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Abstract Artificial immune system (AIS)-based pattern

classification approach is relatively new in the field of

pattern recognition. The study explores the potentiality of

this paradigm in the context of prototype selection task that

is primarily effective in improving the classification per-

formance of nearest-neighbor (NN) classifier and also

partially in reducing its storage and computing time

requirement. The clonal selection model of immunology

has been incorporated to condense the original prototype

set, and performance is verified by employing the proposed

technique in a practical optical character recognition

(OCR) system as well as for training and testing of a set of

benchmark databases available in the public domain. The

effect of control parameters is analyzed and the efficiency

of the method is compared with another existing techniques

often used for prototype selection. In the case of the OCR

system, empirical study shows that the proposed approach

exhibits very good generalization ability in generating a

smaller prototype library from a larger one and at the same

time giving a substantial improvement in the classification

accuracy of the underlying NN classifier. The improvement

in performance has been statistically verified. Consider-

ation of both OCR data and public domain datasets

demonstrate that the proposed method gives results better

than or at least comparable to that of some existing

techniques.

Keywords Nearest neighbor classification �
Prototype selection � Artificial immune system �
Clonal selection algorithm � Statistical significance

1 Introduction

The nearest-neighbor (NN) classification [1] scheme is one

of the most popular supervised classification methods in

pattern recognition (PR) tasks. It provides a simple and

intuitive method for solving a great variety of real-world

applications. In general, it performs well but suffers from

two major drawbacks. (i) Storage and computational

requirements: storage of the entire prototype dataset

(library) requires large space. Moreover, comparison of each

target (test) pattern with every prototype in the stored library

makes the method computationally less attractive. (ii) Sen-

sitivity: the NN classification scheme is quite sensitive to

noise objects and outlier samples. To overcome these

drawbacks researchers have proposed a prototype selection

scheme that is a process by which a smaller set of prototypes

is selected and used for classification. The resultant set may

contain either members of the original prototype library or

new patterns formed by using the original patterns. Such a

method reduces storage and computing time requirement

and if designed properly, it usually provides some

improvement in classification accuracy.

Research in this area started immediately following the

original NN scheme [8] was proposed. Hart [2] proposed

the condensed nearest-neighbor (CNN) algorithm that ini-

tially puts a single prototype in the condensed set and then

the remaining prototypes are considered one by one.

Inclusion of a prototype into the condensed set is decided

by finding its NN in the new set. If their labels match then

the prototype is ignored. Swonger [3] considered both
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addition and deletion of original prototypes to and from the

condensed set. Gates [4] proposed an iterative deletion of

redundant prototypes to form the condensed set. Following

these initial efforts, many other approaches or modifica-

tions of the original methods have been reported in the

literature. To get an overall idea on the advancement in this

field, one may consults several articles in [5–19]. These

articles nicely present how the research has been advancing

in this area and at the same time, why prototype reduction

is still considered as a challenging research problem.

This article proposes a biologically inspired approach

for prototype condensation. The method is based on the

artificial immune system (AIS) [20] that in the recent past

has emerged as a viable computational framework for

several engineering problems. The method has already

found its successful applications in several engineering

problems including computer security, network intrusion

detection, fraud detection, etc. [21]. However, applications

in PR have been investigated very recently. The approaches

so far used to design AIS can broadly be classified into

three groups, namely, immune network models [22], neg-

ative selection algorithms [23], and clonal selection

algorithms (CSA) [24]. Using some of these paradigms in

both supervised [25–28] and unsupervised [29, 30] pattern

analyses have been attempted and encouraging results have

been reported. The present study endeavors to contribute

toward this on-going research effort.

This article investigates the role of an AIS-based

framework for prototype data reduction task. Incorporation

of immunological metaphor for this task is motivated by

the amazing adaptability and generalization ability of an

immune system in encountering pathogens. During its

lifetime a mammalian body is exposed to a thousand of

external pathogens but the immune system is able to pro-

tect the body by fighting against these limitless varieties of

enemies. However, to do so an immune system need not

memorize each and every pathogen. Rather, out of a single

encounter the system adapts itself in such a way that makes

it able to provide rapid response to any subsequent attack

by a class of pathogens similar to the one seen earlier. The

central contribution of the present study is to employ this

biological idea for designing of an efficient method for

prototype selection and for this purpose the CSA of

immunology is followed.

The clonal selection model (popularly known as clonal

selection algorithm, CSA) was first proposed by Burnet

[31] and then further developed by Jerne [32]. The algo-

rithm states that a mammal initially possesses a relatively

small number of antibodies. The successful binding of an

antibody to an antigen triggers the antibody to produce a

large number of copies of itself. In this way, a pre-existing

antibody is effectively selected by the antigen, which

stimulates the chosen antibody to produce a multitude of

clones. A computational model of CSA is available in [24,

30], etc. with minor variations among the implementations.

Contribution of this correspondence includes a novel

formulation of the prototype selection problem from the

immunological viewpoint so that the capability of CSA is

explored. A goal-directed evaluation strategy is formulated

to demonstrate the anticipated data reduction capability of

CSA. This demonstration at first considers one of the most

popular PR problems, namely, optical character recogni-

tion (OCR) system. An OCR system [34] using a NN

classification-based recognition engine is involved to

achieve the goal-directed evaluation of the proposed

method. The improvement in character recognition accu-

racy by employing the proposed system has been verified

by statistical tests.

In addition, comparison of the present approach with

two of the commonly used techniques [9, 37] is presented

in this context. Performance evaluation then considers

standard benchmark datasets available in public domain

and checks the efficiency of the proposed method. In

addition, performance on these benchmark datasets has

been compared with that of a recently proposed method

[19] for prototype reduction.

The rest of the paper is organized as follows. Section 2

presents a general overview of the immune system, its key

components that are essential to the development of an

artificial version of the system. The section then introduces

the clonal selection principle, which might constitute one of

the most important features of the immune response to an

antigenic stimulus. Section 3 describes how clonal selection

model has been used for prototype selection. An upper level

architecture of the proposed method is presented and then

individual components of the system are explained in

algorithmic manner. Section 4 outlines the goal-directed

evaluation scheme to judge the efficiency of the proposed

approach. The evaluation scheme considers a number of

benchmark data sets as well as a real task, namely, OCR.

Section 5 reports experimental results highlighting the

achievements of CSA for prototype selection task. Statis-

tical tests are also presented to show the significance of the

results obtained in this experiment. In addition, this section

compares the performance of the CSA-based approach with

another commonly used methods for prototype reduction.

Section 6 provides some concluding remarks.

2 Overview of the immune system

Several aspects of natural immune systems have been

productive sources of inspiration for research in AIS. The

description that follows is not comprehensive and is based

primarily on discussions presented by Castro and Zuben

[24], Carter [25], Watkins [26], and Timmis [30].
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The immune system is composed of a great variety of

cells among which two kinds of lymphocytes play a major

role in the immune system: T cells (so called because they

develop to maturity in the thymus gland), and B cells,

which originate in bone marrow. When a pathogen invades

the body, special cells called antigen-presenting cells

(APC) process the pathogens so that their relevant features,

called antigens are available on the surfaces of the APCs.

An individual T cell or B cell responds like pattern

matcher—the closer the antigen on a presenting cell is to

the pattern that a T cell or B cell recognizes, the stronger

the affinity of that T cell or B cell for the antigen. Although

the B cells are considered as the major the immune

response mechanism that multiplies and mutates to adapt to

an invader, it is only when a T cell and B cell respond

together to an antigen that the B cell is able to begin

cloning it and mutating to adjust to the current antigen.

That is why T cells are sometimes called helper T cells.

2.1 Clonal selection algorithm

The clonal selection principle, or theory, is the algorithm

used by the immune system to describe the basic features of

an immune response to an antigenic stimulus. The model

was first proposed by Burnet [31] and then further deve-

loped by Jerne [32]. It advocates the idea that only those cells

that recognize the antigens proliferate, thus being selected

against those that which do not. Clonal selection operates on

both T cells and B cells. When the body is exposed to an

antigen, some sub-population of B cells responds by pro-

ducing antibodies. Each cell secretes only one kind of

antibody, which is relatively specific for the antigen.

A B cell that is sufficiently stimulated by the presented

antigen rapidly produces clones of itself. At the same time,

it produces mutations at particular sites in its gene that

enable the new cells to match the antigen more closely.

There is a very rapid proliferation (known as hyper-muta-

tion or proliferation-I) of immune cells. These cells

undergo successive generations of cloning (these genera-

tions are produced through proliferations known as stage-II

proliferations or simply proliferation-II) with an aim of

producing better and better matches for the antigens of the

invading pathogen.

In fact, an antigen stimulates the B cell to proliferate

(divide) and mature into terminal (non-dividing) antibody

secreting cells, called plasma cells. While plasma cells are

the most active antibody secretors, initial B cells, which

divide rapidly during hyper-mutation phase, also secrete

antibody, albeit at a lower rate. While B cells secrete

antibodies, T cells do not secrete antibodies, but play a

central role in the regulation of the B cell response and

ensure the cell-mediated immune responses.

B cells that are not stimulated properly because they

do not match any antigens in the body eventually die.

This implies a resource limitation technique followed in

the body. Assuming that the number of B cells in the

body is finite, generated B cells compete for resources.

The most stimulated B cells consume resources and the

remaining cells are removed from the system. This meta-

dynamics of the immune system applies a certain amount

of evolutionary pressure to ensure that only the fittest (to

fight against an invading antigen) B cells remain in the

system.

Lymphocytes, in addition to proliferating or differenti-

ating into plasma cells, can differentiate into long-lived B

memory cells. Therefore, when a body has successfully

defended against a pathogen, a comparatively small num-

ber of memory cells remain in the body for very long

period of time. Memory cells circulate through the blood,

lymph (fluid that carries lymphatic cells and invading

antigens) and tissues, probably not manufacturing anti-

bodies [33], but these memory cells rapidly recognize

antigens similar to those that originally caused the immune

response that created the memory cells. Therefore, the

body’s response to a second invasion of the same pathogen

or a very similar invader is much more rapid and powerful

than to a never-before-seen pathogen.

3 Prototype selection using CSA

Let an NN classifier use a prototype set P in which pi

represents an individual member of this set: P = {p1,

p2,…,pk}. Each pi has two attributes: class label: pi�c
[C = {c1,c2,…,cn} and feature vector: pi�f. The goal of the

prototype selection process is to find a condensed set P0

from the original set P such that |P0| � |P|. The condensed

set P0 may contain either members of P or new patterns

formed by using the elements of P.

In the proposed method, P is considered as the set of

antigens AG = {ag1, ag2,…,agk} and CSA is employed to

obtain P0 which is synonymous to the immune memory,

IM = {m1, m2,…,mm} where mi is a memory cell having

two attributes similar to those of an individual antigen. For

any mi, mi�c[C = {1, 2,…,n} is the class information and

mi�f is the feature vector. The perfect metrics proposed in

[35] has been considered for generating feature vectors for

individual prototype (i.e., antigen). Three types of features,

namely, projection profile, contour and stroke directions

are considered. This produces a vector of 448 dimensions

out of which first 192 dimensions vary from 0 to 31, next

192 values are in [0, 63] and last 64 values are in [0, 127].

All these values are next converted into binary values.

Therefore, each character is represented as binary string of

length 2,560 (192 9 5 + 192 9 6 + 64 9 7).
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Figure 1 outlines the intermediate stages of CSA that

takes an antigen set as input and produces an immune

memory as output. The immune memory is considered as

the condensed set of prototypes that is used during classi-

fication by the NN classifier. The algorithm used in this

study borrows the major concepts from [26, 30] and some

ideas from [25]. The algorithm involves three stages,

namely, initialization of immune memory, clone genera-

tion, and selection of clones to update the immune

memory. These stages are briefly discussed below.

Initialization. This stage deals with choosing some

antigens as initial memory cells to initialize the immune

memory. In the present study, only one antigen from each

class is randomly chosen to initialize the immune memory

(IM). It is to be noted that the number of initial cells has

certain effect on system’s performance as illustrated in [26].

Clone generation. For a given antigen agk, its closest

match (say, mi) is, at first, chosen from the existing IM as

follows:

stimðagk; miÞ � stimðagk; mjÞ;
for all j 6¼ i and mj � c ¼ agi � c ð1Þ

The stimulation function stim(�) is used to measure the

response of a B cell to an antigen or to another B cell. For

the present implementation of CSA, the stimulation func-

tion returns a value in [0, 1] and is inversely proportional to

the Hamming distance1 between the feature vectors of the

argument elements. The function stim(�) return ‘1’ for the

minimum hamming distance (i.e., 0) and ‘0’ for the maxi-

mum distance (i.e., 2,560 for this experimentation).

After a memory cell mi (renamed as mmatch) is selected for

the current antigen agk, mmatch goes through a proliferation

process (Proliferation-I), known as somatic hyper-mutation

that generates a number of clones of mmatch. The exact

number of clones is determined by three parameters, namely,

(i) hyper-mutation rate, (ii) clonal rate and (iii) stim(agk,

mmatch). Note that the first two parameters are user-defined.

Each clone is produced through mutation (controlled by

MUTATION_RATE, a user defined parameter) at selected

sites of mmatch’s feature vector. No clone is an exact copy

of mmatch. The algorithms for proliferation-I and the gen-

eration of mutated clones are outlined in Algorithms I and

II, respectively. These algorithms are similar to the ones

described in [26]. On completion of hyper-mutation, a

stimulation value is computed for each element bi [ B as

stim(bj, ak). Here bi denotes an individual B cell clone and

B represents the entire cloned population.

To minimize the computational cost in generating

clones, a resource limitation policy [22] is incorporated.

The algorithm is described in Algorithm III. The algorithm

follows an ad hoc scheme where half of the resources are

given to the clones having same class of the current anti-

gen. The other half is equally divided among clones of

Fig. 1 A high-level architecture of the CSA used in the proposed

approach

1 Instead of Hamming distance, the present experiment also considers

the use of Euclidean distance in measuring stimulation value. In this

case, 448-dimensional features need not be converted into binary.

Since the minimum and maximum values that can occur in each

dimension are known, distance between a pair of patterns is

normalized to give a stimulation measure in [0, 1]. However, by

using Euclidean distance instead of Hamming distance no significant

change was observed in the experimental results. All the results

presented here are obtained when Hamming distance was used to

measure stimulation.
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other classes. In other words, the algorithm makes more

resources available to the in-class (with respect to the

current antigen) B cells than out-of- class cells.

Stopping criterion defined in Eq. 2 is used to terminate

the iteration on an antigen agk. Say, B1 is the collection of

the in-class B cells, i.e. cells having class label c = k and

B2 is the set of the rest of the out-of-class cells. The cri-

terion in (2) then considers cells (in-class) in B1 differently

from the others, i.e. those (out-of-class) in B2. This gives a

discriminative nature of the proposed algorithm making the

learning criterion relevant to classification accuracy.

If this criterion in (2) is not met then further prolifera-

tion of existing (i.e., survived after resource limitation) B

cells is invoked. In this stage (i.e., proliferation-II), each

survived B cell, i.e., bi is proliferated to produce a number

of clones determined by the resources allocated to it.

Proliferation-II process is similar to one for proliferation-I

outlined in Algorithm I except the calculation of the

number of clones to be generated from each surviving B

cell (bi). This number is determined only by the CLO-

NAL_RATE and stim(agk, bi) as used in Algorithm III to

compute resources claimed by an individual B cell.

P B1j j
i¼1 bi � stim

B1j j

�
P B2j j

j¼1 bj � stim

B2j j
[ STIMULATION THRESHOLD

ð2Þ

Clone selection and update of immune memory. Once

the stopping criterion in Eq. 2 is met for an antigen, the

most stimulated (w.r.t. the current antigen undergoing the

proliferation stage) B cell among the survived ones is

selected as a candidate (let bcandidate denote this cell) to be

inserted into immune memory. This process is outlined in

Algorithm IV that is similar to one in [26]. This algorithm

makes use of two parameters AS (average stimulation) and

a (a scalar value). The parameter a is a user-defined one,

whereas AS is measured from the input antigen set (i.e., the

original prototype) as the average stimulation between all

pairs of the mean values of the antigen classes.

Algorithm I. Hyper-mutation/proliferation-I

Let B  is the set of  B cell clones to be created after somatic hyper-mutation. 

Initially B ={ m matc h }. 

Let N c  denote the number of clones and calculated as, 

N c  HYPER_MUTATION_RATE * CLONAL_RATE *  stim ( ag k , m i )

While (| B | N c ) 

Do 

mu t  false   // mu t  is a Boolean variable  

       Call  mutate ( m matc h , mu t ) 

       Let  b j  denote a mutated clone of   m matc h 

       If  ( mu t ) Then  B B b j 

Done 

Algorithm II. Production of mutated clones

mutate(x, flag){

For each element in x.f  // note that the feature vector x.f is basically a binary string of length 2560 

Do

    Generate a random number, r in [0, 1]

    If (r < MUTATION_RATE) Then 

x.f toggle(x.f)

flag  true 

    Endif 

    If (flag)

       Generate a random number, r in [0, 1]

       Generate a random number, class in [1, n]

       If(r < MUTATION_RATE)

x.c = class 

Done

}

Algorithm III. Resource allocation

For each bi B

bi.stim = stim(agk, bi)

End for 

Find minimum (minStim) and maximum (maxStim) from all bi.stim values. 

For each bi B

 If (bi.c == ag.c) bi.stim = (bi.stim -minStim)/(maxStim-minStim); 

 Else bi.stim = 1 - (bi.stim -minStim)/(maxStim-minStim); 

bi.resources = bi.stim * CLONAL_RATE; 

End for 

class = 1 

While (class n) // n is the total number of different classes

 resAllocated = classcbresourcesb ii .,.

If (class = ag.c)

  numResAllowed = (totalNumResources)/2

Else numResAllowed = (totalNumResources)/2*(n-1) 

While (resAllocated > numResAllowed) 

numResRemove = resAllocated – numResAllowed 

  Find bremove having the lowest stimulation among all bi’s s.t. bi.c= class

  If (bremove.resources  numResRemove) 

   Remove bremove from B

   resAllocated = resAllocated – bremove.resources

  Else bremove.resources = bremove.resources – numResRemove

 End while

Class = class + 1 

End while 

Algorithm IV. Update of immune memory

CandStim stim(agi, bcandidate)

MatchStim stim (agi, mmatch)

CellAff stim(mmatch, bcandidate)

If (CandStim > MatchStim)

IM IM bcandidate // insertion into the immune memory 

If (CellAff  > AS)

 IM IM – mmatch // memory replacement

4 Performance evaluation

The main objective of prototype selection is to improve the

efficiency of the NN classifier in terms of storage and
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computing time requirement, and the recognition accuracy.

The amount of reduction in prototype data has direct

reflection on the amount of improvement in storage and

computing time but this may not guarantee the improve-

ment in classification accuracy. Therefore, to conduct an

objective evaluation, one needs to investigate how well the

NN-classifier will perform the ultimate classification task.

The proposed evaluation of prototype selection methods is

in the context of character recognition, so the performance

of the character recognizer is defined as the objective

measure.

A practical OCR system is involved for this purpose.

The report in [34] describes the development of an Indian

language OCR (ILOCR) system, which was later produc-

tized as the first ILOCR package for commercialization.

The system is a bi-lingual one in a sense that it can recog-

nize (in either manner) two most popular Indic scripts,

namely, Devanagari (Hindi) and Bengali (Bangla). The

recognition engine implements an NN-classification

scheme to classify more than 400 different shapes in both

the scripts. Two different prototype libraries were used one

for each of the two scripts. The features and distance

measure used for classification are same for both the scripts

and described in details in [36].

The initial prototype library used by the recognition

engine was not developed by following a very judicious

method. Prototypes were added to increase accuracy for a

particular font face and then to tackle variations in font

faces and styles other prototypes were added on need basis.

This finally generates a large prototype library affecting the

average recognition performance of the system. Although

as far as computing time is considered the performance is

quite acceptable (about 45 characters per second on a

machine with average configuration; details can be found

in [34]). Degradation in classification performance there-

fore calls for a prototype selection phase. The proposed

method is then employed and its performance is evaluated

against the performance of the original OCR system. The

improvement in performance is then statistically verified.

We call this as approach goal-directed evaluation, and it

can be used to evaluate other prototype selection methods

as well.

A comparative study makes use of this evaluation

scheme to compare the proposed method with two of the

important existing techniques for prototype selection. At

first, a modified version of the original Hart’s CNN method

[2] is considered. The modification (named as MCNN) is

proposed by Devi and Murty [9]. In the modified approach,

the set of prototypes is built in an incremental manner. The

process starts with a basic set of prototypes comprising one

pattern from each class. The training set is classified using

these prototypes. On the basis of the misclassified samples,

a representative prototype for each class is determined and

added to the set of basic prototypes. Prototypes that do not

participate in the recent classification process are deleted.

The training set is then classified again with the augmented

set of prototypes. Representative prototypes for each class

are again determined on the basis of the misclassified

samples. This process of addition and deletion is repeated

till all patterns in the training set are classified correctly.

Choice of the MCNN for comparing the efficiency of the

present method is somewhat intentional, as MCNN has

been experimentally verified to perform better than some

other prototype selection methods that are designed based

on genetic algorithm (GA), simulated annealing (SA), tabu

search (TS), etc. The experiment in [9] considers different

datasets to show the superiority of MCNN over CNN, GA,

SA, and TS-based techniques. Success of MCNN for effi-

cient prototype selection has motivated us to consider it for

comparing performance of the present approach with

MCNN.

Next, another popular prototype learning algorithm,

namely self-organizing map (SOM) [37] is considered. The

source code for SOM was downloaded from http://www.

cis.hut.fi/research/som_lvq_pak.shtml and installed under

windows platform. The comparison between the proposed

CSA-based approach and SOM is made by first executing

CSA and then number of prototypes in the reduced set is

noted. This number is used to set the x- and y-dimensions

of the map while applying SOM. A rectangular lattice is

chosen as the topology of the map. With this experimental

set-up, SOM is executed. The prototypes (called nodes in

the rectangular grid) returned by the SOM form the

reduced set of prototypes. Note that SOM is configured to

return no. of nodes/prototypes nearly similar to the number

obtained from CSA-based algorithm. Recognition perfor-

mance using this set of prototypes selected by SOM

dictates its ability of choosing right set of reference

patterns.

4.1 Performance evaluation using benchmark datasets

The second part of performance evaluation scheme con-

siders datasets that are publicly available. For this purpose,

UCI repository of machine learning databases [38] and the

Statlog Project [39] are consulted. Eight datasets as shown

in Table 3 are selected for evaluating the performance of

the proposed CSA-based approach. These datasets mostly

involve both numeric and categorical features that are first

converted into binary features. Therefore, the algorithms as

presented in Sect. 3 are applied without doing any change.

Note that they assume binary feature vectors.

Choice of these datasets is somewhat intentional, as

many prototype reduction methods have already used these

datasets to report their performance. For example, a very

358 Pattern Anal Applic (2008) 11:353–363

123

http://www.cis.hut.fi/research/som_lvq_pak.shtml
http://www.cis.hut.fi/research/som_lvq_pak.shtml


recent study [19] has used several datasets from [38] and

[39], reported their results, and compared with two other

commonly used methods. This study [19] abbreviated as

LPD (learning prototypes and distances) starts with an

initial selection of a small number of randomly selected

prototypes from the training set. Then it iteratively adjusts

both the position (features) of the prototypes themselves

and the corresponding local-metric weights, so that the

resulting combination of prototypes and metric minimizes

a suitable estimation of the probability of classification

error. Gradient descent is used to solve the minimization

problem to derive the adjustment rules.

As LPD is well tested with many datasets and found to

be producing good results, in the present experiment, it has

been selected as a reference study to compare our proposed

CSA-based method. Following section presents the details

of the CSA performance on both the OCR problem and the

public domain datasets. It also compares these results with

those obtained by some other methods.

5 Experimental results

The ILOCR described in [34] is used for the first phase of

evaluation of the proposed method. The OCR deals with

two major Indian scripts, namely, Devanagari (Hindi) and

Bengali (Bangla). Our experiment considers both the

scripts and nearly similar observations are noted. There-

fore, instead of reporting results on both the scripts

outcomes on Hindi dataset are presented here.

The Hindi dataset contains about 75,000 character

samples that were ground-truthed to assist the design of the

OCR. Character samples were collected from 50 document

pages selected from five books printed in four different font

faces. The NN classifier used by the OCR engine deals with

427 distinct classes. The number of samples for each

character class in the dataset varies from one class to

another. This number varies from a minimum of 37 to a

maximum of 262. The initial prototype library is con-

structed following an incremental manner. The new

prototypes were added to maximize the recognition accu-

racy on a document page in hand without considering its

effects on recognition of other pages. This process gene-

rates prototype library of 12,823 patterns. In this library,

number of prototypes for each character class varies from a

minimum of 6 to 43.

Experiment shows that although the effort was to maxi-

mize the recognition accuracy of individual pages but the

average accuracy comes down to an alarming level. For

few pages high recognition accuracy such as 98–99% (in

such cases errors are mostly attributed to segmentation

method and therefore further addition of prototypes does

not help) were obtained when they were considered in

isolation but the average accuracy computed on all the

pages becomes quite low as 91.2%. Analysis of this deg-

radation in accuracy shows that many prototypes are used

for correct classification of one or few symbols but they

largely contribute to misclassification of many other sym-

bols. The CSA-based prototype selection method described

in Sect. 3 is employed at this stage to improve the situation.

Since performance of the proposed method depends on

some parameters, the effects of parameters are first studied

for two different measures: (i) size of the immune memory,

i.e., size of the condensed prototype set and (ii) recognition

accuracy. Results on Hindi dataset are shown in Fig. 2.

After studying behavior of individual parameters, experi-

mental set-up does fix the parameter values as follows:

stimulation threshold = 0.89, number of resources = 400,

Fig. 2 Effect of different

parameters on size of the

condensed prototype set and

recognition accuracy: a
stimulation threshold (refer

Eq. 2), b number of resources

used for resource limitation, c
mutation rate (refer Algorithm

II), and d affinity threshold

scalar, a as used in Algorithm

IV
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mutation rate = 0.008, affinity threshold scalar, a = 0.4,

hyper-mutation rate = 2 and clonal rate = 10 (the last two

parameters are used in Algorithm I of Sect. 2).

With this parameter set-up, CSA-based prototype

selection method generates a prototype library of 2,544

patterns. This gives more than 80% condensation of the

original prototype data, thereby reducing the storage and

computing time requirement by a large margin. The num-

ber of samples for each of the 427 classes varies from 3 to

15 in the new prototype set. An accuracy of 95.7% is

achieved when recognition of the whole dataset is

attempted using this condensed prototype library. This

improves the recognition efficiency by more than 4%.

Table 1 outlines the improvement in efficiency of the ori-

ginal NN-classifier achieved by the proposed prototype

selection method.

5.1 Significance testing

The results reported in Table 1 are then verified statisti-

cally. The significant test consists a typical null hypothesis

is that there is no difference in the two systems corres-

ponding to the two rows in Table 1. Let system A and B

denotes these two systems. For a test set consisting of

samples for 427 classes, system A (old system) had an

average recognition score of 0.912 and system B (proposed

system) had an average recognition accuracy of 0.957. As

measured by average recognition accuracy, system B per-

formed 4.7% better than A, but is this a statistically

significant improvement? To answer this question, signifi-

cance of the results is tested statistically.

Each system produces a score for each class and on a

per-class basis matched pairs of scores are obtained (since

there are more than one sample for a class, all samples with

the same class label are considered for computing per-class

recognition score). Significance in light of this paired

design is then evaluated. Two significance tests, namely, (i)

randomization test and (ii) Student’s paired t test are fol-

lowed in the present experiment. Details of many

significance tests including the two that have been used

here can be found in [40]. Each method has its own

criterion and null hypothesis. While there are fundamental

differences in the null hypotheses, all the three tests aim to

measure the probability (also known as P value) that the

experimental results would have occurred by chance if

systems A and B were actually the same system.

5.1.1 Randomization test

For Fisher’s randomization test [40], the null hypothesis is

that systems A and B are identical and thus system A has

no effect compared to system B on the average recognition

accuracy for the given test samples.

Thus, if systems A and B are identical, then the decision

to label one score for a test class as produced by system A

or B is arbitrary. In fact, since there are 427 classes, there

are 2427 ways to label the results under the null hypothesis.

One of these labeling is exactly the labeling of the example

that produced average accuracy of 0.912 for system A and

0.957 for system B.

Under the null hypothesis, any permutation of the labels

is an equally likely output. We can measure the difference

between A and B for each permutation. Since generating

2427 permutations are computationally difficult to manage,

an alternative is to sample and produce a limited number of

random permutations. The more samples, the more accu-

rate will our estimate of P value be.

In the present experiment, we created 10,000 random

permutations of systems A and B and measured the dif-

ference in average recognition accuracy for each

arrangement. Table 1 shows difference in these two accu-

racies is 0.045. Of the 10,000 measured differences, 71 are

B–0.045 and 68 are C0.045. This gives us a two-sided P

value of (71 + 68)/10,000 = 0.0139. This shows that the

difference of 0.045 is unlikely and thus we should reject

the null hypothesis and report that system B has achieved a

statistically significant improvement over system A.

5.1.2 Student’s paired t test

The t test’s null hypothesis is that systems A and B are

random samples from the same normal distribution. To test

this hypothesis, samples are paired as explained earlier.

Differences between all pairs are then computed. Let XD

and sD denote the average and standard deviation of those

differences. The following equation is then used to com-

pute P value: XD

sD

ffiffiffiffi
N
p

where N is the number of paired

samples (i.e., 427 in the present experiment). Following

this experimental set-up, the two-sided P value of the t test

is 0.0117, which is in agreement with the randomization

(0.0139) test.

Table 1 Performance improvement through prototype selection

#Prototypes Storage

requirement

(MB)

Required

milliseconds

to classify

100 patterns

Classification

accuracy (%)

Original

system

[24]

12,823 3.3 2,200 91.2

Proposed 2,544 0.7 550 95.7
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5.2 Comparison with MCNN and SOM

Performance of MCNN [9] is then investigated on this

dataset. MCNN with delete operation is implemented. It

generates a condensed library of 3,305 prototypes when

executed on the original prototype set of 12,823 patterns.

This achieves about 74% reduction in prototype data.

When classification is attempted using this condensed set

(denoted as MCNN1 in Table 2), an accuracy of about

95.6% is observed, which is almost same as the accuracy

obtained by CSA-based algorithm, although this is

achieved using a larger set of prototypes (3,305 of MCNN

vs. 2,544 of CSA).

However, if MCNN is restricted to generate nearly the

same number of prototypes as given by CSA then it is

found that the classification accuracy using MCNN-gen-

erated prototype set is somewhat lower than the one

achieved by CSA. MCNN was forcefully stopped at the

end of an intermediate iteration when it has already gene-

rated 2,543 (almost same as the number of prototypes given

by CSA). Using this MCNN generated prototype library

(denoted as MCNN2 in Table 2), a classification accuracy

of 94.8% is obtained which is somewhat lower than 95.7%

given by CSA. This shows CSA is able to provide better

representative prototypes than MCNN. Table 2 summa-

rizes the comparative results between MCNN and the

proposed approach.

As far as computing time is concerned, MCNN takes

much longer time to generate the condensed prototype

library. The number of iterations required by MCNN

mostly dictates the time requirement of the algorithm. Note

that each iteration involves the entire original prototype set

to determine the misclassified patterns. Another time con-

straint originates from the fact that the condensed prototype

set under construction is consulted in every iteration to

identify members to be deleted. Finding out the represen-

tative patterns for each class in every iteration results in the

third term of the time complexity.

Let N denote the number of patterns in original proto-

type set, n denote the number of members in condensed set,

m denote the number of iterations required, and C denote

the number of class labels. Therefore, the time complexity

of MCNN can be represented as HðmNÞ þHðnÞ þHðCÞ
from which it is clear that the first term dictates the overall

time requirement. In the present experiment, MCNN takes

518 iterations (m = 518) to produce the condensed set of

3,305 patterns (n = 3,305) for 427 classes (C = 427).

On the other hand, time complexity of CSA-based

approach is determined by two factors: (i) finding the

memory element for proliferation and (ii) the number of

iterations (say, k) required in the proliferation stage to find

a properly stimulated clone. If n0 denotes the size of the

immune memory (i.e., size of the condensed prototype set)

then the time complexity can be represented by Hðn0Þ þ
HðkNÞ; where N is the number of antigens (i.e., prototypes

in the original set). Here also the second term, i.e., HðkNÞ
dictates the overall time complexity. Experimentally it is

verified that the average number of iterations (maximum

and minimum are being 21 and 02) required to produce

properly mutated clone is 8 (i.e., k = 8). Therefore, as

HðmNÞ � HðkNÞ [m = 518 vs. k = 8] the overall time

requirement of MCNN is quite higher than the proposed

CSA-based approach.

Recognition accuracy obtained by CSA-based method is

next compared with that of Kohonen SOM [36]. As men-

tioned earlier that the size of the rectangular grid of used in

SOM is set by noting the number of prototypes retained by

the CSA. Since CSA gives a reduced set of 2,544 patterns,

a 51 9 50 grid of nodes is assumed while executing SOM.

The reference vectors returned by SOM are then used for

recognition of the test patterns. An accuracy of 95.4% is

achieved. The comparison among the classification accu-

racies obtained by MNCC [9], SOM [36], and the proposed

method is given in Table 2. This shows that the reduced

prototype set given by the CSA-based method shows a

classification power comparable with those achieved by

other two existing method.

5.3 Benchmark dataset

As mentioned in the previous section, eight datasets are

taken from publicly available repository [38] and [39]. The

proposed method is applied to these dataset to get a set

reference patterns to be used for classification. Since the

number of patterns in the datasets used here is small (varies

from 625 to 6,435), fivefold cross-validation technique has

been applied to obtain the classification results. Each

dataset is divided into five blocks using four blocks as a

training set, and the remaining block as a test set. Reduced

set of prototypes is formed from the training set and used

for classifying the fifth block. Five runs are conducted so

that each block is used as a test set. Table 3 reports theTable 2 Comparison between MCNN [9], SOM [36] and CSA

(proposed)

MCNN1 MCNN2 SOM Proposed

#Prototypes in condensed set 3,305 2,543 2,550 2,544

Classification accuracy (%) 95.6 94.8 95.3 95.7

2 No iteration is needed if an antigen finds an exact match in the

memory. In such a case, producing clones won’t help to find any

better B cell and that is why hyper-mutation phase is not invoked at

all.
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results averaged over these five runs as well as the best

ones.

This experiment is conducted following the set-up pro-

posed in a recent study [19]. This helps to make a

comparison of the LPD approach proposed in [19] and the

current one. LPD is found to perform better/comparable

with two other commonly used methods, namely, L2 metric

and class-dependent Mahalanobis (CDM) distance. In the

present experiment, when CSA results are compared with

that of LPD, it is observed LPD shows more data con-

densation capability than that of CSA. LPD gives about

95% condensation while CSA gives about 93–90%.

Therefore, reference patterns retained in the reduced pro-

totype set is more in CSA than that of LPD.

When classification accuracies are compared, CSA gives

accuracies comparable to or better than that of LPD. For

some datasets such as Australian, Cancer, German, Sat-

image, Vehicle the average case accuracies are slightly

better than the best-case accuracies of LPD. However, for

many cases this improvement is found to be due to the

presence of more number of prototypes in the reference

library.

6 Conclusion

This paper presents a biologically inspired method for

prototype selection which is primarily effective in

improving the classification performance of NN classifier

and also partially in reducing its storage and computing

time requirement. An immune model, namely, CSA-based

approach is implemented for the proposed prototype

selection task. A practical PR system and datasets from

publicly available repositories are considered to evaluate

the performance of the method. Improvement of the clas-

sification accuracy is demonstrated. Comparison of the

present method with another popular prototype selection

techniques clearly brings out the potentiality of the pro-

posed immune-based paradigm.

The CSA presented here is one of the simplest versions

among the modifications proposed in recent times. Such a

choice was intentional to investigate the initial perfor-

mance of a CSA-based approach for prototype selection

method. The algorithm is one-pass, i.e., each member in

the original prototype library is consulted once. Multi-pass

approach [28] may results in better performance. The

future extension of this on-going study will consider such

modifications in the CSA to achieve better efficiency.
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