intron boundaries) are discarded. The
dataset also includes the reverse complement of every sequence. This means that one-half of the data is
guaranteed to be from the non-sense strand of the DNA, which makes the problem of identifying coding
regions somewhat harder. For the current study, we have usedthe same division into training and test
data as in the benchmark study [16]. The training set is used exclusively to construct the RBFFCA based
pattern classifier, and the classifier is then used to classify the test set. In addition to the 54-base dataset,
we have used datasets containing 108 and 162 bases. No information about reading frames is used in
this study. We have tried to solve the problem of finding coding regions in DNA about which nothing
is known. Every window is either all-coding or all-non-coding, but the reading frame of each window
is unknown. This choice of window lengths and experimental method follows that used by Fickett and
Tung [16], and the problem here is what they defined as proteincoding region.

6.4.2. Experimental Results

The experimental results on Fickett and Tung dataset are presented in Table 6. Column I of Table 6
represents the number of hidden units while Columns II and III depict the number of fuzzy states and
the value ofm. Columns IV-VI show the classification accuracy of both training and test dataset on
Human DNA 54bp, 108bp, and 162bp respectively. The classification accuracy of training and testing
confirm that the RBFFCA can generalize the Fickett and Tung dataset irrespective of DNA sequence
length, number of hidden units, number of fuzzy states and value ofm.

6.4.3. Comparison of Different Algorithms

Table 7 compares the classification accuracy of RBFFCA with that of conventional algorithms namely
OC1, Position Asymmetry, Fourier, Hexamer, Dicodon Usage,etc. Columns II-IV of Table 7 represent
the classification accuracy of different algorithms on Human DNA 54bp, 108bp, and 162bp respectively.
The experimental results of Table 7 clearly establish the fact that the classification accuracy of RBFFCA
is greater than that of different algorithms irrespective of its sequence length.
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Table 6. Classification Accuracy of RBFFCA on Fickett and Tung dataset

Hidden Value Value Human 54bp Human 108bp Human 162bp

Units of K of m Training Testing Training Testing Training Testing

50 11 1 78.4 74.8 79.2 75.8 80.6 74.9

2 77.0 74.1 80.6 77.4 78.3 73.3

101 1 81.6 77.5 81.5 76.3 83.4 78.6

2 82.1 76.3 83.3 78.0 85.7 81.8

75 11 1 84.8 79.0 83.9 79.2 86.2 83.2

2 83.7 78.7 85.1 74.8 86.8 84.1

101 1 86.1 83.2 87.9 84.1 88.2 84.6
2 87.8 81.5 88.5 83.6 89.1 84.3

100 11 1 85.3 82.6 83.2 82.9 85.5 82.8

2 83.6 79.3 80.8 77.2 84.8 80.9

101 1 81.2 76.4 84.2 80.7 86.9 83.4

2 84.3 79.9 80.6 73.5 85.8 80.5

Table 7. Classification Accuracy of Different Algorithms

Algorithms 54bp 108bp 162bp

RBFFCA 83.2 84.1 84.6
OC1 73.9 83.7 84.2

Position Asymmetry 70.7 77.6 81.7
Fourier 69.5 77.4 82.0

Hexamer 69.8 71.4 73.8
Dicodon Usage 69.8 71.2 73.7

7. Conclusion

In this paper, we propose a hybrid learning algorithm based on the principles of radial basis function
(RBF) and fuzzy cellular automata (FCA) for pattern classification of real valued data. Two new op-
erators are introduced to characterize a special class of FCA, termed as fuzzy multiple attractor CA
(FMACA). Application of such operators brings down the complexity to identify the class of an input
pattern from O(n3) to O(n). An efficient formulation of genetic algorithm (GA) has been proposed for
evolution of desired FMACA to perform pattern classification task. The genetic operators are imple-
mented in such a way that they help to preserve the structure of FMACA.

The aforesaid model is used in different pattern classification problems and the results are compared
with some of the related techniques on the basis of some quantitative performance indices. Extensive
experimental results show that the proposed hybrid learning algorithm has high classification accuracy
with less memory overhead and computation time. The investigation, besides having significance in
cellular automata (CA) research, has potential in soft computing research and for application to large
scale problems involving data mining, bioinformatics, etc.
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