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CHARACTERISATION OF CORRELATION MATRICES OF
SPIN VARIABLES

By J.C. GUPTA
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SUMMARY. Necessary and sufficient conditions are given for a correlation matrix of order

n ≥ 2 to be the correlation matrix of spin variables in the classical sense. It is shown that

Bell’s inequalities (1964) are not sufficient for matrices of order n ≥ 5.

1. Introduction

A random variable ξ is called a spin variable if P (ξ = 1) = P (ξ = −1) = 1
2 .

If {ξi, 1 ≤ i ≤ n} is a family of spin variables and IE(ξi ξj) = σij so that
σii = 1 for every i, then the well-known Bell’s inequalities (see Bell, 1964 and
Parthasarathy, 1992) are

1 + εiεjσij + εiεkσik + εjεkσjk ≥ 0 ∀ 1 ≤ i < j < k ≤ n. ...(1.1)

where ε1, ε2, · · · , εn are ±1.
In Balasubramanian, Gupta and Parthasarathy (1998) it is shown that con-

ditions (1.1) are necessary and sufficient when n = 3 or 4. Here we give necessary
and sufficient conditions for any n ≥ 2.

2. Preliminaries

Let Ωn = {−1, 1}n be the space of all n-length sequences ω = (ω1, ω2, · · · , ωn)
of ±1. For T ⊂ {1, 2, · · · , n} we denote by ωT that sequence ω for which ωi = −1
for all i in T and ωj = 1 for all j in T ′ where T ′ denotes the complement of T .
Let ξ1, ξ2, · · · , ξn denote the coordinate variables on Ωn : ξi(ω) := ωi, 1 ≤ i ≤ n.
For each T ⊂ {1, 2 · · · , n} we introduce probability PT as follows:

PT ({ωT }) = PT ({ωT ′
}) =

1
2
. . . . (2.1)
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Under PT , ξ1, ξ2, · · · , ξn are spin variables with correlation matrix

ΣT = ((σT
ij)), σT

ii = 1 for all i and σT
ij = (−1)|T∩{i,j}| for i 6= j . . . (2.2)

We note that PT = PT ′
and { ΣT : T ∈ T } where

T = {T ⊂ {1, 2, · · · , n} : 1 ∈ T } . . . (2.3)

gives an enumeration of 2n−1 distinct realisable correlation matrices of n spin
variables.

3. Realisable Correlation Matrices of Spin Variables

Theorem 3.1. The class of realisable correlation matrices of spin variables
is given by

Cn = Convex Hull{ΣT : T ∈ T } . . . (3.1)

where ΣT and T are given by (2.2) and (2.3).

Proof. Sufficiency : Clearly the matrix
∑

λT ΣT , λT ≥ 0,
∑

λT = 1, is the
correlation matrix of ξ1, ξ2, · · · , ξn under the probability P =

∑
λT PT on Ωn.

Necessity : Let Λ be the correlation matrix of n spin variables η1, η2, · · · , ηn

defined, say, on the probability space (Ω,F , Q). On Ωn define P as follows:

P ({ωT }) = P ({ωT ′
) =

1
2
Q{ ηi = −1 ∀ i ∈ T, ηj = 1 ∀ j 6∈ T }

+
1
2
Q{ ηi = 1 ∀ i ∈ T, ηj = −1 ∀ j 6∈ T }, T ∈ T .

Under P, ξ1, ξ2, · · · , ξn are spin variables with correlation matrix Λ. Clearly
P =

∑
T λT PT with λT = P ({ωT }) + P ({ωT ′}) so that Λ =

∑
λT ΣT ∈ Cn.

Remark 3.1. The extreme points of Cn are given by {ΣT : T ∈ T }. Suppose

ΣT = αΣ1 + (1− α)Σ2, 0 < α < 1, Σ1,Σ2 ∈ Cn.

Restricting this to any 2× 2 principal submatrix we get an identity of the form(
1 ±1
±1 1

)
= α

(
1 p1

p1 1

)
+ (1− α)

(
1 p2

p2 1

)
where 1 − p2

i ≥ 0, i = 1, 2. If 1 − p2
i > 0 then LHS is singular and RHS is

nonsingular. So pi = ±1, i = 1, 2. Varying the 2 × 2 principal submatrices we
conclude that Σ1 = Σ2 = ΣT and hence ΣT is extremal.
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Remark 3.2. Parthasarathy (1998) has recently characterised the set En of
extremal points of all correlation matrices of order n. He shows that

En =
⋃

k:k≥1, k(k+1)≤2n

En,k . . . (3.2)

where En,k is the set of extremal correlation matrices of order n and rank k; he
has a complete description of En,k.

It is easily seen that
∂Cn = En,1, . . . (3.3)

where ∂Cn stands for the set of extremal points of Cn.

4. Examples

Let n = 5, σii = 1 for all i, σ1j = θ for j = 2, 3, 4, 5 and σij = ρ for
i 6= j = 2, 3, 4, 5. Then it is easily seen that Bell’s inequalities reduce to

−1
3
≤ ρ ≤ 1, 1 + 2θ + ρ ≥ 0 and 1− 2θ + ρ ≥ 0. . . . (4.1)

Also
∑

= ((σij)) is positive semi-definite if and only if

θ2 ≤ 1
4
(1 + 3ρ). . . . (4.2)

Example 1. Take θ = 1
4 and ρ = − 7

24 . Then
∑

satisfies Bell’s inequalities
but it is not positive semi-definite.

Example 2. Take θ = 1
4 and ρ = − 5

24 . Then
∑

is positive semi-definite
and satisfies Bell’s inequalities. It is not difficult to check that this

∑
is not

in C given by (3.1) so that it is not realisable as a correlation matrix of spin
variables.
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