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PARTIAL HAUSDORFF SEQUENCES AND SYMMETRIC
PROBABILITIES ON FINITE PRODUCTS OF {0, 1}
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SUMMARY. Let Hn be the set of all partial Hausdorff sequences of order n, i.e., se-

quences cn(0), cn(1), . . . cn(n), cn(0) = 1, with (−1)m4mcn(k) ≥ 0 whenever m + k ≤ n.

Further, let
∏

n
be the set of all symmetric probabilities on {0, 1}n. We study the inter-

play between the sets Hn and
∏

n
to formulate and answer interesting questions about both.

Assigning to Hn the uniform probability measure we show that, as n → ∞, the fixed sec-

tion (cn(1), cn(2), . . . , cn(k)), properly centered and normalized, is asymptotically normally

distributed. That is,
√

n(cn(1) − c0(1), cn(2) − c0(2), . . . , cn(k) − c0(k)), converges weakly

to MVN (0, Σ), where c0(i) correspond to the moments of the uniform law λ on [0, 1]; the

asymptotic covariances also depend on the moments of λ.

1. Introduction

We recall Hausdorff’s solution to the moment problem on the unit interval.
A sequence c(n), n = 0, 1, 2, . . . , c(0) = 1, is called a completely monotone
sequence if

(−1)m4mc(k) ≥ 0, k,m = 0, 1, 2, . . . , . . . (1.1)

where 4c(k) := c(k + 1)− c(k) and 4m stands for m iterates of 4.
Theorem 1.1. (Hausdorff, 1923). A sequence c(n), n = 0, 1, 2, . . . , c(0) =

1, is the moment sequence of some probability measure on [0,1] if and only if it
is completely monotone.

We call a sequence c(0), c(1), . . . , c(n), c(0) = 1, a partial Hausdorff sequence
of order n if (1.1) holds for all k and m such that k +m ≤ n. Here c(k), k =
1, 2, . . . , n may not correspond to the moments of a probability measure on [0,1].
However, conditions (1.1) with m = 0 imply that c(k) ≥ 0 for all k ≤ n.
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Moreover, if a sequence c(k), k = 0, 1, 2, . . . is such that, for all n, c(0), c(1), . . . c(n)
is a partial Hausdorff sequence, then it is a moment sequence.

We say that a probability on Ωn = {0, 1}n is symmetric if it is invariant
under all permutations of coordinates of Ωn. A symmetric probability on Ωn

is determined by constants pn(i), i = 1, 2, . . . , n where pn(i) is the probability
assigned to the set of all n-length sequences having exactly i 1’s. Of course, a
symmetric probability is not necessarily a mixture of i.i.d. probabilities.

This paper is organised as follows. Section 2 is devoted to a study of the
set of partial Hausdorff sequences of order n on the one hand and the set of
symmetric probabilities on {0, 1}n on the other. It turns out that these two
sets, though seemingly unrelated, are affine equivalent and as such they are
best studied in tandem. We exhibit an explicit affine correspondence between
these sets and use it to obtain interesting results about both. In Section 3 we
prove a normal limit theorem for partial Hausdorff sequences; this is inspired
by the work of Chang, Kemperman and Studden (1993) who proved a similar
theorem for moment sequences. Chang, Kemperman and Studden employ the
canonical moments in their study while in our case the canonical coordinates
pn(i), i = 1, 2, . . . , n mentioned above play the central role.

2. Partial Hausdorff Sequences and Symmetric Probabilities

We introduce the notion of a partial Hausdorff sequence of order n.
Definition. A sequence cn(0), cn(1), . . . , cn(n), cn(0) = 1, is called a partial

Hausdorff sequence of order n if

(−1)m4mcn(k) ≥ 0, k = 0, 1, . . . , n; m = 0, 1, . . . , n− k. . . . (2.1)

The set

Hn := {(cn(1), cn(2), . . . , cn(n)) : (−1)m4mcn(k) ≥ 0 if m+ k ≤ n} . . . (2.2)

with the understanding that cn(0) ≡ 1, denotes the set of all partial Hausdorff
sequences of order n.

We define

qm(k) := (−1)m−k4m−kcn(k), k = 0, 1, . . . , n; k ≤ m ≤ n, . . . (2.3)

and observe that, by (2.1), they are all non-negative.
We define, for m ≥ k + 1,

5qm(k) := qm(k) + qm(k + 1). . . . (2.4)

By (2.3) and (2.4), it follows that

5qm(k) = qm−1(k) . . . (2.5)
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and consequently, for m ≤ n,

qm(k) = 5n−mqn(k) =
n−m∑
j=0

(
n−m
j

)
qn(k + j). . . . (2.6)

By (2.3),

qn(k) = (−1)n−k4n−kcn(k) =
n−k∑
j=0

(−1)j

(
n− k
j

)
cn(k + j). . . . (2.7)

By (2.3) and (2.4),

cn(k) = qk(k) = 5n−kqn(k) =
n−k∑
j=0

(
n− k
j

)
qn(k + j); . . . (2.8)

in particular

cn(0) = 5nqn(0) =
n∑

k=0

(
n
k

)
qn(k) = 1. . . . (2.9)

We observe that, by (2.6), the non-negativity of qn(k), 0 ≤ k ≤ n, implies
that conditions (2.1) hold and consequently, we may redefine Hn as follows :

Hn = {(cn(1), cn(2), . . . , cn(n)) : qn(k) ≥ 0, 0 ≤ k ≤ n}, . . . (2.10)

where qn(k)’s are given by (2.7).
Given an element of Hn, we define a symmetric probability Qn on Ωn =

{0, 1}n which, for each 0 ≤ k ≤ n, assigns mass qn(k) to each (ω1, ω2, . . . , ωn) ∈
Ωn which has exactly k coordinates equal to 1. Conversely, given qn(k), 0 ≤
k ≤ n, equations (2.8) give a partial Hausdorff sequence of order n. Thus there
is a one-one correspondence between Hn and

∏
n := {(qn(1), qn(2), . . . qn(n)) : qn(k) ≥ 0,

n∑
1

(
n
k

)
qn(k) ≤ 1}, . . . (2.11)

the set of all symmetric probabilities on {0, 1}n. By (2.9), of course, qn(0) =

1−
n∑
1

(
n
k

)
qn(k). Equations (2.7) and (2.8) define maps

φn : Hn −→
∏

n

and
ψn :

∏
n −→ Hn . . . (2.12)
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respectively. Clearly these maps are one-one and onto and establish affine con-
gruence of convex sets Hn and

∏
n. Further, the map ψn is the inverse of the

map φn.
We define the projection map

πn : Hn+1 −→ Hn

by
(c(1), c(2), . . . , c(n+ 1)) 7→ (c(1), c(2), . . . , c(n)). . . . (2.13)

Likewise, we define
π̃n :

∏
n+1 −→

∏
n

by
q∗ 7→ q,

where q is the n-dimensional marginal of q∗ in
∏

n+1. We observe that both these
projection maps are affine. We will now discuss the use of the maps ψn, φn, πn

and π̃n to answer questions about Hn and
∏

n.
(a) Extreme points of Hn and

∏
n. Clearly the extreme points of

∏
n cor-

respond to the probabilities Qk
n, k = 0, 1, . . . , n, where Qk

n is the uniform dis-
tribution on the set of those elements of Ωn which have exactly k coordinates
equal to 1, i.e.,

∂
∏

n = {q0n, q1n, . . . qn
n},

where q0n = (0, 0, . . . , 0) and, for j, k = 1, 2, . . . , n,

qk
n(j) =


1(
n
k

) if j = k

0 otherwise.
. . . (2.15)

The extreme points of Hn, which are otherwise not so apparent, can be easily
obtained by using the map ψn. The congruence ψn maps ∂

∏
n onto ∂Hn. Simple

calculations show that
∂Hn = {c0n, c1n, . . . , cnn},

where

ckn = (
k

n
,
k(k − 1)
n(n− 1)

, . . . ,
k(k − 1) . . . 1

n(n− 1) . . . (n− k + 1)
, 0, . . . , 0), . . . (2.16)

k = 0, 1, 2, . . . , n.
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(b) Extendability of partial Hausdorff sequences. We define

Hn+1
n : = {(c(1), c(2), . . . c(n)) : ∃ c(n+ 1) s.t.

(c(1), c(2), . . . , c(n+ 1)) ∈ Hn+1}.
. . . (2.17)

Clearly, a partial Hausdorff sequence of order n can be extended to one of order
n+ 1 if and only if it is in the range of the affine map πn and consequently,

Hn+1
n = πn(Hn+1) = Convex Hull {πn(∂Hn+1)}. . . . (2.18)

Simple calculations show that

∂Hn+1
n = {c0n, c1n, . . . , cn+1

n },

where

ckn = (
k

n+ 1
,
k(k − 1)
(n+ 1)n

, . . . ,
k(k − 1) . . . 1

(n+ 1).n . . . (n− k)
, 0, . . . , 0), . . . (2.19)

k = 0, 1, 2, . . . , n+ 1.
In a similar fashion it is easy to figure out the extreme points of Hn+k

n , the
set of partial Hausdorff sequences of order n which can be extended by k steps.

(c) Extendability of symmetric probabilities. We define∏n+1
n := {q ∈

∏
n : ∃q∗ ∈

∏
n+1 s.t. its n-dim. marginal is q}. . . . (2.20)

Clearly, a symmetric probability on Ωn is extendable to one on Ωn+1 if and only
if it is in the range of π̃n. Looking at the diagram

· · · ←− Hn
πn←− Hn+1 ←− · · ·

↓ φn ↑ ψn+1

· · · ←− Πn
π̃n←− Πn+1 ←− · · ·

it is readily seen that
π̃n = φn ◦ πn ◦ ψn+1. . . . (2.21)

Easy calculations show that

∂
∏n+1

n = {q0n, q0,1
n , . . . , qn−1,n

n , qn
n}, . . . (2.22)

where q0n and qn
n are as defined in(2.15) and qk,k+1, k = 0, 1, . . . , n− 1, corre-

sponds to uniform distribution on the set of those elements of Ωn which have
either k or k + 1 coordinates equal to 1.

Likewise, one can figure out the extreme points of
∏n+k

n , the set of symmetric
probabilities on Ωn which are extendable to symmetric probabilities on Ωn+k.
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(d) We define

H∞2 := {(c1, c2) : ∃c3, c4, . . . , s.t. 1, c1, c2, . . . is completely monotone },
. . . (2.23)

Clearly,

H∞2 =
⋂∞

k=0 H2+k
2

=
⋂∞

n=2 Convex Hull {( i
n ,

i(i−1)
n(n−1) ) : i = 0, 1, 2, . . . n}

and (c1, c2) ∈ H∞2 if and only if, for each n ≥ 2, ∃λni, i = 0, 1, . . . , n λni ≥

0,
n∑
0

λni = 1 such that

c1 =
n∑
0

λni
i

n
and c2 =

n∑
i=0

λni
i(i− 1)
n(n− 1)

.

So
n− 1
n

c2 = Σλni
i2

n2
− Σλni

i

n2
≥ (Σλni

i

n
)2 − Σλni

i

n2
,

i.e.,

n−1
n c2 + 1

nc1 ≥ c
2
1. As n→∞, we get c2 ≥ c21.

Thus
H∞2 = {(c1, c2) : c1 ≥ c2 ≥ c21, , 0 ≤ c1 ≤ 1} . . . (2.24)

This gives necessary and sufficient conditions on c1 and c2 to be the first two
moments of some probability measure on [0, 1]. We do not know of a similar
characterisation of H∞3 .

While some of the results obtained in this section may perhaps be more
readily accessible by other methods, we feel that the tools developed are indis-
pensable for obtaining a normal limit theorem for partial Hausdorff sequences;
see Section 3.

3. A Normal Limit Theorem for Partial Hausdorff Sequences

Our main result in this section is a normal limit theorem for partial Hausdorff
sequences. This is inspired by a similar theorem proved by Chang, Kemperman
and Studden (1993) for the moment space

Mn := {c1, c2, . . . , cn)|λ ∈ Λ}, . . . (3.1)
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where

ck = ck(λ) =
∫ 1

0

xkλ(dx), k = 1, 2, . . . , n, . . . (3.2)

and Λ is the space of all probability measures on [0, 1].
They show, also see Karlin and Studden (1966), that

Vn = Volume (Mn) =
n∏

k=1

Γ(k)2

Γ(2k)
= exp[−n2(log 2 + o(1))] . . . (3.3)

and, among other things, prove the following theorem.
Theorem 3.1 (Chang, Kemperman and Studden, 1993). As n → ∞, the

distribution of
√
n(c1−c01, c2−c02, . . . , ck−c0k) converges to a multivariate normal

distribution MVN(0, ((σij))) , where

c0i =
∫ 1

0

xi dx

π
√
x(1− x)

and σij = c0i+j − c0i c0j . . . . (3.4)

In the proof of the above theorem the authors employ the canonical moments
introduced by Skibinsky (1967). In our case we find it convenient to introduce
a different set of canonical coordinates.

Let

Sn = {(pn(1), pn(2), . . . pn(n)) : pn(k) ≥ 0,
n∑
1

pn(k) ≤ 1} . . . (3.5)

be the standard simplex in Rn. We put

pn(0) = 1− pn(1)− pn(2)− . . .− pn(n) . . . (3.6)

and set up a one-one correspondence between Sn and
∏

n, as given by (2.11),
by putting

pn(k) =
(
n
k

)
qn(k), k = 1, 2, . . . , n; . . . (3.7)

of course, by (2.9) and (3.6),

pn(0) = qn(0). . . . (3.8)

This gives a one-one correspondence between Hn and Sn. Explicitly, by (2.7),
(2.8) and (3.7), we have

pn(k) =
(
n
k

) n−k∑
j=0

(−1)j

(
n− k
j

)
cn(k + j)

=
(
n
k

) n∑
m=k

(−1)m−k

(
n− k
n−m

)
cn(m)
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and

cn(k) =
n−k∑
j=0

(
n− k
j

)
pn(k + j)(
n

k + j

) =
1(
n
k

) n∑
m=k

(
m
k

)
pn(m), . . . (3.9)

k = 1, 2, . . . , n.
We will employ pn(k), k = 1, 2, . . . , n as the canonical coordinates of the

space Hn. We observe that the matrices of transformations from Sn to Hn and
vice-versa are upper triangular and , by (3.9),

∂(cn(1), cn(2), . . . , cn(n))
∂(pn(1), pn(2), . . . , pn(n))

= [
n∏

k=1

(
n
k

)
]−1. . . . (3.10)

We let
V ∗n = Volume (Hn). . . . (3.11)

Proposition 3.2. As n→∞,

1
n2

log V ∗n −→ −
1
2
. . . . (3.12)

Proof.

V ∗n =
∫
Hn

dcn(1)dcn(2) . . . dcn(n)

= [
∏n

k=1

(
n
k

)
]−1

∫
Sn

dpn(1)dpn(2) . . . dpn(n)

=
(
∏n

k=1 k!)
2

(n!)n+2

= exp[−n2( 1
2 + o(1))].

From (3.3) and (3.12) we get

αn =
Volume (Mn)
Volume (Hn)

=
Vn

V ∗n
= exp[−n2(β + o(1))], . . . (3.13)

where
β = log 2− 1

2
> 0.

This shows that, volume-wise, Mn is a very small portion of Hn. In the
language of Section 2, αn can be interpreted as the proportion of those partial
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Hausdorff sequences of order n which can be extended to completely monotone
sequences.

To get a better understanding of the shape and structure of the space Hn

we would like to look at a typical point of it. For this purpose we put uniform
probability measure on Hn, i.e., the n-dimensional Lebesgue measure on Hn

normalised by the volume V ∗n of Hn.

Proposition 3.3. The uniform probability measure on the space Hn is equiv-
alent to having the uniform probability measure on the space Sn of canonical
coordinates.

Proof. This is an immediate consequence of (3.10) and the change of vari-
ables formula for an integral on Hn to Sn and vice versa.

We will require the following combinatorial identity.

Proposition 3.4. For 1 ≤ i ≤ j ≤ n,

n∑
m=j

(
m
i

) (
m
j

)
=

i+j∑
m=j

(
n+ 1
m+ 1

) (
m

m− i m− j i+ j −m

)
. . . . (3.14).

Proof. The equality follows by identifying the quantity on the LHS of (3.14)
with the coefficient of xiyj in

n∑
m=j

(1 + x)m(1 + y)m =
j−1∑
k=0

{(
n+ 1
k + 1

)
−

(
j

k + 1

)}
ρk +

n∑
k=j

(
n+ 1
k + 1

)
ρk,

where ρ = (x+y+xy) and observing that the coefficient of xiyj in (x+y+xy)k

equals
(

k
k−i k−j i+j−k

)
if j ≤ k ≤ i+ j and zero otherwise.

Our main result is the following.

Theorem 3.5. For each k = 1, 2, . . . , as n→∞, the law of
√
n[cn(1),−c0(1),

cn(2)− c0(2), . . . , cn(k)− c0(k)] relative to the uniform distribution on Hn con-
verges to a multivariate normal distribution MVN [0,Σ], where

c0(i) =
∫ 1

0

xidx =
1

i+ 1
, Σ = ((σij)) with σij = c0(i+ j) =

1
i+ j + 1

.

. . . (3.15)
Proof. The uniform probability on the simplex Sn is just the Dirichlet

(1, 1, . . . , 1) distribution on it. Let Z0, Z1, . . . be a sequence of i.i.d. standard
exponential random variables defined on, say, the probability space (Ω,F , P ).
Then the law, under P, of

(
Z1

Z0 + Z1 + . . .+ Zn
,

Z2

Z0 + Z1 + . . .+ Zn
,

Zn

Z0 + Z1 + . . .+ Zn
)
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is Dirichlet (1, 1, . . . , 1) Hence, by (3.9) and Proposition 3.3, the law of (cn(1), cn(2),
. . . cn(n)), under uniform probability on Hn, is same as the law, under P, of

Yn(j) = [
n∑

m=j

(
m
j

)
Zm]/[

(
n
j

)
(Z0 +Z1 + . . .+Zn)], j = 1, 2, . . . , n. . . . (3.16)

Now choose and fix an integer k and consider n ≥ k. We observe that

E(Yn(j)) = [
n∑

m=j

(
m
j

)
]/[(n+ 1)

(
n
j

)
] =

1
j + 1

= c0(j), j = 1, 2, . . . , n.

. . . (3.17)
and

Z0 + Z1 + . . .+ Zn

n

P→ 1. . . . (3.18)

Hence, by (3.16), (3.17) and (3.18), to prove the stated weak convergence
of
√
n(cn(1) − c0(1), cn(2),−c0(2), . . . , cn(k) − c0(k)) it suffices to prove that

(Tn(1), Tn(2), . . . , Tn(k)) converges weakly to MVN [0,Σ], where

Tn(j) :=
1√
n

[
n∑

m=j

(
m
j

)
(Zm − 1)]/

(
n
j

)
, j = 1, 2, . . . , k. . . . (3.19)

For 1 ≤ i ≤ j ≤ n,

Cov(Tn(i), Tn(j)) = 1
n .

1(
n
i

) . 1(
n
j

) .∑n
m=j

(
m
i

) (
m
j

)

= 1
n .

1(
n
i

) . 1(
n
j

) .∑i+j
m=j

(
n+ 1
m+ 1

)

.

(
m

m− i m− j i+ j −m

)
by (3.14)

∼ 1
i+ j + 1

= c0(i+ j). . . . (3.20)

By the Cramér-Wold theorem it suffices to prove that
∑k

i=1 αiTn(i) converges
weakly to N [0,ΣΣαiαjc0(i+ j)] for all α1, α2, . . . , αk.

We have∑k
i=1 αiTn(i) = 1√

n

∑k
i=1 αi[

(
n
i

)
]−1

∑n
m=1

(
m
i

)
(Zm − 1)

= 1√
n

∑n
m=1 bn,m(Zm − 1)
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where

bn,m =
m∧k∑
i=1

αi

(
m
i

)
(
n
i

) , 1 ≤ m ≤ n. . . . (3.21)

We write

Sn :=
n∑

m=1

Xm with Xm = bn,m(Zm − 1)

and observe that Sn is a sum of independent random variables centered at ex-
pectations. Further, we have the following :

(i) s2n = V ar(Sn) = n V ar(
∑k

1 αiTn(i)) ∼ nΣΣαiαjc0(i+ j) by (3.20)
(ii) 1

s3
n

∑n
m=1E|Xm|3 = 1

s3
n

∑n
m=1 |bn,m|3E|Zm − 1|3 → 0, as n → ∞, since

|bn,m| ≤
∑k

1 |αi| by (3.21) and s3n = O(n3/2) by (i).
Hence, by Loéve (1963) p. 275, Sn

sn
converges weakly to N(0, 1), or equiva-

lently,
∑k

1 αiTn(i) = Sn√
n

converges weakly to N [0,ΣΣαiαjc0(i+ j)].
This completes the proof.
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