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Abstract

We analyse a class of non-Hermitian gquadmtic Hamiltonians, which are of the
form H = A/ A+ad+ ﬁ,d"’, where o, f are real constants, with o £ f#,
and A" and A are generalized creation and annihilation operators respectively.
Thus, these Hamiltonians may be classified as generalized Swanson models.
It 15 shown that the cigenenergies are real for a certain range of values of
the parameters. A similarity ransformmation g, mapping the non-Hermitian
Hamiltonian A to a Hermitian one f2, s also obtained. It 15 shown that A and
B share identical energies. As explicit examples, the solutions of a couple of
maodels based on the trigonometric Rosen-Morse 1 and the hyperbolic Rosen—
Morse 11 type potentials are obtained.  'We also study the case where the
non-Hermitian Hamiltonian is PT symmetric.

PACS number: (3.65—w

1. Introduction

The generalization of standard quantum mechanics and gquantum field theory to include
complex or non-Hermitan potentials with a real spectrum has been imtensively studied during
the last few years [1-4], pnmanly because of their immense potential for possible applications
in 4 wide mange of phenomena, e.g., nuckar physics [5]. scattenng theory (e, complex
absorbing potentials) [6], field theory [7], penodic potentials [9], quantum cosmology [8],
random matrix theory [10], ete. Initially, the reality of the spectrum was attnbuted to the
so-cilled PT symmetry of the sysiem, 1.e.

H#£ HY, HPT =PTH, (1)
where P stands for parity and T denotes time reversal operators:

PxrP = —x, PpP=TpT = —p, T.1T = —i.l. (2)
Such Hamiltonians were found to possess a real and discrete spectrum when 7T symmetry is
exact, Le. the energy eigenstates are also the eigenstates of PT;if not then PT symmetry is
said to be spontancously broken and the energies oceur as complex conjugale pairs.
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However, it was soon discovered that PT symmetry 1s neither the necessary nor the
sufficient erterion for the spectrum to be real. Subsequent works showed that the necessary and
sufficient condition for anon-Henmitan Hamiltonian to possess a real and discrete spectrum is
its y-pseudo Hemmitieity, such that A are linear operators acting m a Hilbert space (generally
different from the physical Hilben space), and satisfying [11]

H'=qgHn', ie. H'n=nH, (3)
where 5 15 4 lincar, Hemitian, mvertible operator. It may be mentioned that for a given
pseudo-Hermitian operator A, the metric operator 17 is not unigque. Furthermore, the pseado-
Hemmiticity of H is eguivalent o the presence of an antilinear symmetry, PT symmetry
being the primary example [12]. Conversely, a quantum s ystem possessimg an exact antilinear
symmetry 15 pseudo-Hermitian, and s equivalent to aquantum systemdescnbed by a Henmitian
Hamiltonian . Thus H may be mapped to b, by a similanty transformation o [11, 13]. For
example, let an eigenvalue (Sturm=Liouville) equation or a differential operator H act in
a complex function space V, endowed with a positive-definite imer produoct, such that it is
described by the Hilbert space M. Insuch a case there exists amapping from the non-Hermitian
H toits Hermitian counterpart £, through a similarity ransformation o [ 14], e,

h=pHp™ (4)
with g being the unigue positive-definite square root of i:

g = (5)
Arelaton similarto (4) holds for observables as well. For example, if O 1san observable in the
Hermitian theory desceabed by A, then the comesponding observable in the pseudo-Hermitian
theory is given by

O =p~ ' Owp. (6)
Though known for a long tme [15], the idea of pseudo-Hermiticity was revived after the
concept of PT symmetry was introduced a decade ago.

Recently, Swanson analysed the real but non-Hemmnitian, PT symmetne guadratic
Hamiltomian [16],

H = wa'a +wa” + a’, o £ f, (7}
where @', a are the Hamonie oscillator ereation and annihilation operators, respectively, for
unit frequency:

d " d

ﬂ=E+.r, a =—E+.r, (#)

and e, e, f are real parameters with dimensions of mverse time. Itwas shown that for o 2 £,
though the Hamiltonian /' is non-Hermitian, yet the eigenvalues were real and positive for
o 2 doft. This model has attracted the attention of several workers in recent imes, ¢.g.
[17. 18]. In this work, we focus our attention on the pseudo-Hermitan generalization of the
Swanson model (7), which may not necessanly be PT symmetric. The simplest and most
struightforward generalization would be o consider generalized creation and annihilation
operators A" and A in place of @ and @, of the form
d " d
A= E + Wix), A= —E + Wix). (9
The function Wix), called the pseudo superpotential (in analogy with conventional
supersymmetry), 15 given by
_h)
folx)’
where fi () 15 the ground state wavefunction of the Schrisddinger Hamillonian H = 4" 4. For
the particular case of Wix) being a linear function in x, we get back the Swanson Hamiltonian

Wix) = (109
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in (7). This is somewhat analogouws to the generalization of the Jaynes—Cummings model
to other two level shape-invanant bound state systems [19], applying the principles of
supersymmetric quantum mechanies [20]. Thus, oor starting Hamiltonian would be

H=AA+at +pA47, a = f (11)

where o, § are real, dimensionless constants.  Obviously, the model given in (11) is non-
Hermitian for @ £ A, In particular, our attempt will be to give the general formalism for
solving such a non-Hermitian Hamiltonian, and examine the range of values of the parameters
for which the energies are real. This situation is similar o [16], where real energies wene
found only when the parameters satisfied certain constraints.  On the other hand since the
Hamiltonian H does not admit real energies for arbitrary values of the parmameters, the model
can be termed as conditionally exactly solvable (CES) [21]. We shall restrict our study to 5
pseudo-Hermitian Hamilonians only, as i-pseado Hermiticity is the necessary and sufficient
condition for the existence of real energies. We shall also find a similarity transformation
2. mapping the non-Hermitian Hamiltonian A to the Hemmitian one A, for a certain class of
maodels. It will be shown that A and h share identical energies. It may be mentioned here
that though the existence of #, and hence p, is guaranteed, it may not always be possible to
determine the Hermitian counterpart f# exactly. For example, the relationship between the
non-Hermitian A and its Hermitian entity f was explored in [22], for the Swanson model
[16] and the igr‘ potential. However, in the first case, f tumed out to be a scaled harmonie
oscillator, while in the second model f could be constructed perturbatively only. It may be
mentioned here that the operator method was employed i [ 16], while we work with the
differential equation directly. The simplicity of the present formalism Lies in the fact that &
can be determined i a strightforward manmner and, secondly, g, and hence ., can be found
exactly, for the class of non-Hermitian models considered in this work.

The organization of the paper 15 as follows. In section 2, we shall give the general
formalism for solving a class of non-Hermmitian Swanson model with generalized creation
and anmhilation operators. The similanty ransformation p, between the Hermitian f and
the non-Hermitian A, 15 established in section 3, while the pseado-Hermiticity of H is shown
in section 4. We illustrate our results with the help of a couple of explicit examples in
sections 5 and 6, with Hamiltonians based on the trigonometric Rosen—Morse [ and the
hyperbolic Rosen-Morse I potentials, respectively.  In section 7, a special sub-class of
pseudo-Hermitian Hamiltonians are considered, which are PT symmetric as well. Finally,
conclusions and discussions are given i section 8.

2. Theory

As mentioned above, we shall examine a genermlization of the Swanson model | namely, [16]
H=AA+a A +pA°, a # f,
where o and f are constants, dimensionless as well as real. Evidently, H s non-Hemmitian for
o = f for any real Wix). With the help of (99, the eigenvalue equation corresponding to (11)
reads
a

l—{l—aﬂ—.f:f}ld—_:,+2{1:|v—.|‘:T}I'I.-'I.-“i +{1+a+ﬁ}wz—{l—a+ﬁ}W'}yﬂr
dx- dx

Hy

1 T O O, R B
E ‘“‘“‘”‘(E‘m )*m b

= E. (12}
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The term {—If—;_ﬂ—ﬂW{x}l}l in the parenthesis takes the form of a complex vector potential and
can be eliminated by a gauge ransformation of the form [23]

Yrix) = et Wide gy with = % o+ f# 1 (13)
Thus, (12) reduces w the well-known Schridinger form

hep(x) = (_;T:+ V{x})mx; = sh{x), (14}
where ’
wn:(%%i?%wug_—ﬁtétﬁwa} szfng' (15)

It is well known from supersymmetric quantum mechanics [20] that f can always be wrillen
in & factonzable formm as a product of a pair of lincar differential operators A, A7, as

h=A"A+e
a
=—F+ur]—m'+f, (16)
where € 15 the factonzation energy, and A, A" and w{x) are respectively given by
d ( d dl ;
A= —+uwix), A= —— +wix), wix)= —M. {17}
dx dx

Here, g 15 the ground state eigenfunction of A'A with energy g, It may be mentioned hene
that SUSY is said to be unbroken when the ground state energy £ = (0

Evidently, if we can dentify the term Vix) in (15), with an exactly solvable potential,
then we can easily find the solutwons of i, To this end, for further convenience, Vix) can
be identified with a shape-invariant potential, as using the ideas of supersymmetric guantum
mechanies [20], the rmismg and lowering operator method of the hamonie oscillator can
be generalized to a whole class of shape-invanant potentals [24], which includes all the
analytically solvable models. To namrow down the class of potentials further, our strategy
would be towrite Vix) in (15) in the supersymmetnc form ur {x) — w'{x) as given in {16).
This identification enables us to find the energies (E) and the eigenfunctions () of the
eigenvalue equation in (12). However, this imposes certain restricions on the permissible
vialues of @ and 8. For real energies, supersymmetne considerations require that the term
conlaming 'I-'I-""{.r} in the expression for V(x) in (13) must be positive. Furthermore, £ and
£ should have similar behaviour. Hence, the parameters o, § must satisty the following
constraints, irespective of the explicit form of Wix):

o+ =1, dafi < 1. (18}

In addition to the general restrictions imposed on e, 8§ in (18), there may be some mome
constraints depending on the particular choice of the model, arising from the nommalizability
requirement of the wavefunctions. We shall illustrate our observations with the help of a
couple of explicit examples in the following section. The fact that both the models considered
here are pseodo-Hermitian will be shown in a later section.

3. Similarity transformation between H and h

In this section we shall determine a similarity transformation, mapping the non-Hermitian &
to the Hermitian £ [11]. For this purpose we focus our attention on the gauge tmnsformation
o relating rix) and ¢bix) in equation (13), Le.

W o —
W -:I.|:1 o= 'H {lg}

G Rl W
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where Wix) = —% Salxy being the ground swie wavefunction of the Schrodinger
Hamiltonian H = A" 4. Let ¥r(x) be an eigenfunction of H, with the eigenvalue E:
Hyjr = Enjr. (20)

Let us now apply the transformation o to the above eigenfunction vx), ie.

@ix) = pifrix), (21}
Then (200 can be writlen as
Hp '¢pix) = Ep~'¢p(x) or pHp '¢ix) = E¢ix). (22)

Thus ¢ x) 15 a solution of the equation iy = Egb with the same energy E as in (20), provided
H is mapped o i by the similanty transformation in (4), namely,

h = ,DH,D_I

As we have observed in this work earlier, fi 15 Hemmitian, though H s non-Hermitian, Thus,
the similanty transformation g given in (19) maps the pseudo-Hermitian Hamiltonian A in
the generalized version of the Swanson model to its Hermitian counterpart f. Furthermore,
this exact form of the similarity operator for this class of models also gives the wavefunctions
in the cormesponding Hermitian picture. This will be clarified further by the explicit models
discussed later in this work.

4. Psendo-Hermiticity of H

We shall show in this section that although H in (12} is non-PT symmetrc, it 5 in fact
pseudo-Hermitian, with respect to a linear, invertible, Hermitian operator i and that it is in
fact the square of the similarity transformation p, ie. g = p*.
We start with the cigenvalue equation A = Evr, where
H=AA+a L +pA"
o—§ 1 l—dap

P _ﬁﬂ-"{.r}l) + i _a_ﬁﬂ-“'{.r}l— Wiix).

= —(1 £) -
N o (dx

Now ket us explore the relationship between A and its adjoint H', given by

H = Ald+ad+ A

3

=—(l—a—g) i_,_iw{ })-+ﬂw—‘ b — Wix) 23)
=—(l-a ﬁ(dx —LA pp— (x x). -
If we put

2 =AuWdr - a—f

n=pg =e A il i (24)

then it can be shown by straightforward calculations that B and B are related by (3), namely,
H'y =nH, ie. H' =yHn .

In other words, A respects the condition for pseudo-Hermiticity [11]. Thos this approach
enables us to determine the exact form of the pseudo-Hermiticity operator 1, which in turn is
related w the similarity transformation p = /).
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5. A model based on trigonometric Rosen-Morse [ potential

The rigonometric Rosen-Morse [ model [20] is described by the potential
B!
V(x) = A(A — I)esc® x+2Bcotx — A%+ YL 0<£x<m. (25)
In the language of supersymmetry, if the potental in (25) can be written in terms of a
superpotential w{x) as
Vix) = wix) — w'(x), (26)

then a suitable ansatz of w{x) may be given by
B
wirx)=—Acotxy — E A=0, B=1 (27)

For our model, keeping analogy with the above, we consider the following form of the function
Wix), in the construction of the generalized annihilation and creation operators 4 and 4’
in (9):

B
W{r}:—ﬂ.um.r—ﬂ—l, Ay =0, B =1L (28)
I

Obviously, the Hamiltonian in (12) constructed from this Wix) is non-Hermitan (as well as
non-FT symmetrice) fora £ 8. Substitution of (28) in (13) yields
Yrix) =e ™" sin™ xeh(x), (29

where

By (w—f) " Ayl — f)
= —— A ——

Al —e—f) {1—a—pg)
Now, we are interested in real energies only. Addibonally, the wavelunctions must satisfy
certain boundary conditions, e.g., well-behaved behaviour at the boundanes x — ) and
xr — o, and normalizability requirement. S0 ga = 0. These impose further restrictions on o
and A, so that they must obey the following condition:

(30}

o

o =< f. (31}
Thus (14) reduces to the rigonometne Rosen-Morse [ model in (25), with the potential

V(x) =0 cs x4+ 2B ———5 ootz (42 i (32)

r)=oc x+2 |“_u_ﬁ}_,u}r " AI’ T 32
where
ANl —daf)— Al —a —
o i af) i : a—f) (33
(1 —a— 8)

s0 that A and B can be identified with

Azli—.l-l--’-lcr‘ Bzgﬂ_ (34)

2 2 "M—a—p)2
Smee A = (), only the positive sign 15 allowed in the expression for A in (34). Moreover,
as 15 obvious from (32), for the existence of bound states, o = 0. Since A £ (0, hence this
condition reguires

A ——. {35)
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Table 1. Some values of the parameters for the model with W (x) as given in {28).

o y.l w4+ A A Ay By y 3 a A B Ea
/4 1/ 34 /2 32 18 112 302 12 4 1 18
/4 23 1112 43 /2 572 5 W 652 M L,
I/8 34 T7/8 R 2 —10) 5 2 618 B0 s
/3 12 58 yy o1 2 -2 1 6 3 ¥ s

The encrgy cigenvalues and the comesponding eigenfunctions of (25) are well known [20]:
B'_ B'_
e =(A+n)l— —— — At+—, PR | O o LI, (36)

Therefore, (32) has solutions

3

_B z_Eq_J:EE_
(A+n)? AT (l—a— )Y
where A and B are respectively given in terms of A and By through (34), and the wavefunctions
are

£ = (A+n) — (37)

P - B Iy P L P S
Palx) 2y = 1) 1 e F (v, v =icolx (38)

st =—A—n+i

(A+n) @39

In (38), .F',,r"" i ?{_1;} are the standard Jacobi polynomials [25]. Using (37) and (38) one can
casily obtain the energies and eigenfunctions of the eigenvalue equation in (12), for this
particular model as

Ei=(l—o— ﬁ}'ﬁ'ﬂ (40

W, (x) = el Rl oAt FPIEl(G, y=icolr. i41)

Thus, one gets the complete solution of the non-Hemmitian Hamiltonian in (11), by reducing
it to the corresponding Hermitian system.

5.1, Choice of parameters

To show that solutions (407 and (41) actoally exist, it 5 necessary to show that there are
parameter values actually satisfying (18), (31) and (35). There may be innumerable such
combinations of @, #, A; and B;. We show a few possible values of these parameters in
table 1. In each case, the potential is given as in (32), with solutions v, (x) given in (41) and
energies in (40).

One can check the nature of the non-Hermitian Hamiltonian and the corresponding
Hermmitian equivalent for this model. Forexample, for the values of parameters in the first line
of table 1, the stating non-Hermitian equation (12) is given by

S 1d2 [18cotx+1Y\ d 33 2y 2261 }
=j———t| ——— | —+ =(escx) + —cotx —
vix 4 dx2 24 T B e G R

= E(x). 42)
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With the help of the similarity transformation i (19), the above non-Hemitian equation is
trans formed 1o the Hemmitian one:
)

d : 323
ha(xy = e +12esc” v+ 2eoty — T Pix) = edhix), 43)

where E = %a‘. and 1 and ¢ are related by

Yrix) = e BT sind* g(x). (44)
Smee equation (43) can be solved exactly, one can use its solutions to find the energies and
cigenfunctions of the non-Hermitian equation in (42).

It s worth mentioning here that a second-order linear differential equation can have
only two lmeary independent solutions. For the model discussed in this section, only one
of the solutions 15 normalizable in the Hemmitian picture.  So the second solution is not
considered. It can be checked by struightforwarnd algebra that even when they are mapped to
the non-Hermitian picture, the second solution does not have well-defined behaviour at the
boundaries, imespective of the fact whether the parameters o, @ obey the constraints (18) or
not. Furthermore, for the acceptable set of solutions in the Hermitian picture, well-defined
behaviour of the eigenfunctions at the boundaries, and the normalization condition, holds only
when the parameters o, 8, cte. satisfy the constramts (18), (270, (31) and (35). Detailed
but simple calculations reveal that the constraints remain unaltered when one moves from the
Hermitian to the non-Hemmitian picture. Hence the solutions given here represent the complete
set, in both the Hermitian and the non-Hermitian picture.

6. A model based on hyperbolic Rosen-Morse 11 potential

As a second non-Hermitian as well as non-FT symmetric example, we shall consider a model
based on the hyperbolic Rosen-Morse I potential, given by [20]
) 2 'b_’ 1
Vix)= —ala +1)sech”x + 2btanhx +a” + —, b=a”, —coLx€o0
a

= u(x) — wix), (45)
with the superpotential wix) of the form
b
wix) = atanhy + —, b=a and a, b= (&)
il

Analogous to the previous example, to construct the genermlized annihilation and creation
operators in (9), we take the following ansate for Wix):
B
Wix) = Az tanhx + A—" B_:a-c:.-i:: and A, By = (L 47)
a
Proceeding along the lines similar to the earlier example, the eigenvalue equation in (14)
reduces w that of the well-known hyperbolic Rosen-Morse [T model in (45), with the potential

Vix) BT .. ST O (48)
)= —xsech v+ 2 jm[ﬂﬂ X+ _:+A—_% m
prowided one makes the wentification
1 JT+ay 1 — daf
with
Al —daf) + Asll —a —
5 al A+ Al — o ﬁ}'_ (50)

(1 —a—p)
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Table 2, Some values of the parameters for the model with W (x) as given in (47).

o A a+f daf Ax B i Hr x4 b Eq

/4 1/ 34 172 372 1M =16 =32 M 442 2 1Ea
I3 172 5f6 251 I8 -8 -1 15 374 302 g,
I/ /3 12 200 32 2 1w -2 10 270 12 e,
/3 172 S5/ 12 IR -4 12 6 2 4 2En

Omnee again, since @ = (), only the positive signis allowed in (49) in the expression fora. Thus
the solutions ¢ (x ) of the eigenvalue equation in (14), with the potential in (48), are related o
the solutions ¥ {x) of A in(12) by the substitution in (13):

Urix) ="' cosh™ xd(x), (51)
with
B @=p) _ Ale—p)
H'_A_al[l—ur—ﬂ}' m—“_a_m, x+f <1 (32)

For the cigenfunction to be well behaved at x = %oo, p4 should be negative, so that o = §.
Additionally, [pa] = | ], which, in turn, requires Bx < rﬁ, as already mentioned in (47).
These constraints on e, [, which depend on the explicit form of the model considered, are in
addition to those in (18). The energy eigenvalues and eigenfunctions o (48) are mespectively
given by

S 2 bz A_: B_E’) 1 - 4ﬂﬁ 53

&y = —(a —n) —m‘l' _:c+A—:: m, n=a (53)

$ulx) = (1 — p)*2(1 + yy-2 RSN (y), y = tanhx (54)
where

S =a—n=% (55)

a—n
H:""""'"' ! {v) are the Jacobi polynomials [25], and a, & are given in terms of A;, 8, through (49)
and (50) respectively. The corresponding energies and the eigenfunctions of the eigenvalue
equation i (12) are obtained as

E, =i{l —o— fi)g,, n=012...=<a (36}

.lﬁr“{x} e {1 - F}"L_.'A!:I_."—’{]_ + .v}l_\-_—.ljl:,,-_ﬁ L"I”I F:I:'.L,_\-_.?{IFL y = tanh x. ES?}

For normalizable functions with real energies, and well-defined behaviour at v — o0, the
constraints given in (31) hold here, wo.

6.d. Choice of parameters

Analogous to the previous case, here, too, solutions (56) and (57) are acceptable in certain
ranges of the pammeters o, A, satusfying (18) and (31) respectively. Many such combinations
are possible. We list a few cases in table 2.

The discussion at the end of section 5, on the completeness of solutions, holds for this
model as well.
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7. ‘P T -invariant generalized Swanson model

The importance of gquantum systems with PT symmetry has already been discoussed briefly in
this work. Soin this section we consider a particular case of the non-Hemmitian Hamiltonian
in {11) which is symmetric under the combined effect of PT. For H to be invariant under
PT symmetry, A and 4" should also be PT invanant. For this purpose, following the PT
transformations in (2), the operators A4 and 4" should transform under panty and time reversal

as
PoAA) = —AA"), T:A(A)— A" (58)
This is possible only if W{x) transforms under PT as
(PTYW (NPT ' = —W(x). {59)

Incidentally, the pseuwdo-superpotentials considered i (28) and (47) fail to obey condition (59)
for non-zero By or Ba.

74 Model based on trigonomeiric Rosen-Morse potential with By =10

If we consider the particular case By = (}in the trigonometnc Rosen-Morse model,

Wix) = —A, cotx, Ay =10, (60)
then the pseudo-superpotential satisfies condition (59), and the model, in addibon o being i
pseudo-Hermitian, is also PT symmetric. In such a case, both B and py are zem. Thus,
though the constraints on o, § remain unaltered, the columns B, By and oy are absent in
table 1. For the pammeter values already discussed abowve, the potential n (32) assumes the
simple form

Vix) = A(A+ Dese’ x — A° (61)
with energies

& = (A+n)? — A% (62)
Thus, the solutions of the eigenvalue equation in (12) are explicitly given by

W (2) 28 fin g S p At (Tost ) (63)

with energies E, = T En+

7.2. Model based on the hyperbolic Rosen—-Morse potential with Ba = 1)

Analogous o the previous model, for the particular case By = (), both g and & turn ot to
be zero, and this non-Hermitian model, too, becomes PT symmetric. The potential in (48)
reduces to

V(x) = —ala + 1) sech®x + a°, (64)
having real energies

&n = |—(a — n)* +a°}, n=01,..., < d (63)
and solutions

W, (x) = (sech x)ts—o2 .E:"""-”{ta.nh Ly (66)
where

S, =5_=f8%=da—An. (67)

This enables us to find the cigenfunctions and eigenvalues of the onginal equation in (12).
Omnee again, the restrictions on e, @ are the same as before, namely, conditions (18) and (31),
but the columns under B, By, py are missing from table 2.
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8. Conclusions

To conclude, we have studied a class of pseudo-Hermitian Hamiltonians (not necessarily PT
symmetric) of the form H = 4" 4+ oAt + ;‘J’A:", where oo and A are real, dimensionless
constants (¢ = fA) and 4" and A are genemlized creation and annihilation operators
respectively.  Incidentally, Swanson studied a similar model [16], although with hammonic
oscillator creation and annihilation operators only. Two explicit examples are considered in
this work, namely, models based on the tngonometric Rosen-Morse | and the hyperbolic
Rosen—Morse 11 type potentials. It is observed that the eigenenergies are real for a certain
range of values of the pammeters o, . A similarity transformation p, mapping the non-
Hermitian Hamiltonian A to a Hemitian one A, 15 also obtained. It 15 observed that A and h
share identical energies. Furthermore, the linear operator H 15 pseodo-Hermitian with respect
to the square of the similarity ransformation 57 = p°. This strightforward approach provides
us # simple way of determining the similarity transformation p, the metric operator ¥, as well
as the cormresponding Hemmitian Hamiltonian A,

As g mathematical interest, one can also start with the pscudo-Hermitian (but non-FT
symmetric) model Hy, given by H) = 44 +a.4* + f.47 and proceed as shown in this work.
This is possible because of the fact that while in the case of the Swanson model [a.a'] =
constant, the commutator of the generalized annihilation and creation operators 4 and 4°,
respectively, is quite non-tivial: [4, A" =2W'(x).

It would be interesting to repeat this analysis with non-Hermitian complex potentials. As
an example, one may write equation (47) as Wix) = Axtanhx + |% H., obtained in this way,
15 non-Hermitian, complex and PT symmetric, and the procedure 15 valid for such a case as
well, Another interesting area of study would be to examine the applicability of this procedure
to non-shape-invanant exactly solvable potentials, including QES (quasi-exactly solvablke) and
CES (conditionally exactly solvable) potentials.
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