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A NOTE ON COMPARISON OF ESTIMATION STRATEGIES
IN SURVEY SAMPLING OF CONTINUOUS POPULATIONS

By V.R. PADMAWAR
Indian Statistical Institute, Bangalore

SUMMARY. Interpreting the traditional survey sampling set-up in the continuous infinite

population framework, the performances of some design-unbiased sampling strategies for es-

timating the population mean with respect to measures of uncertainty are compared under a

well-known regression model.

1. Introduction

A large number of sampling strategies for estimating the population mean
have been considered in the literature of survey sampling of continuous popula-
tions (Cassel and Särndal (1972, 1974), Särndal (1980), Padmawar (1982, 1984,
1996), Cordy (1993)). Särndal (1980) studied certain strategies in the continuous
set-up, which were later taken up by Padmawar (1982). Results regarding nonex-
istence (Padmawar (1982)) and some regarding existence (Padmawar (1984)), of
optimal strategies in certain classes of p−unbiased strategies are known. Pad-
mawar (1996) defined Rao-Hartley-Cochran strategy in the continuous set-up
and studied its efficiency.

In the absence of an optimal p−unbiased strategy, we take up, in this note,
the problem of comparing the performances of various strategies for estimating
the population mean under a well-known regression model. At the end of section
1, we list the strategies to be studied. In section 2, we establish their interesting
properties and compare them. In section 3, we study some strategies in the
stratified continuous set-up.

We shall use, in this note, the same framework as that in Padmawar (1996).
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Consider a population of infinitely many pairs (y(x), x) ; x ≥ 0, such
that the joint distribution of y(x), x ≥ 0, is known only partially. For conve-
nience let us assume that y(x), x ≥ 0, are defined on some probability space
(Ω, A, ξ ). The distribution of X, whose observed values are x, assumed to
be continuous and known is given by

F (x) =

x∫
0

f(u)du ; x ≥ 0.

Here Y is the study variable while X is the auxiliary variable.
Any continuous probability measure Q is called a sampling design. Q(x)

is the probability of drawing a sample such that the auxiliary variate value does
not exceed xi in the ith draw, 1 ≤ i ≤ n. Let q(x) = ∂nQ(x)

∂x1∂x2···∂xn
. Then

q(x) can be expressed as q(x) = p(x)f(x), where f(x) =
n∏

i=1

f(xi). We shall

call p(x), the design function associated with the sampling design Q(x).

Consider a sampling design Q(x) and the corresponding design function
p(x). Having drawn and observed n units, the data is recorded as (y(xi), xi), i =
1, 2, · · · , n ; or equivalently as (y(x), x), where x = (x1, x2, · · · , xn).

A function t of the observed data (y(x), x) is called an estimator of the
population mean mY, whereas ( p, t), an estimator together with a design
function p is called a strategy. The problem under consideration is to get an
efficient strategy ( p, t) to estimate the population mean for the variate Y,
namely

mY = Ef (y) =

∞∫
0

y(x)f(x)dx .

Here we consider a specific superpopulation model, namely the regression
model, induced by the probability space (Ω, A, ξ ), given by

Y (x) = βx + Z(x), x ≥ 0

where for every fixed x ≥ 0

Eξ(Z(x)) = 0, Eξ(Z2(x)) = σ2xg . . . (1.1)

and for every x 6= x ′ ; x, x ′ ≥ 0

Eξ(Z(x)Z(x ′ )) = 0

where σ2 > 0 and β are unknown and g ∈ [0, 2] may be known or unknown.
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We assume that Y (x) is square integrable with respect to the product
probability (F × ξ ). To judge the performance of a strategy ( p, t) we use
the following measures of uncertainty

M1( p, t) = EξEp(t−mY)2 . . . (1.2)

M2( p, t) = EξEp(t− µY)2 . . . (1.3)

where µY = Eξ(mY) = Eξ

∞∫
0

y(x)f(x)dx = βEf (X) = βµ (say).

A strategy ( p, t) is said to be p−unbiased (design-unbiased) for mY if

Ep(t) =
∫

IR+
n

t(y(x), x)p(x)f(x)dx =

∞∫
0

y(x)f(x)dx = mY

for every real valued F-integrable function y(x). This defines the operator Ep.
A strategy ( p, t) is said to be ξ−unbiased (model-unbiased) for mY if

Eξ[(t(y(x), x)−mY] = 0 a.e.[Q].

A strategy ( p, t) is said to be pξ−unbiased (model-design-unbiased) for
mY if

EpEξ[(t(y(x), x)]− Eξ[mY] = 0 .

In this note we assume that the auxiliary variable X has Gamma distribu-
tion with parameter α. Clearly µ = Ef (X) = α. We also use the convention

that unless otherwise specified
∑

would denote
n∑

i=1

.

We will consider strategies (srs, y ), (srs, tR), (pM, tR), (ppx, tHT), (pg, tg),
( pRHC, tRHC) defined as follows :

a) sampling designs :
srs : simple random sampling for which p(x) ≡ 1 .

ppxa : sampling design for which p(x) ∝
n∏

i=1

xa
i .

pM : continuous analogue of the Midzuno-Sen sampling design for

which p(x) = 1
nµ

∑
xi, where µ = Ef (X) =

∞∫
0

xf(x)dx .

pg : sampling design with p(x) = k
n∏

i=1

xg−1
i

∑
x2−g

i ,

where k = 1
nµ

[
Γ(α)

Γ(α+g−1)

]n−1

; (µ = α) .
pRHC : continuous analogue of the Rao-Hartley-Cochran sampling

design, vide (Padmawar (1996)).
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b) estimators :
y : sample mean 1

n

∑
y(xi) .

tR : ratio estimator µ

∑
y(xi)∑

xi
.

tHT : Horvitz-Thompson estimator given by
∑ y(xi)f(xi)

π(xi)
, based on

q(x), where π(xi) =
n∑

j=1

qj(xi) , π(x) > 0 for x > 0 , and

qi(xi) =
∫

IR+
n−1

q(x)
n∏

j 6=i

dxj , 1 ≤ i ≤ n , vide (Cordy (1993)).

tg : estimator given by µ∑
x2−g

i

∑
x1−g

i y(xi) , g ∈ [0, 2] .

tRHC : continuous analogue of the Rao-Hartley-Cochran estimator,
vide (Padmawar (1996)).

2. Comparison of Strategies

Comparison of sampling strategies, in the absence of an optimal one, under
a superpopulation model with respect to an uncertainty measure has been one
of the major problems of interest to survey statisticians. In this section we take
up this problem in the continuous set-up for the strategies listed in the previous
section. We first establish some interesting properties of these strategies.

It is known that for estimating the population mean (srs, tR) is not
p−unbiased whereas (srs, y ) , (ppx, tHT) and (pRHC, tRHC) are p−unbiased,
vide (Särndal (1980), Padmawar (1982, 1996), Cordy (1993)). It is easy to prove
the following

Theorem 2.1. The strategies ( pM, tR) and ( pg, tg) are p−unbiased for
estimating the population mean mY .

Proof.
EP ( pM, tR) =

∫
IR+

n

µ

∑
y(xi)∑
xi

∑
xi

nµ
f(x)dx

=
∫

IR+
n

1
n

∑
y(xi)f(x)dx

=
1
n

n∑
i=1

∞∫
0

y(xi)

 n∏
j 6=i

∞∫
0

f(xj)dxj

 f(xi)dxi

=

∞∫
0

y(x)f(x)dx

= mY .
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Thus the strategy ( pM, tR) is p−unbiased for the population mean. Similarly,

Ep( pg, tg) =
∫

IR+
n

µ∑
x2−g

i

∑
x1−g

i y(xi)
1

nµ

[
Γ(α)

Γ(α + g − 1)

]n−1

×

n∏
i=1

xg−1
i

∑
x2−g

i f(x)dx

=
1
n

[
Γ(α)

Γ(α + g − 1)

]n−1

×

n∑
i=1

∞∫
0

y(xi)

 n∏
j 6=1

∞∫
0

xg−1
j f(xj)dxj

 f(xi)dxi

=

∞∫
0

y(x)f(x)dx

= mY .

Hence ( pg, tg) is also p−unbiased.
We now prove an important property of the estimator tg.

Theorem 2.2. For any design p the estimator tg is the best linear
ξ−unbiased estimator for mY in the sense of minimum M1( p, t) .

Proof. A linear estimator is of the type

t = t(y(x), x) =
n∑

i=1

ai(x)y(xi) . . . (2.1)

where a1, a2, · · · , an are known measurable functions.
The condition of ξ−unbiasedness under the model (1.1) for the estimator (2.1)
is

n∑
i=1

ai(x)xi = µ a.e.[Q] . . . . (2.2)

For a given design p we want to minimize M1( p, t) subject to the condition
(2.2). Note that

M1( p, t) = EξEp(t−mY)2

= EξEfp(x)(t−mY)2

= Efp(x)Eξ(t−mY)2 .

Hence it suffices to minimize Eξ(t−mY)2 subject to (2.2). Now

Eξ(t−mY)2 = Eξt
2 + Eξm

2
Y − 2EξtmY
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and
EξtmY = Eξ

∑
ai(x)Y (xi)EfY (x)

=
n∑

i=1

ai(x)EξEfY (xi)Y (x)

=
n∑

i=1

ai(x)EfEξY (xi)Y (x) .

But EξY (xi)Y (x) = β2xix a.e. [F] ∀ i = 1, 2, · · · , n .

Hence
EξtmY = β2

n∑
i=1

ai(x)xiEfX

= β2µ2 using (2.2) .

Therefore it suffices to minimize Eξt
2 subject to (2.2), i.e., to

minimize
n∑

i=1

a2
i (x)xg

i

subject to

n∑
i=1

ai(x)xi = µ.

This immediately admits the following solution

ai(x) =
µx1−g

i∑
x2−g

i

, 1 ≤ i ≤ n.

Hence, tg = µ∑
x2−g

i

∑
x1−g

i y(xi) is the best linear ξ−unbiased estimator.

Remark 2.1. Although tg possesses the above optimal property for any
p we consider the strategy ( pg, tg) as it is p−unbiased and hence even if the
model breaks down it remains at least pξ−unbiased. Moreover, in this note we
would like to compare the performances of various p−unbiased strategies.

Remark 2.2. It is interesting to note that for g = 1 the strategy (pg, tg)
coincides with the strategy ( pM, tR) and for g = 2 it coincides with the
strategy ( ppx, tHT) .

Särndal (1980) studied the strategy (srs, tR). He observed that the strategy
(srs, tR) is not p−unbiased and if the model (1.1) breaks down then it is not
even pξ−unbiased. The strategy ( pM, tR) is ξ−unbiased and, since we have
just proved that it is p−unbiased, it would remain pξ−unbiased even if the
model (1.1) breaks down. We prove here that the strategy ( pM, tR), apart
from possessing the above advantage over the strategy (srs, tR), is, in fact,
superior to (srs, tR). Let us, however, first prove the following lemma :
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Lemma 2.1. For δ ∈ IR and nα + g − δ > 0 ,

J =
∫

IR+
n

xg
1

[
∑

xi]δ
e−
∑

xi

n∏
i=1

xα−1
i dxi =

Γ(nα + g − δ)Γ(g + α)(Γ(α))n−1

Γ(nα + g)
.

Proof. Consider the following transformation
x1 = u1(1− u2), x2 = u1u2(1− u3) , x3 = u1u2u3(1− u4), · · · ,
xn−1 = u1u2 · · ·un−1(1− un) and xn = u1u2 · · ·un−1un .

For this transformation, 0 ≤ u1 < ∞ and 0 ≤ ui ≤ 1 ∀ i = 2, 3, · · · , n .

The Jacobian of the transformation is
n∏

1=1
un−i

i . Thus

J =
∫ ∞

0

∫ 1

0

· · ·
∫ 1

0

[u1(1− u2)]g

uδ
1

e−u1

[
u1(1− u2)u1u2(1− u3) · · ·

(u1u2 · · ·un)
]α−1 n∏

i=1

un−i
i dui

=
∫ ∞

0

e−u1unα+g−δ−1
1 du1

∫ 1

0

u
(n−1)α−1
2 (1− u2)g+α−1du2

×
∫ 1

0

u
(n−2)α−1
3 (1− u3)α−1du3 · · ·

∫ 1

0

u2α−1
n−1 (1− un−1)α−1dun−1

×
∫ 1

0

uα−1
n (1− un)α−1dun .

Thus J = Γ(nα + g − δ)
Γ{(n− 1)α} Γ(g + α)

Γ(nα + g)
Γ{(n− 2)α} Γ(α)

Γ{(n− 1)α}
· · ·

· · · Γ(2α)Γ(α)
Γ(3α)

Γ(α)Γ(α)
Γ(2α)

, or,

J =
Γ(nα + g − δ)Γ(g + α)

Γ(nα + g)
[Γ(α)]n−1 .

This completes the proof of the lemma that would be used to prove the following

Theorem 2.3. Under the model (1.1) the strategy ( pM, tR) is superior to
the strategy (srs, tR) with respect to the measure of uncertainty M2( p, t) if
nα + g − 2 > 0 .

Proof. For design function p,

M2( p, tR) = EξEp(tR − βµ)2

= EpEξ(tR − βµ)2

= EpVξ(tR)

= σ2µ2Ep

∑
xg

i

[
∑

xi]2
.
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For p(x) ≡ 1, using Lemma 2.1 with δ = 2 , we get

Ep

∑
xg

i

[
∑

xi]2
=

n

[Γ(α)]n

∫
IR+

n

xg
1

[
∑

xi]2
e−
∑

xi

n∏
i=1

xα−1
i dxi

=
n

[Γ(α)]n
Γ(nα + g − 2)Γ(g + α)

Γ(nα + g)
[Γ(α)]n−1 .

Thus M2(srs, tR) = σ2µ2 nΓ(g + α)/Γ(α)
(g + nα− 1)(g + nα− 2)

.

Similarly, for p(x) =
∑

xi

nµ , using Lemma 2.1 with δ = 1 , we get

M2( pM, tR) = σ2µ2 Γ(g + α)/Γ(α + 1)
(g + nα− 1)

. . . . (2.3)

Therefore, M2( pM, tR)
M2(srs, tR)

=
nα + g − 2

nα
.

Since g ∈ [0, 2], the strategy ( pM, tR) is always superior to (srs, tR) .
In our next theorem we compare the strategies ( pM, tR) and ( ppx, tHT) .

Theorem 2.4. Under the model (1.1) for n ≥ 2 and g + nα− 1 > 0 , we
have,

¡ ¡
M2( pM, tR) = M2( ppx, tHT) according as g = 1.

¿ ¿

Proof. We know from Särndal (1980) that

M2( ppx, tHT) =
σ2µ2

n

Γ(α + g − 1)
Γ(α + 1)

. . . . (2.4)

Using (2.3) and (2.4) we get,

M2( pM, tR)
M2( ppx, tHT)

=
n(α + g − 1)
(g + nα− 1)

= 1 +
(n− 1)(g − 1)
(g + nα− 1)

.

Clearly for n ≥ 2 and g + nα− 1 > 0 , we have,
¡ ¡

M2( pM, tR) = M2( ppx, tHT) according as g = 1.
¿ ¿

Hence the theorem.
It is interesting to note that for any strategy ( p, t) that is p−unbiased

as well as ξ−unbiased, the measures of uncertainty M1( p, t) and M2( p, t)
differ by a quantity that is independent of ( p, t). Since both the strategies in
the above theorem are p−unbiased as well as ξ−unbiased we immediately have
the following
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Theorem 2.5. Under the model (1.1) for n ≥ 2 and g + nα− 1 > 0 , we
have,

¡ ¡
M1( pM, tR) = M1( ppx, tHT) according as g = 1.

¿ ¿

Remark 2.3. It is clear from the above results that if the parameter g of
the model (1.1) is not known and if the sampler has to choose between the above
two strategies then there is a clear demarcation of the range of the parameter
g. If there are reasons to believe that the parameter g is less than unity then
the sampler should go for the strategy ( pM, tR). On the other hand, if the
sampler speculates g to be greater than unity then the strategy ( ppx, tHT) is
to be preferred.

Remark 2.4. Theorem 2.5 agrees with the result due to Rao (1967) in which
the same two strategies are compared in the finite set-up.
We now compare the strategies ( ppx, tHT) and ( pg, tg) .

Theorem 2.6. Under the model (1.1) the strategies ( ppx, tHT) and
( pg, tg) are equally efficient with respect to either measure of uncertainty.

Proof. Since both the strategies (ppx, tHT) and (pg, tg) are p−unbiased
as well as ξ−unbiased it is enough to consider the measure of uncertainty M2 .
Let us first evaluate M2( pg, tg) .

M2( pg, tg) = EpgEξt
2
g − β2µ2

= Epg

σ2µ2

[
∑

x2−g
i ]

=
∫

IR+
n

σ2µ2∑
x2−g

i

1
nα

[
Γ(α)

Γ(α + g − 1)

]n−1 n∏
i=1

xg−1
i

∑
x2−g

i f(x)dx

=
σ2µ2

nα

[
Γ(α)

Γ(α + g − 1)

]n−1 n∏
i=1

∫ ∞

0

xg−1
i f(xi)dxi

=
σ2µ2

nα

[
Γ(α)

Γ(α + g − 1)

]n−1[Γ(α + g − 1)
Γ(α)

]n

Thus M2( pg, tg) =
σ2µ2

n

Γ(α + g − 1)
Γ(α + 1)

. . . (2.5)

which is same as M2(ppx, tHT) . Thus the strategies (ppx, tHT) and (pg, tg)
are equally efficient.
It is easy to prove the following

Corollary 2.1. Under the model (1.1) with g = 1 the strategies (pM, tR) ,
( ppx, tHT) and ( pg, tg) are equally efficient with respect to either measure of
uncertainty.
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Padmawar (1996) defined Rao-Hartley-Cochran strategy, ( pRHC, tRHC), in
the continuous set-up. It is proved there that, this strategy is p−unbiased as
well as ξ−unbiased and that in the limiting sense, the value of M2(pRHC, tRHC)
is given by

M2( pRHC, tRHC) =
σ2µ2

n

Γ(α + g − 1)
Γ(α + 1)

. . . . (2.6)

In view of (2.6) and Theorem 2.6 we conclude this section with the following

Theorem 2.7. Under the model (1.1) the strategy ( pRHC, tRHC) is as
efficient, in the limiting sense, as the strategies ( ppx, tHT) and ( pg, tg) with
respect to either measure of uncertainty.

Remark 2.5. It was, however, observed in Padmawar (1996) that from
the practical point of view the strategy ( ppx, tHT) is better than the other
two competing strategies ( pg, tg) and ( pRHC, tRHC) as ( pg, tg) depends
on the parameter g of the model (1.1) that may not always be known and
( pRHC, tRHC) is equally efficient only in the limiting sense.

In the next section we compare some more strategies in the stratified set-up.

3. Stratified Sampling

In this section we consider the stratified sampling set-up having L strata.
Let 0 = z0 < z1 < z2 < · · · < zL = ∞ be the given stratification points. A unit
is said to belong to the hth stratum if its x−value belongs to [zh−1, zh), 1 ≤
h ≤ L. For the stratified sampling we have to modify our basic set-up suitably.
Define, for the hth stratum, fh(x), the analogue of f(x) on IR+, as

fh(x) = f(x)
Wh

if x ∈ [zh−1, zh)
= 0 otherwise

where Wh = F (zh)− F (zh−1) =
zh∫

zh−1

f(x)dx .

Let nh be the number of units to be sampled from the hth stratum,

1 ≤ h ≤ L , then the total sample size n is given by n =
L∑

h=1

nh .

We can now think of a design function ph(xh) for the hth stratum where
xh = (xh1, xh2, · · · , xhnh

) now is a vector with nh coordinates, i.e., xhi

denotes the ith unit from the hth stratum , 1 ≤ i ≤ nh , 1 ≤ h ≤ L . The
sampling design for the hth stratum, 1 ≤ h ≤ L , is defined as

qh(xh) = ph(xh)fh(xh) where fh(xh) =
nh∏
i=1

fh(xhi) .
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The overall stratified sampling design is now given by
L∏

h=1

qh(xh) .

Särndal (1980) considered the strategy (srst, yst) that consists of srst,
the stratified simple random sampling and the estimator yst , given by

yst =
L∑

h=1

Whyh where yh =
1
nh

nh∑
i=1

y(xhi), 1 ≤ h ≤ L .

Let us consider the strategy (ppxst, t∗HT) that consists of ppxst, the stratified
ppx sampling and the estimator t∗HT given by

t∗HT =
L∑

h=1

Wh
µh

nh

nh∑
i=1

y(xhi)
xhi

where µh =
1

Wh

zh∫
zh−1

xf(x)dx .

It is easy to see that the strategy ( ppxst, t∗HT) is p−unbiased as well as
ξ−unbiased. For this strategy let us evaluate M2 .

M2( ppxst, t∗HT) = EpVξt
∗
HT

= Ep

L∑
h=1

W 2
h

µ2
h

n2
h

nh∑
i=1

σ2xg−2
hi

= σ2
L∑

h=1

Wh
µh

nh

zh∫
zh−1

xg−1f(x)dx .

For the allocation nh =
nWhµh

µ
, 1 ≤ h ≤ L, . . . (3.1)

M2( ppxst, t∗HT) =
σ2µ2

n

Γ(α + g − 1)
Γ(α + 1)

. . . . (3.2)

For the optimal allocation

nh ∝

Whµh

zh∫
zh−1

xg−1f(x)dx


1
2

, 1 ≤ h ≤ L , . . . (3.3)

M2( ppxst, t∗HT) =
σ2

n

 L∑
h=1

Whµh

zh∫
zh−1

xg−1f(x)dx


1/2


2

. . . . (3.4)

We now state the following
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Theorem 3.1. Under the model (1.1) we have, for the allocation (3.1)

M2( ppxst, t∗HT) = M2( ppx, tHT)

and for the optimal allocation (3.3)

M2( ppxst, t∗HT) ≤ M2( ppx, tHT),

and the equality holds if and only if g = 2 .

Remark 3.1. Thus for any allocation that is better than the allocation
(3.1) there would be gain due to stratification, in the sense that the stratified
strategy ( ppxst, t∗HT) would perform better than its unstratified counterpart
( ppx, tHT) . The above result for the optimal allocation agrees with the result
due to Rao (1968) in which the same two strategies are compared in the finite
set-up. It may be mentioned here that in the finite stratified set-up the problem
of comparing different allocations in terms M1 was first considered by Hanurav
(1965), followed by Rao (1968, 1977).

We now proceed to comment on a result due to Särndal (1980). Let us first
evaluate

M2(srst, yst) = Ep[Vξ(yst) + Eξ(yst)2]− β2µ2

= Ep

(
σ2

L∑
h=1

W 2
h

n2
h

nh∑
i=1

xg
hi + β2

[
L∑

h=1

Whxh

]2)
− β2µ2

where xh = 1
nh

nh∑
i=1

xhi

= σ2
L∑

h=1

Wh

nh

zh∫
zh−1

xgf(x)dx

+ β2
L∑

h=1

1
nh

Wh

zh∫
zh−1

x2f(x)dx−

(
zh∫

zh−1

xf(x)dfx

)2
 .

. . . (3.5)
For the proportional allocation, nh = nWh, 1 ≤ h ≤ L, we have

M2(srst, yst) = σ2µ2

n
Γ(α+g)

αΓ(α+1)

+ β2
L∑

h=1

1
nWh

Wh

zh∫
zh−1

x2f(x)dx−

(
zh∫

zh−1

xf(x)dx

)2
 .

. . . (3.6)
Särndal (1980) stated that for the proportionally allocated stratified random
sample, (nh = nWh), and under ‘maximum benefit from stratification’ (many
strata with optimally located boundaries),

M2(srst, yst) =
σ2µ2

n

Γ(α + g)
αΓ(α + 1)

. . . . (3.7)
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However, it follows easily from the Cauchy-Schwartz inequality that the coef-
ficient of β2 in (3.5) and that in (3.6) are positive. Therefore even under
‘maximum benefit from stratification’, the right hand side expression in (3.7)
can only be a lower bound for M2(srst, yst). The comparison between the
strategies (srs, tR) and (srst, yst) carried out by Särndal (1980) is valid for
large values of n and L . However, for a given sample size n, we cannot
arbitrarily increase the total number of strata, as it is necessary to sample at
least two units from each stratum. Further, in (3.6), the value of β2 may be
large as compared to that of σ2, both of which are unknown parameters of
the model (1.1). In the following theorem we, therefore, carry out some exact
comparisons involving the strategy (srst, yst) .

Theorem 3.2. Under the model (1.1) with g ≥ 1 for the proportional
allocation the strategy (srst, yst) is inferior to the strategies ( pM, tR),
( ppx, tHT) and ( pg, tg) .

Proof. Using (2.3) and (3.6) we get

M2(srst, yst)
M2( pM, tR)

≥ 1 +
g − 1
nα

.

Thus for g ≥ 1, ( pM, tR) and hence ( ppx, tHT) and ( pg, tg) are all more
efficient than the strategy (srst, yst) .

Remark 3.2. If the parameter g of the model (1.1) is greater than unity,
then, even the stratified version (srst, yst) of the strategy (srs, y ) loses
out to the strategies that depend on x .
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