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SUMMARY. Within the framework of conventional quantum stochastic calculus in a boson

Fock space we obtain an explicit realization of the noncommutative arcsine Brownian motion

which was constructed by Muraki (1997a) in a monotone Fock space and by Lu in an interacting

free Fock space. This, at once, simplifies the theory of stochastic integration with respect to

the arcsine Brownian motion.

1. Introduction

In quantum (or noncommutative) probability theory several Brownian mo-
tions are known. As examples we have bosonic, fermionic, free and q-brownian
motions (see Parthasarathy, 1992; Meyer, 1993; Schurmann, 1993; Speicher,
1990; Bozeiko and Speicher, 1991 etc.) To this list, recently, Muraki (1996,
1997a) and Lu have added a new example in which the distribution of the sum
of the creation and annihilation operators at any time t in the vacuum state is a
scaled symmetric arcsine law. This new Brownian motion also satisfies the prop-
erty of independent increments in the sense of Kummerer (see Speicher (1990)).
Here, we continue the process of unification of these diverse Brownian motions
initiated by Hudson and Parthasarathy (1986) and Parthasarathy and Sinha
(1991). We realise explicitly the arcsine Brownian motion in terms of the usual
bosonic (or Gaussian) Brownian motion by the method of stochastic integra-
tion. It turns out that the arcsine brownian motion is also the bosonic one with
a random time change in the quantum probabilistic sense. As a consequence
stochastic integration and quantum Ito’s formula in monotone Fock space in the
sense of Muraki turn out to be simple corollaries.
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2. The Arcsine Brownian Motion

Let A†,Λ, A be respectively the creation, conservation and annihilation pro-
cesses of boson Fock space quantum stochastic calculus with one degree of free-
dom in H = Γ(L2(IR+)) . Denote by E the dense linear manifold in H generated
by the set {e(f), f ∈ L2(IR+)} of all exponential vectors. Let Ωt] be the Fock
vacuum vector in Ht] = Γ(L2([0, t])) and let P0(t) be the projection on the sub-
space Ωt]⊗H[t where H[t = Γ(L2[t,∞)), with the usual identification of H with
Ht]⊗H[t. Then there exists a spectral measure τ on the Borel σ− algebra of IR+

such that τ([t,∞)) = P0(t). In particular, τ is a quantum stop time in the sense
of Hudson (1979), Parthasarathy and Sinha (1987). The quantum stochastic
integrals

Lϕ(t) =

t∫
0

ϕ̄(s)P0(s)dA(s), L†ϕ(t) =

t∫
0

ϕ(s)P0(s)dA†(s) . . . (2.1)

are well-defined as operators on the domain E for every ϕ ∈ L2
loc(IR+) and

they are adjoint to each other on E for every t. Denote by the same symbols
Lϕ(t), L†ϕ(t) their respective closures.

Theorem 2.1. For every ϕ,ψ ∈ L2
loc(IR+) the operators Lϕ(t) and L†ψ(t)

are defined on the whole space H as bounded operators satisfying the following:

(i) Lϕ(t)L†ψ(t) =
t∫
0

ϕ̄(s)ψ(s)P0(s)ds;

(ii) ‖Lϕ(t)‖2 = ‖L†ϕ(t)‖2 =
t∫
0

|ϕ(s)|2ds;

(iii) L†ϕ(t) is the adjoint of Lϕ(t).

Proof. From (2.1) we have

dLϕ = ϕ̄P0dA, dL
†
ψ = ψP0dA

†.

By quantum Ito’s formula (i.e. the second fundamental lemma in Parthasarathy

(1992), page 191 ) we have for f, g ∈ L2(IR+) 〈L†ϕ(t)e(f), L†ψ(t)e(g)〉=
t∫
0

{〈P0(s)e(f), L†ψ(s)e(g)〉(ϕ̄g)(s)+

〈L†ϕ(s)e(f), P0(s)e(g)〉(f̄ψ)(s) +〈e(f), P0(s)e(g)〉(ϕ̄ψ)(s)}ds.

By definition L†ϕ(s)e(f), andL†ψ(s)e(g) belong to the orthogonal complement
of Ωs] ⊗H[s and therefore

〈L†ϕ(t)e(f), L†ψ(t)e(g)〉 =

t∫
0

〈e(f), P0(s)e(g)〉(ϕ̄ψ)(s)ds.
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Thus

〈L†ϕ(t)u, L†ψ(t)v〉 = 〈u,
t∫

0

(ϕ̄ψ)(s)P0(s)dsv〉 . . . (2.2)

for all u, v ∈ E and, in particular

‖L†ϕ(t)u‖2 =

t∫
0

|ϕ(s)|2 ‖P0(s)u‖2ds ≤

 t∫
0

|ϕ(s)|2ds

 ‖u‖2. . . . (2.3)

This shows that the closure of L†ϕ(t) is a bounded operator on H. When u = e(0)
is the vacuum vector, equality is attained in (2.3) and therefore ‖L†ϕ(t)‖2 =
t∫
0

|ϕ(s)|2ds. Since Lϕ(t) defined by (2.1) is adjoint to L†ϕ(t) in E it follows that

the closure of Lϕ(t) is the adjoint of the closed operator L†ϕ(t). Now (2.2) implies
the relation (i) of the theorem.

Remark. If Aϕ(t) =
t∫
0

ϕ̄(s)dA(s), A†ϕ(t) =
t∫
0

ϕ(s)dA†(s) then Lϕ(t) =

Aϕ(τ ∧ t), L†ϕ(t) = A†ϕ(τ ∧ t) on E , where τ ∧ t is the minimum of the two stop
times τ and t. Thus Lϕ, L†ϕ can be viewed as Aϕ, A†ϕ stopped at the stop times
τ ∧ t in the sense of Parthasarathy and Sinha (1987).

Relation (i) of Theorem 2.1 should be compared with the relation Lϕ(t)L†ψ(t) =
t∫
0

(ϕ̄ψ)(s)ds for free Brownian motion in the sense of Speicher (1990).

Proposition 2.2. Let

Xϕ(t) = Lϕ(t) + L†ϕ(t), ϕ ∈ L2
loc(IR).

Then, for any ϕ1, ϕ2, . . . , ϕn ∈ L2
loc(IR+), we have

dXϕ1Xϕ2 · · ·Xϕn =
∑
i

Xϕ1Xϕ2 · · ·Xϕi−1P0Xϕi+1 · · ·Xϕn(ϕ̄idA+ ϕidA
†)

+

∑
i<j

ϕ̄iϕjXϕ1 · · ·Xϕi−1P0Xϕi+1 · · ·Xϕj−1P0Xϕj+1 · · ·Xϕn

 dt . . . (2.4)

where, in the case j = i + 1, the summand within {} is to be interpreted
as ϕ̄iϕi+1Xϕ1 · · · Xϕi−1P0Xϕi+2 · · · Xϕn . Proof. By (2.1) we have dXϕ =

P0(ϕdA† + ϕ̄dA). By quantum Ito’s formula

dXϕ1Xϕ2 = Xϕ1P0(ϕ2dA
† + ϕ̄2dA) + P0Xϕ2(ϕ1dA

† + ϕ̄1dA) + ϕ̄1ϕ2P0dt.



308 k.r. parthasarathy

Thus (2.4) holds for n = 2. Now (2.4) follows by induction and quantum Ito’s
formula.

Corollary 2.3. Define the vacuum expectation moments

F (ϕ1, . . . , ϕn; t) = 〈e(0), Xϕ1(t) · · ·Xϕn
(t)e(0)〉, ϕi ∈ L2

loc(IR+).

Then

F (ϕ1, . . . , ϕn; t) =

t∫
0

∑
i<j

(ϕ̄iϕj)(s)F (ϕ1, . . . , ϕi−1; s)F (ϕi+1, . . . , ϕj−1; s)

× F (ϕj+1, . . . , ϕn; s)ds

where inside the summation sign the functions F are to be interpreted according
to the convention

F (ϕ1, . . . , ϕi−1, s) = 1 if i = 1,

F (ϕi+1, . . . , ϕj−1, s) = 1 if j = i+ 1,

F (ϕj+1, . . . , ϕn, s) = 1 if j = n,

Proof. By equation (2.4) of Proposition 2.2 we have

F (ϕ1, . . . , ϕn; t) =

t∫
0

{
∑
i<j

(ϕ̄iϕj)(s)〈e(0), Xϕ1 · · ·Xϕi−1P0Xϕi+1 · · ·

Xϕj−1P0Xϕj+1 · · ·Xϕn(s)e(0)〉}ds.
Since P0(s)e(0) = e(0) and

P0(s)(Xψ1 · · ·Xψk
)(s)P0(s) = F (ψ1, . . . , ψk; s)P0(s)

the required result follows.

Corollary 2.4. Let Xϕ be as in Proposition 2.2. Then

〈e(0), Xϕ(t)ne(0)〉 =


0 if n is odd,

(−2
t∫
0

|ϕ(s)|2ds)k
(− 1

2
k

)
if n = 2k

Proof. By definition

〈e(0), Xϕ(t)ne(0)〉 = F (ϕ,ϕ, . . . , ϕ; t)

where ϕ is repeated n-fold. Write

f0(t) ≡ 1, fn(t) = 〈e(0), Xϕ(t)ne(0)〉, n ≥ 1, t ≥ 0.
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Then by Corollary 2.3

fn(t) =

t∫
0

|ϕ(s)|2
 ∑

1≤i<j≤n

fi−1fj−i−1fn−j

 (s)ds.

Define

G(t, x) =
∞∑
n=0

fn(t)xn

Then we have

G(t, x) = x2

t∫
0

|ϕ(s)|2G(s, x)3ds.

Expressing this as a differential equation in the variable t we have

−G′

G3
= x2|ϕ|2, G(0, x) = 1.

Thus

G(t, x) =
1√

1− 2x2
∫ t
0
|ϕ(s)|2ds

Identifying the coefficients of xn on both sides and using the binomial expansion
on the right hand side we get the required result.

Corollary 2.5. The probability distribution of the observable (2
t∫
0

|ϕ(s)|2ds)− 1
2

Xϕ(t) in the vacuum state e(0) is the standard symmetric arcsine law with den-
sity function π−1(1− x2)−

1
2 in the interval (−1, 1).

Proof. Immediate from Corollary 2.4 and the moment sequence of the
arcsine law.

Proposition 2.6. For any ϕ,ψ ∈ L2(IR+) define

X(ϕ,ψ) =

t∫
0

P0(s){ϕ(s)dA†(s) + ψ̄(s)dA(s)}.

If (supp ϕ) ∪ (suppψ) ⊂ [a, b], 0 < a < b <∞ then X(ϕ,ψ) = P0(a)X(ϕ,ψ).

Proof. For any a ≤ t1 < t2 we have

P0(t1)
{
ϕ(t1)(A†(t2)−A†(t1)) + ψ̄(t1)(A(t2)−A(t1))

}
= P0(a)P0(t1){ϕ(t1)(A†(t2)−A†(t1)) + ψ̄(t1)(A(t2)−A(t1))}
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By the definition of stochastic integrals, X(ϕ,ψ) is a limit of sums of terms
of the kind on the left hand side of the equation above. This completes the
proof.

Proposition 2.7. Let Xi = X(ϕi, ψi), 1 ≤ i ≤ m + n where ϕi, ψi ∈
L2(IR+) and

m⋃
i=1

(supp ϕi) ∪ (supp ψi) ⊂ [0, a],

m+n⋃
i=m+1

(supp ϕi) ∪ (supp ψi) ⊂ [a, b].

Then

〈e(0), X1 · · ·Xm+ne(0)〉 = 〈e(0), X1 · · ·Xme(0)〉〈e(0), Xm+1Xm+2 · · ·Xm+ne(0)〉.

Proof. By Proposition 2.6 we have

X1 · · ·Xm+n = X1 · · ·XmP0(a)Xm+1 · · ·Xm+n.

Furthermore

P0(a)X1 · · ·XmP0(a) = 〈e(0), X1 · · ·Xme(0)〉P0(a).

Thus 〈e(0), X1 · · ·Xm+ne(0)〉= 〈e(0), P0(a)X1 · · ·XmP0(a)Xm+1 · · ·Xm+nP0(a)e(0)〉

= 〈e(0), X1 · · ·Xme(0)〉〈e(0), Xm+1 · · ·Xm+ne(0)〉.

Corollary 2.8. For any interval I = [a, b) ⊂ IR+ denote by AI the von

Neumann algebra generated by all operators of the form L(ϕ) =
∞∫
0

ϕ(s)P0(s)dA(s),

ϕ ∈ L2(IR+), supp ϕ ⊂ I. If Xi ∈ AIi
, i = 1, 2, . . . , n, Ii = [ai, bi) ⊂ IR+, 0 ≤

a1 < b1 ≤ a2 < b2 ≤ · · · < bn−1 ≤ an < bn <∞ then

〈e(0), X1X2 · · ·Xne(0)〉 =
n∏
i=1

〈e(0), Xie(0)〉.

Proof. Immediate from Proposition 2.7.

Remark. If L(t) =
t∫
0

P0(s)dA(s) = A(τ ∧ t), then L(s)L†(t) =
s∧t∫
0

P0(u)du

where s ∧ t = min(s, t) and {L(t), L†(t), 0 ≤ t < ∞} is a process with inde-
pendent increments in the state e(0) in the sense of Kummerer. The following
Ito’s
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formula holds:

(dL(t))2 = (dL†(t))2 = (dL†(t))(dL(t)) = 0; dL(t)(t)dL†(t) = dt.
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