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Abstract

The factorization approach for complex Hamiltonians has been used to obtain
the exactly solvable nonlocal variant of PT-symmetric local potentials. The
formalism is used to obtain exact eigenvalues and eigenfunctions of the nonlocal
PT -symmetne Scarf polential.

PACS number: 03.65.—w

1. Intrmduction

Recently there has been a growing interest in the study of non-Hermitian Hamiltonians which
appear in different branches of physics [1]. The main reason for this s that the energy
spectrum of a number of complex potentials turned out to be real (at least partly ). Bender and
his collaborators [ 2] atributed this unusual behaviour of the energy spectrum to the so-called
PT symmetry, Le. the invariance of the Hamiltonian with respect to the simultaneous space 7
and time T reflection. However, itis now known that for the real spectum of a PT-symmetric

combined operator PT [2]. Otherwise, PT s spontancously broken and the eigenvalues are
arranged i complex conjugate pairs. In recent times, it has been stressed [3] that a quantum
Hamiltonian & having a complete set of eigenvectors will have a real spectrum if and only if
there exists a positive definite operator i such that

H'= yHy™', (1)

re. H s ip-pseado-Hermitian, The other equivalent conditions are discussed in [3].

On the other hand, complex nonlocal potentials [5-9], in particular the PT-symmetric
ones, have attracted alot of interest inrecent years. The scattermg by P 7T -symmetric nonlocal
potential was studied mn [10]. In [11, 15], PT-symmetric point (nonlocal) ineractions were
used to clanfy certain properties of PT-symmetric guantum-mechanical Hamiltonians, The
symmetries and general charactenstces of PT symmetrical point interactions were discussed
in [12]. Eigenvalues of PT symmetnical Hamiltonians were caleulated in [13]. Integrability
and PT symmetry of many-body systems with pseudo-Hermitian point interactions were
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studied in [14]. The applicaton of the ideas of supersymmetric quantum mechanies [16] in
constructing non-Hermitian PT-symmetric Hamiltonians has been considered in [17] and a
formulation of PT -symmetric supersymmetry has been outlined in [18]. In this paper, our
aim is to extend the idea of nonlocal potentials from complex point interactions to other types
of interac ions. To this end we shall use the factonzation approach, which was extended to the
case of complex potentials n [19] to obtain exact solutions of a nonlocal deformation of exactly
solvable complex PT invanant local potentials. We shall find the energy eigenfunctions and
eigenvalues and shall show that in some cases the partner Hamiltonians have nomalizable
ground states while in other cases they have nol. The organization of the paper s as follows.
In Section 2, we give the details of factorization approach to treat the nonlocal deformation
of PT -symmetne potentals. Application of the formalism to a specific potential s given in
section 3 and section 4 15 devoled to a conclusion.

2. Complex factorization approach

The tme-mdependent Schridinger equation in the position representation 15 given by

Hr(x) = Evrix), (2)
where the Hamiltonian £ is given by
Ayx) = —ﬁ d—r_gm.r} + V() P(x) + [ dy el V) = Ep(), (3)

with Vi{x) and v{x, v) being the complex local and nonlocal potentials, respectively.
To apply the factorization technigue we would assume that H in equation (3) can be
generalized to

. o0
H= = |, 4
({} H_) )
where H, = AB and H. = BA are isospectral partners and A, B are linear first-order
differential operators.  Details of A, B will be discussed later on. Also let Vi and vy be,
respectively, the local and nonlocal potentials for Ay and E4 be the corresponding energics.
Writing

(x| Velxdre) = Velo b (x),

{xfug(x, ¥y} = [ dy vy (x, ¥y (), (5)

o — O

the Schriddinger cquations cormesponding to Ay can be written as
PRI

5 g V) + (KIVA(n e )+ (¥ [valr. ) = Exire (v). (6)

Let us write the potentials in an operitor form as
y = = =
V. = f dx|xd Vi(x x|, iy = f -:!.rf dylxhve(x, ¥)yl. ()
— —a —e

The partner Hamiltonians I;L and H_ can be factorized, respectively, as AB and .ﬁ.ui,
where

5 ip P - i A
B =— + W+ A= — + W+ i ()
+ 2m VIm
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and p = —ih dd_l. W and i are defined as in equation (7), namely,

W= [ . dxjx}Wixdx|, i = f d_rf . dylxhwix, ¥y (9

The potentials Vi and vy are written in terms of the factorizaton potentials Wix) and
wix, v (superpotentials in the supersymmetric quantum mechanics ) as

& _tw > 4 h dWix)
Llx) = [Wix)] e e
vpfx,¥) = [ deewi{x, whwin, vi+ [Wix)+ Wiy wix, v (10
h dwix, vy  dwix, v
= V2m [ ax iy ]

It 15 to be mentioned here [20] that in models with local potentials, there 15 a one-to-one
relationship between the ground state and the factorization potential Wix), but it is not so with
nonlocal potentials. In nonlocal models, given the factonzation potentials Wix)h and wix, v),
the zero-energy ground state vy (x) of H_ say isobtained from the integro-differential equation

[=
h o dilx)

p———— +W{.r}1,!n'(,{.r}+f dy wix, y)ra(y) =0. (1)
' LM —

We shall now construct a class of exactly solvable models with both complex (FPT)
imvanant local and nonlocal potentials starting from any exactly solvable local model with the
fac orization potential Wylx) and w this end we choose

Cifhod
—3(x —¥), {12)
x

Wix) = (1 — chWylx), wix, y) =

where C) 15 a parameter of nonlocality and © 15 a constant.
Substituting Wix) and wix, v) from equation (12) into equation (107, we obtain

i dWyix)
Ve(x) = (1 —e)[Wolx)P £ (1 — el
+(x) = (1 —e} [Wolx)]" £ ( C}Jﬂ Te
0 B delx) B dirs (x)
[ arestempeo = g =EER i —own
h dWyix)
+(1— C 1 ; 13
({ C}m e fr(x) (13)
Thus, the contribution of nonlocal potential to the Hamiltonian is given by
) -
. P 2l — el W Bl —ecy
B = —Ch i e Wi (X) Pt e Wi (X). 14
+ '3 m m plx)p m plx) (14)

Consequently, the eigenvalue equations for the Hamiltonians Ay are written as

‘I?:I:w:t =E .. (15)
where
. he W d2 R0 =) d
b7 PO G, e SO i A il 1 0%
==} 2m{ I}d.r3 '\.-"'-2:.!‘! alx) dx
el (1 —e)Cy + 1}|d||""f“'[x}I (1 —elPWix) (16)
&/ 2m : dx R

To solve the eigenvalue problem in equation (15), our strategy would be to find a similanty
trans formation mapping the Hamiltonians in equation (16) into a standard form.
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To this end, we make the ransformmation

Pe(x) = 104, (1) = nge(x), (7
wherne
_ et f flads oy _mC(-o, &
n=c : Fix) —?1{1 — nlx). (18}
so that the ransformed Hamilionians Hy = 5~ Hoy are given by
: B 0 FPelr) (-0,
Higs(x) = _ﬂ{l - Cj) 5 1= W (x)g+(x)
h ,
+ mil — o)Wyixhgsilx) = Esghs (x). (19)

It is to be noted that the factorzation can again be applied 1o Hy. In fact

H, =CD, H_=bDcC, 20)
whene
. A A i) T
= "_2m{ + I}E-'_{I—C'.} nix),
21)
B Fo e 0L
U = dx  ALEE L

The factorization (20) indicates that A are isospectral depending on the vanishing of the
operator 1 and for normalizability of the eigenfunctions.

For the special case C'; = ¢, the Hamiltonians A4 can be written in terms of the local
Hamiltomians Ay . as

Hy = (1 — o) Hx jocal (22)

From the above equation it follows that

by = X4, E, =(1 —c)E4 e (23)
where y4 are the eigenfunctions of the local Hamiltonian.

It may be noted that in the case of PT-symmetric systems, neither the standard definition
of the inner product in Hilbert space H nor the straightforward generalization would work,
because the nomm becomes negative for some of the states.  For details about the positive
definite scalar products in PT-symmetric systems, we refer the reader to [3, 23, 25].

3. Example
Here we shall apply the formalism of section 2 to obtam exact solutions of a nonlocal variant
of the PT -symmetric Scarf potential [21]. In this case, the factorization potential is taken as
Wilx) = Atanh x + 1w sech x. (24)

Then from equation (14), iy are found o be
, P 2i(1—o)Cy

= —07=—
- ' 2m A 2m
(1 —a,

h
=+
' 2m

(Atanhx +ip sech x) p

{hsech?y — ip sech x tanh x), (25)
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and from equation (16, ﬂ’t are given by

N " w @2 28Ci(1 —e) ) d
H:l: = _ﬂ{l — CI}F + T{}.tmhr+ 1L H:L'h.r}a

+P:{1 —o)C £ 1)
A 2m

{Asech 2 e 1 sechx tanh )

+(1 — ¢ (htanh x + i sech x)*. (26)
With f(x) = —%{}. tanh x + i sech x), the ransformed Hamiltonians B are
given by
a n’ Wt (1—¢Y > ,
Hy = _ﬂ{l - C,‘}F + m{}. tanh x + igesechx)”
£—==(1 = 0)(A sech *x —ip sech v tanh x) . (27)

These two Hamiltonians admit the factorizations

i [:l:ﬁ R TLIN L) Ar R }]
= pl— — s T Arn x 1L % x
el = V&x T aFo) ;
L TP A L. DN (28)
® (:Fm) T £ rye TEW) anhx +ipsech x) |,

With Cf = ¢, the eigenvalue equations for Ay can be writlen as
) 7 dpeix) ) ,
Higi(x)=1(1 —¢c) e e + (Atanh x + i sechx )y (x)

£

(A sech’r — ipe sech x tanh _r}l¢rt{_r}:| = Eipiix). (29)

i

& 2m

The eigenvalues and eigenfunctions can be written from equation (29) using the results
of the comresponding local model [21]. In the following we shall consider the case with an
unbroken PT symmetry, L.e. the energies are real. If the potential is written as

Vix) =V sech’x + 1Va sechx tanh x,

this will be true if [Va] < V) + 3' Vi, Va being given in the following equations. Three cases
will anse [21]:
Case {. Positive square roots taken in both ¢ and s (given in the following equations). In this
case, the eigenvalues are given by

, B[, 11 :
Eip=(l—0c) )L-_"_m n +;—;U+~‘-‘}' g (30

whene
s+r—1
I 1 Mo AR
=

& 2m
h

2m . .
V| Z?{)L_'i'ﬂ_};F A
A 2m 2m
Vo = H— =2

+ 2
- h e



FE4 B Roy and B Roychoudhury

" '
f:1|’|||3+'r"| —Va
n
J|'=1|'|'l1+ 'r"|+'lr"_:- {31}

and the eigenfunctions corresponding to these real eigenvalues are

[ =it — 1)
Via-(x) = N (sechx) 2
i {32)
exp [;{1 ++/2)(r — ) tan—" (sinh .r}] P~ (i sinh x),
where P17 7* denotes the Jacobi polynomial and N7 is the normalization constant.
It is to be noted that the nonlocality of the onginal Hamiltonian is reflected in the spectrum,
equation (30) (as well as in the eigenfunctions, equation (32)), through ¢ which is related to

the nonlocal parameter C).

Case 2. Vi = 0, positive square root in s and negative sguare rool in r,

In this case
E 1 e i R 2 33
+a- = [(L—c) S, n +E—E{$—f} s (33}
where
B §g—r—1
n =012 —
2
2 : g 42
vV, = ait Gl ) F — "?}L
h h
a2 2
T i il | (34)
h il
II,l'l
f=—,=-+V - V¥
1|'4 1 2
gl
3=1|'|I'1+F|+1r"_:
and

(1= Ery ——11E.fe)
ﬁrt.al'{r}xhﬂrimhr}l 2

: (35)
exp [—%{1 - \,-"'E}{r + ) um“'{sinh.r}] P"r_‘""':'{isinh.r}.
Case 3. Vi = 0, positive square root taken in ¢ and negative square root in s.
In this case
E 1 32 A 1zl 5| 36
4= (1—¢) _E n +E—E{f—~‘-]‘ 5 (36)
where
R e
2
2m . 4 & 2m
Vi=—i(A"+u"): A
| 7 { E)F 7
42 2
Vo =+ Im‘u — f.j),_;_{
i

[
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N )
F=.—-+V -V
1|'|'4 1 2

f
|

5= —.ll’llli + Vi + Vs (37)
and
(1 =B it =51 —i14E) i
Vi (x) % Ny ( sechx) 3 uxp[;{l +/e)t +.~'}tan"1sinhr}]
4 IP;:—L.'-':I“ sinhx). (38)

Now for case 1 and case 3, it is found that the ground state is shared by both the partner
Hamiltonians only if & = —%—— = 0. For case 2, the ground state will not be shared by
I ) V- T

the partmer Hamiltonians rrespective of the value A takes.

4. Discussions

The complex factorization approach of quantum mechanics is formally extended in this paper
to complex (T mvariant) nonlocal Hamiltonians. The formalism is applied to obtain exact
eigenvalues and eigenfunctions of nonlocal deformation of the P T -invariant Scarf potential.
It is seen that in some cases the ground state s shared by parner Hamiltonians for some
particular values of the parameters mvolved and in some other cases this does not appear. This
15 a typical feature of nonlocality. It should be mentioned that, by similanty transformation
equation (17), the nonlocal Hamiltonian is related to local Hamiltonian thereby making it
possible w talk about the nomalization of wavefunctions of the onginal nonlocal Hamiltonian
which otherwise would not be possible because as far as we know, the imner product for PT -
symmeetric nonlocal systems is yet to be defined. Here itmust be admitted that some theoretical
questions for nonlocal potentials are yet w be resolved. We hope to take op this problem in
near future. However, the present framework provides a way to link, albeit for special value
of the nonlocal parameter, the nonlocal potential 1 a corresponding local potential. Finally,
we feel it would be interesting to study other interactions, especially the shape invanant ones
[26] within the present framework.
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