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SUMMARY. Various forms of diallel crosses play an important role in evaluating the

breeding potential of genetic material in plant and animal breeding. In this paper we consider

partial diallel crosses in incomplete block or completely randomized designs. Optimal designs

in both the unblocked and blocked situations are characterized. Two methods of construction

of MS-optimal designs are proposed leading to design families which have very high A- and

D-efficiencies.

1. Introduction

Genetic properties of inbred lines in plant breeding experiments are investi-
gated by carrying out diallel crosses. Let p denote the number of lines and let
a cross between lines i and i′ be denoted by (i, i′), i < i′ = 1, 2, . . . , p. Let n
denote the total number of crosses observed in the experiment. Our interest lies
in comparing the lines with respect to their general combining ability effects.

Complete diallel cross designs involve equal numbers of occurrences of each
of the p(p− 1)/2 distinct crosses among p inbred lines. If r denotes the number
of times that each cross occurs in a complete diallel, then such an experiment
requires rp(p−1)/2 experimental units (or crosses). When p is large, it becomes
impractical to carry out a complete diallel cross even for r = 1. In such situa-
tions, we consider designs having no requirement that the distinct crosses appear
equally often. This leads us to what we call Partial Diallel Cross (PDC) designs.
In the literature PDC designs have been discussed for n = ps/2 (s < p − 1)
distinct crosses each appearing an equal number r ≥ 1 times, where s = 2n/p
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is an integer. Several methods of obtaining PDC completely randomized de-
signs have been given, together with their efficiency factors, by Kempthorne and
Curnow (1961), Curnow (1963), Hinkelmann and Kempthorne (1963), Singh and
Hinkelmann (1988, 1990), among others.

PDC designs can, themselves, be quite large and it is sometimes desirable
to use a block design for the experiment rather than a completely randomized
design. Singh and Hinkelmann (1995) used conventional partially balanced in-
complete block designs both to select the diallel crosses to be observed and to
arrange them into blocks. Their resulting designs have distinct crosses appearing
either r(≥ 2) times in the design or not at all. The numbers of occurrences of the
lines within the blocks tend to be uneven, which decreases their design efficien-
cies. Gupta, Das and Kageyama (1995) and Mukerjee (1997) provide orthogonal
blocking schemes for PDC designs (see Section 3 for the definition). Mukerjee
(1997) proved the E-optimality of his designs (which are based on group divisible
plans with λ1 = 1 and λ2 = 0). Mukerjee’s designs also perform well under the
A- and D-optimality criteria, but exist only for a restricted number of parameter
values.

Other than the results of Mukerjee (1997), the only work on optimality of
diallel crosses has been for the blocked complete diallel, see, for example, Singh
and Hinkelmann (1988), Gupta and Kageyama (1994), Dey and Midha (1996),
and Das, Dey and Dean (1998).

The purpose of this communication is to investigate the construction of op-
timal designs for PDC experiments. The optimality criterion chosen is the MS-
optimality criterion of Eccleston and Hedayat (1974). Roughly, the idea behind
such a criterion is to limit attention to designs which have maximum information
in terms of trace of the information matrix; and then from this class to select a
design that is close in the Euclidean sense to a symmetric (variance balanced)
design. The symmetric design is selected for comparison purposes since, when
such a design exists, it is best according to any of the usual optimality criteria,
for example, see Proposition 1 in Kiefer (1975). Unlike the standard criteria of
A-, D- and E-optimality, MS-optimal designs have no primary statistical inter-
pretation. However, the MS-optimality criterion is much easier to work with
than the standard criteria in that it allows for algebraic results in a field where
other criteria can often only be examined numerically, design by design.

In this paper, we characterize MS-optimal unblocked and blocked designs for
PDC experiments with s = 2n/p an integer, where n is the number of crosses
observed in the design. We list two families of MS-optimal PDC designs which
are also efficient under the A-criterion (of minimizing the average variance of all
pairwise comparisons of lines) and the D-criterion (of minimizing the volume of
the confidence ellipsoid for all pairwise comparisons). For p even, our series A
designs are based on the orthogonally blocked series 2 complete diallels of Gupta
and Kageyama (1994). For p odd, our series B designs are based on the orthog-
onally blocked Family 5 complete diallels of Das, Dey and Dean (1998) and,
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equivalently, the orthogonally blocked series 1 plans listed by Gupta, Das and
Kageyama (1995). We compare the A- and D- efficiencies of the series A and B
designs with series C designs which we obtain from conventional resolvable and
2-resolvable partially balanced incomplete block designs with treatment concur-
rences 0 and 1. We also compare the series A and B designs with the block
designs of Singh and Hinkelmann (1995) and some of the designs of Mukerjee
(1997).

2. Preliminaries

We consider diallel cross experiments involving p inbred lines, giving rise
to a total of nc = p(p − 1)/2 possible distinct crosses. Let rdi denote the
number of times the ith cross appears in a design d, (i = 1, 2, . . . , p(p − 1)/2)
and, similarly, let sdj denote the total number of times that the jth line occurs
among the crosses in the design d, (j = 1, 2, . . . , p). Further, define rd and sd

to be rd = (rd1, . . . , rdnc
)′, sd = (sd1, . . . , sdp)′, and let n denote the number

of crosses (observations) in the design d. Then 1′nc
rd = n = 1

21
′
psd, where ′

denotes transpose of a matrix and 1t denotes a t-component column vector of
all ones. We use the following model for an unblocked (completely randomized)
diallel cross experiment:

Model M1 : Y = µ 1n + ∆1g + ε,

and the following model for a blocked diallel cross experiment:

Model M2 : Y = µ 1n + ∆1g + ∆2β + ε,

where Y is the n × 1 vector of observed responses, µ is a general mean effect,
g and β are vectors of p general combining ability effects and b block effects
respectively, ∆1,∆2 are the corresponding design matrices, that is, the (h, l)th
element of ∆1 (respectively, of ∆2) is 1 if the hth observation pertains to the
lth line (respectively, to the lth block), and is zero otherwise; ε is the vector of
random error components, these components being distributed with mean zero
and constant variance σ2. As is usual for the analysis of PDC experiments, it
is assumed that the genetic effect of the cross (i, j) is represented sufficiently
well by the general combining ability of the two parental lines (see Singh and
Hinkelmann, 1995, for a detailed comment on such a model).

Let D0(p, n) denote the class of all completely randomized designs with p lines
and n crosses. For a design, d0 ∈ D0(p, n), under model M1, it can be shown
that the information matrix of the reduced normal equations for estimating
linear functions of general combining ability effects g is

Cd0 = Gd0 −
1
n

sd0 s′d0
. . . (1)
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where Gd0 = (gd0ii′), gd0ii = sd0i, and for i 6= i′, gd0ii′ is the number of times
the cross (i, i′) appears in d0. Also,

∑
i <

∑
i′

gd0ii′ = n.

Similarly, let D(p, b, k) denote the class of all block designs with p lines, and
b blocks each with k crosses. For a block design d ∈ D(p, b, k) under model M2,
the information matrix for g is given by

Cd = Gd −
1
k

Nd N ′
d . . . (2)

where Nd = (ndij); ndij is the number of times that line i occurs in block j of
d; and Gd = Gd0 is defined below (1). For such a block design, n = bk and
Nd1b = sd = sd0 .

A design d will be called connected if and only if the rank of its information
matrix is p − 1. Equivalently, d is connected if and only if all elementary com-
parisons among the general combining ability effects are estimable. A connected
design d∗0 ∈ D0(p, n) is said to be MS-optimal if

max
d0∈D0(p,n)

tr(Cd0) = tr(Cd∗0
) and min

d0∈D∗
0 (p,n)

tr(C2
d0

) = tr(C2
d∗0

) ,

where D∗
0(p, n) is the sub-class of all designs d0 ∈ D0(p, n) for which tr(Cd0) is

maximum.
Let zd01 ≤ zd02 ≤ · · · ≤ zd0,p−1 be the non-zero eigenvalues of Cd0 . Then,

design d∗0 is said to be A-optimal if mind0∈D0(p,n) tr(C−
d0

) = tr(C−
d∗0

), is said to

be D-optimal if maxd0∈D0(p,n)

∏p−1
i=1 zd0i =

∏p−1
i=1 zd∗0i and said to be E-optimal if

maxd0∈D0(p,n) zd01 = zd∗01. Similarly, MS-, A-, D- and E-optimality are defined
for connected block designs d ∈ D(p, b, k).

3. MS-Optimality of PDC Designs

In Theorem 3.1, below, we characterize MS-optimal designs in the class of
completely randomized designs D0(p, n), with s = 2n/p an integer. We need the
following well known lemma which is easy to prove.

Lemma 3.1. For given positive integers α and β, the minimum of
∑α

i=1 m2
i

subject to
∑α

i=1 mi = β, where the mi’s are non-negative integers, is obtained
when β−α[β/α] of the mi’s are equal to [β/α]+1 and α−β+α[β/α] are equal to
[β/α], where [z] denotes the largest integer not exceeding z. The corresponding
minimum of

∑α
i=1 m2

i is β(2[β/α] + 1)− α[β/α]([β/α] + 1).

Theorem 3.1. A design d∗0 with p lines is MS-optimal in D0(p, n) if and
only if

(i) every line occurs s = 2n/p times in d∗0, and
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(ii) the number of times gd∗0ii′ that cross (i, i′) occurs in d∗0 satisfies

|gd∗0ii′ − s/(p− 1)| < 1 for i 6= i′ , i, i′ = 1, . . . , p .

Proof. From (1), for any design d0 ∈ D0(p, n)

tr(Cd0) =
p∑

i=1

sd0i −
1
n

p∑
i=1

s2
d0i.

Now, since
∑p

i=1 sd0i = 2n and 2n/p = s, using Lemma 3.1,

p∑
i=1

s2
d0i ≥ 4n2/p.

Hence,
tr(Cd0) ≤ 2n− 4n/p = 2n(p− 2)/p. . . . (3)

By Lemma 3.1, equality above is attained if and only if sd0i = 2n/p = s
for i = 1, . . . , p. Let D∗

0(p, n) be the sub-class of designs for which sd0i = s for
i = 1, . . . , p. Then for a design d0 ∈ D∗

0(p, n)

Cd0 = Gd0 −
2s

p
1p1′p.

and, using the fact that
∑

i <

∑
i′

gd0ii′ = n,

tr(C2
d0

) =
∑ ∑

g2
d0ii′ −

4s

p

∑ ∑
gd0ii′ + 4s2

= 2
∑

i <

∑
i′

g2
d0ii′ + s2p− 8s

p

∑
i <

∑
i′

gd0ii′

= s2p− 8sn/p + 2
∑

i <

∑
i′

g2
d0ii′

= s2(p− 4) + 2
∑

i <

∑
i′

g2
d0ii′ .

But, from Lemma 3.1, with α = p(p− 1)/2 and β = n, we have∑
i <

∑
i′

g2
d0ii′ ≥ n(2[s/(p− 1)] + 1)− p(p− 1)

2
[s/(p− 1)]([s/(p− 1)] + 1).

Hence,

tr(C2
d0

) ≥ s2(p− 4) + n(2[s/(p− 1)] + 1)− p(p− 1)
2

[s/(p− 1)]([s/(p− 1)] + 1).
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By Lemma 3.1, equality above is attained if and only if gd0ii′ = [s/(p − 1)] or
[s/(p− 1)] + 1, for i 6= i′.

From Theorem 3.1, PDC designs in which every line appears the same number
s = 2n/p of times and in which each cross appears either λ = [s/(p − 1)] or
λ + 1 times are MS-optimal. A common way to construct a PDC design is
to take a conventional binary incomplete block design with p treatments each
occurring s times, n distinct blocks of size 2 and treatment concurrences λ and
λ + 1 (called the auxiliary design by Singh and Hinkelmann, 1995) and to form
crosses between the two treatments in each block. Any such PDC satisfies the
conditions of Theorem 3.1 and is MS-optimal. Among others, this includes the
M-designs of Singh and Hinkelmann (1995), the first series of PDCs of Mukerjee
(1997), and the PDCs formed from the basic plans listed by Gupta, Das and
Kageyama (1995). We discuss other such PDCs in Section 4.

We consider now the class D(p, b, k) of block designs with n = bk crosses
among the p lines, divided into b blocks of size k crosses. Ignoring the division
into blocks, the set of n = bk crosses involved in a design d ∈ D(p, b, k) forms
a PDC completely randomized design d0 ∈ D0(p, bk). Thus to every block
design d in D(p, b, k), there corresponds a completely randomized design d0 in
D0(p, bk). Following Gupta, Das and Kageyama (1995), we define a block design
d ∈ D(p, b, k) to be an orthogonal block design if the ith line occurs in every block
si/b times for i = 1, . . . p where si is the replication of the ith line in the design,
that is

Nd = b−1sd1′b ,

where Nd is the line-block incidence matrix of the design d. ¿From (1) and (2)
and the fact that Nd1b = sd, it follows that

Cd = Gd −
1
k

NdN
′
d = Cd0 −

1
k

Nd(Ib −
1
b
1b1′b)N

′
d . . . . (4)

Thus, Cd≤ Cd0 ,where for a pair of nonnegative definite matrices A and B, A ≤ B
implies that B − A is non-negative definite. Equality is achieved if and only if
Nd = b−1sd1′b, which is the condition for an orthogonal block design.

Now, consider a non-increasing optimality criterion φ. (An optimality cri-
terion φ is non-increasing if φ(B) ≤ φ(A) whenever B − A is nonnegative defi-
nite). If the unblocked PDC design d∗0 ∈ D0(p, bk) corresponding to an orthog-
onal block design d∗ ∈ D(p, b, k) is φ-optimal, then d∗ is also φ-optimal since
φ(Cd∗) = φ(Cd∗0

) ≤ φ(Cd0) ≤ φ(Cd) for any d ∈ D(p, b, k) and corresponding
d0 ∈ D0(p, n). The MS-, A-, D- and E-criteria are included in the φ-criterion.
Thus, in particular, we have the following theorem.

Theorem 3.2. An orthogonal block design d∗ ∈ D(p, b, k) is MS-optimal in
D(p, b, k) if the corresponding design d∗0 ∈ D0(p, bk) satisfies the conditions of
Theorem 3.1.
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4. Classes of MS-optimal Designs

Orthogonally blocked MS-optimal PDC designs for p lines with each cross
occurring λ or λ + 1 times can be constructed from resolvable or 2-resolvable
auxiliary incomplete block designs with p treatments each occurring s times, n
blocks of size 2 and treatment concurrences λ or λ + 1. The PDC design is
obtained, as described earlier, by forming a cross from the pair of treatments
in each of the n blocks. Each resolvable (or 2-resolvable) set of blocks in the
conventional design partitions the crosses of the PDC into orthogonal blocks.
We call such designs Series C designs.

An alternative construction is as follows. If p is even (odd), divide the nc =
p(p−1)/2 crosses of the complete diallel cross into p−1 ((p−1)/2) blocks of size
k = p/2 (k = p) in such a way that every line appears once (twice) per block,
i.e. is orthogonally blocked. Select any subset of b = n/k blocks. Orthogonally
blocked complete diallel crosses are given by the series 2 complete diallels of
Gupta and Kageyama (1994) and by the Family 5 complete diallels of Das, Dey
and Dean (1998), (or, equivalently, the series 1 plans listed by Gupta, Das and
Kageyama, 1995). We list these designs below under the headings of Methods 1
and 2. Selected subsets of blocks from Methods 1 and 2 will be called Series A
and B designs respectively.

In each of the above constructions, the basic PDC design satisfies the con-
ditions of Theorem 3.1 and is MS-optimal in D0(p, bk). In addition, since each
design is orthogonally blocked, the block design is also MS-optimal in D(p, b, k),
by Theorem 3.2. In Section 5, we compare the best series A and B designs with
a large number of series C designs. Except for a few cases, the series A and B
designs perform better.

Method 1 (p even). For any integer t ≥ 2 and p = 2t lines, we construct the
following set of p − 1 blocks, each of size k = p/2. For j = 1, 2, . . . , p − 1, we
define block j as

Block j: {(j, 2t−3+ j), (1+ j, 2t−4+ j), . . . , (t−2+ j, t−1+ j), (j−1,∞)}
In each block, the symbols are reduced modulo (p − 1) and ∞ is an invariant
symbol. An MS-optimal series A design d∗ ∈ D(p, b, k) with p = 2t, t ≥ 2, k =
p/2, b < p− 1 is obtained by selecting any b distinct blocks. Such a design has
n = pb/2 with s = b.

Method 2 (p odd). For any integer t ≥ 1 and p = 2t + 1 lines, we construct
the following t = (p − 1)/2 blocks each of size k = p. For j = 1, 2, . . . , t, we
define block j as

Block j: {(j, 2t + 1− j), (1 + j, 1− j), (2 + j, 2− j), . . . , (2t− 1 + j, 2t− 1−
j), (2t + j, 2t− j)}
In each block, the symbols are reduced modulo p = (2t + 1). An MS-optimal
series B design d∗ ∈ D(p, b, k) with p = k = 2t + 1, b < t, t ≥ 1 is obtained by
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selecting any b of the t blocks. Such a design has n = ps/2 with s = 2b.
For given t and b, Method 1 gives rise to

(
2t−1

b

)
possible MS-optimal block

designs with b < 2t−1 and Method 2 gives rise to
(

t
b

)
possible MS-optimal block

designs with b < t. Any of the Series A designs can be enlarged by appending
a complete set of p − 1 blocks from Method 1 and the Series B designs can be
enlarged by appending a complete set of (p− 1)/2 blocks from Method 2.

Example 1. Suppose we have p = 8 lines, so that t = 4. A Series A design
with b = 4 blocks of k = 4 crosses can be obtained by selecting any four blocks
from the Method 1 construction. Suppose we select the blocks with j = 1, 2, 3, 5.
Leaving the symbol ∞ fixed, and reducing all other symbols modulo p− 1 = 7,
we obtain the design:

(1, 6) (2, 5) (3, 4) (0, ∞)
(2, 0) (3, 6) (4, 5) (1, ∞)
(3, 1) (4, 0) (5, 6) (2, ∞)
(5, 3) (6, 2) (0, 1) (4, ∞)

This design is MS-optimal in D(8, 4, 4). An MS-optimal design in D(8, 11, 4)
with b = 11 blocks of size k = 4 can be obtained by appending the full set of
p− 1 = 7 blocks from Method 1 to the above design.

Example 2. The set of bk = 16 crosses in Example 1 provides an MS-
optimal completely randomized design in D0(8, 16). Condition (i) of Theorem
3.1 is satisfied since each line occurs sd∗0i = 4 times in the design and condition
(ii) is satisfied since every cross (i, i′) appears 0 or 1 time in the design.

5. A- and D- Efficiency

In this section, we show that the Series A and B PDC orthogonal block
designs constructed in Section 4, are not only MS-optimal, but also have high
efficiencies with respect to the A- and D-optimality criteria. We also show
that these efficiencies compare extremely well with the best Series C designs
obtained from a number of different sources, and with the E-M designs of Singh
and Hinkelmann (1995), and the E-optimal designs of Mukerjee (1997).

Let zd1 ≤ zd2 ≤ . . . zd,p−1 be the non-zero eigenvalues of Cd for a connected
design d ∈ D(p, b, k). For any such design, the A-value is defined as φA(d) =
tr(C−

d ) = Σz−1
di and the D-value as φD(d) =

∏
z−1
di . Let dA (dD) be the A-

optimal (D-optimal) design in D(p, b, k), then the A- and D- efficiencies of design
d are defined as

eA(d) = φA(dA)/φA(d)

and
eD(d) = {φD(dD)/φD(d)}1/(p−1) .
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We now give the following result on lower-bounds for A- and D- efficiencies in
D(p, b, k).

Lemma 5.1. The A- and D-efficiency lower-bounds e′A(d) and e′D(d) for
design d ∈ D(p, b, k) are given by

e′A(d) =
(p− 1)2

s(p− 2)φA(d)
. . . (5)

and

e′D(d) =
(p− 1)

s(p− 2){φD(d)}1/(p−1)
. . . (6)

where s = 2n/p.

Proof. Let d be a block design in D(p, b, k), and let d0 be the corresponding
unblocked design in D0(p, n) with n = bk. Let Cd and Cd0 be the information
matrices for estimating the general combining ability effects, as defined in Section
2, and let zd1 ≤ . . . ≤ zd,p−1 and zd01 ≤ . . . ≤ zd0,p−1 be the sets of their non-
zero eigenvalues, respectively. Since the second term of the right hand side of
(4) is non-negative definite, it is true that

zdi ≤ zd0i , i = 1, . . . , p− 1.

Using this fact, together with (3) and the fact that the harmonic mean is smaller
than the arithmetic mean, we have

φA(d) =
p−1∑
i=1

z−1
di ≥

p−1∑
i=1

z−1
d0i ≥

(p− 1)2∑p−1
i=1 zd0i

≥ (p− 1)2

s(p− 2)
.

Consequently, φA(dA) ≥ (p− 1)2/s(p− 2) and eA(d) ≥ e′A(d).
The proof that eD(d) ≥ e′D(d) follows along similar lines using the fact that

the geometric mean is smaller than the arithmetic mean.
It is clear from the proof of Lemma 5.1, that the lower bounds (5) and (6)

also hold for designs in D0(p, n). We note that (5) is equivalent to the average
efficiency factor for a PDC design relative to a complete diallel cross as calculated
by Singh and Hinkelmann (1995) with 2r replaced by s in their formula (17).

Example 3. In Example 1, we presented an MS-optimal design d∗ in
D(8, 4, 4). The A-value and D-value for this design are φA(d∗) = 2.4811 and
φD(d∗) = 0.00034. The lower bounds (5) and (6) on the A- and D- efficiencies
are e′A(d∗) = .8229. and e′D(d∗) = .9112. The design is listed in Table 1 and is
the best Series A design in terms of the A- and D- values.
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Table 1. Series A orthogonal block designs with block size p/2

p n e′A(d∗) e′D(d∗) Building block selection
4 8 .9000 .9449 1 1–3
4 10 .9000 .9524 1 3 1–3
6 9 .7143 .8532 1 2 3
6 12 .8929 .9473 1 2 3 4
6 18 .9615 .9801 2 1–5
6 21 .9542 .9769 1 2 1–5
6 24 .9637 .9819 1 2 5 1–5
6 27 .9804 .9903 1 2 4 5 1–5
8 12 .6405 .8242 1 2 3
8 16 .8229 .9112 1 2 3 5
8 20 .9026 .9520 1 2 3 4 5
8 24 .9608 .9806 1 2 3 4 5 6
8 32 .9800 .9898 3 1–7
8 36 .9728 .9863 1 2 1–7
8 40 .9736 .9867 2 3 6 1–7
8 44 .9782 .9890 1 2 3 6 1–7
8 48 .9842 .9921 1 2 3 4 5 1–7

10 15 .5571 .7920 1 2 4
10 20 .7826 .8915 1 2 3 5
10 25 .8782 .9373 1 2 3 4 7
10 30 .9184 .9593 1 2 3 4 5 7
10 35 .9530 .9767 1 2 3 4 5 6 7
10 40 .9798 .9900 1 2 3 4 5 6 7 8
10 50 .9878 .9938 3 1–9
10 55 .9820 .9910 3 4 1–9

In Tables 1 and 2, we list the best Series A designs for given p = 2t and
n = tb (with p ≤ 16, n < 100), together with their efficiency lower bounds (5)
and (6). For each design listed, we give the blocks j1, . . . , jb from Method 1 used
to construct the design. Similarly, in Table 3, we list the best Series B designs
constructed from the blocks of Method 2 for given p = 2t + 1 and n = (2t + 1)b,
(with p ≤ 15, n < 100). Larger Series A designs can be formed by appending to
the base design one or more full sets of u = p− 1 blocks (denoted 1–u in Tables
1 and 2), and larger Series B designs can be formed by appending one or more
full sets of u = (p−1)/2 blocks (denoted 1–u in Table 3). We have included such
designs with an appended complete set of blocks provided that either n ≤ 50
or the base design is disconnected. For these larger designs, the A- and D-
efficiency bounds are considerably higher than the corresponding values for the
base designs. Apart from the very small designs, the efficiency lower bounds of
Series A and B designs tend to be above .85, and most often above .90, with
e′D(d∗) > e′A(d∗). Some of the smaller Series A designs are disconnected and
these are not listed.
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Table 2. Series A orthogonal block designs with block size p/2, continued

p n e′A(d∗) e′D(d∗) Building block selection
12 18 .5698 .7941 1 2 4
12 24 .7590 .8803 1 2 3 6
12 30 .8595 .9271 1 2 3 5 8
12 36 .8975 .9484 1 2 3 4 5 8
12 42 .9304 .9650 1 2 3 4 5 6 9
12 48 .9537 .9769 1 2 3 4 5 6 7 9
12 54 .9725 .9863 1 2 3 4 5 6 7 8 9
12 60 .9878 .9939 1 2 3 4 5 6 7 8 9 10
12 72 .9918 .9959 6 1–11
12 78 .9393 .9773 3 4 1–11
14 21 .6142 .8029 1 2 5
14 28 .7467 .8748 1 2 3 6
14 35 .8393 .9182 1 2 3 5 8
14 42 .8824 .9406 1 2 3 5 6 9
14 49 .9156 .9573 1 2 3 4 5 7 10
14 56 .9382 .9690 1 2 3 4 5 6 8 11
14 63 .9566 .9782 1 2 3 4 5 6 8 10 11
14 70 .9702 .9851 1 2 3 4 5 6 7 8 9 11
14 77 .9819 .9910 1 2 3 4 5 6 7 8 9 10 11
14 84 .9918 .9959 1 2 3 4 5 6 7 8 9 10 11 12
14 98 .9941 .9970 2 1–13
16 24 .5904 .7959 1 2 5
16 32 .7387 .8708 1 2 3 7
16 40 .8282 .9128 1 2 3 5 11
16 48 .8730 .9359 1 2 3 5 8 13
16 56 .9054 .9521 1 2 3 4 7 10 12
16 64 .9282 .9637 1 2 3 4 5 7 10 12
16 72 .9453 .9724 1 2 3 4 5 6 8 11 12
16 80 .9588 .9793 1 2 3 4 5 6 7 10 11 14
16 88 .9701 .9850 1 2 3 4 5 6 7 8 10 12 13
16 96 .9793 .9896 1 2 3 4 5 6 7 8 9 10 12 13

We searched the following sources for auxiliary resolvable and 2–resolvable
incomplete block designs with blocks of size 2 and pairs of treatments occurring
in λ or λ + 1 blocks:

Clatworthy (1973): partially balanced incomplete block designs
John, Wolock and David (1972): cyclic designs
Mitchell and John (1976): regular graph designs

From each such auxiliary design, we formed the series C design as explained in
Section 4. The series C designs based on resolvable plans can be compared with
the Series A designs and those based on the 2-resolvable plans can be compared
with the Series B designs. We found only four incomplete block designs d from
these sources that have higher values of e′A(d) and e′D(d) than our listed Series
A and B designs, and these are listed with references c.Xx in Table 4. We note
that the improvement over the Series A and B designs is only of the order of .02.
The corresponding incomplete block designs are listed by Clatworthy (1973) in
resolvable sets of blocks.
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Table 3. Series B orthogonal block designs with block size p

p n e′A(d∗) e′D(d∗) Building block selection
5 5 .4444 .6667 1
5 15 .9383 .9686 1 1–2
7 7 .3000 .6000 1
7 14 .8419 .9217 1 2
7 28 .9653 .9825 1 1–3
7 35 .9769 .9885 1 3 1–3
9 9 .7033 .8081 3
9 18 .8472 .9168 1 2
9 27 .9345 .9676 1 2 3
9 45 .9812 .9901 3 1–4
9 54 .9812 .9903 1 2 1–4

11 11 .1852 .5556 1
11 22 .8289 .9079 1 2
11 33 .9222 .9587 1 2 3
11 44 .9647 .9825 1 2 3 4
13 13 .1558 .5455 1
13 26 .8228 .9039 1 2
13 39 .9156 .9541 1 2 3
13 52 .9511 .9745 1 2 3 5
13 65 .9779 .9890 1 2 3 4 5
15 15 .1346 .5385 1
15 30 .8869 .9292 3 6
15 45 .9080 .9500 1 2 3
15 60 .9490 .9723 1 4 5 6
15 75 .9661 .9827 2 3 5 6 7
15 90 .9849 .9925 1 2 3 4 5 6

Table 4. Resolvable and 2-resolvable incomplete block designs

p n e′A(d) e′D(d) Reference
6 21 .9653 .9809 c.R20
8 12 .8596 .9099 m.8.4
8 40 .9800 .9890 c.R32
9 9 .7033 .8081 m.9.3

10 30 .9265 .9618 c.T1
12 18 .8345 .8955 m.12.4
12 30 .9308 .9564 m.12.6
15 15 .6853 .8002 m.15.3
16 24 .8242 .8898 m.16.4
16 48 .8929 .9425 c.M2 or c.LS3
16 56 .9547 .9717 m.16.8

The PDC E-optimal designs of Mukerjee (1997) are based on auxiliary discon-
nected group divisible designs. Ten of these have parameter values that coincide
with the listed series A and B designs, and seven of these can be formed into
similar sized orthogonal block designs. These seven design are indicated in Table
4 with reference m.p.x, where p is the number of lines and x is the group size
of the group divisible design used in the construction. Six of the seven designs
have higher efficiencies than the corresponding series A or B designs. The two
designs with x = 3 were proved by Mukerjee to be A- and D-optimal.
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The blocked E-M designs of Singh and Hinkelmann (1995) have ps/2 distinct
crosses in the PDC replicated r ≥ 2 times; that is, they have psr/2 observations
with r ≥ 2. We have not listed the the M-S optimal Series A and B designs for
such large sizes. However, since replication of an entire design does not affect
its efficiency calculation, we compared the efficiency of each listed E-M design
with psr/2 observations with a replications of the corresponding listed series
A or B design having n = psr/2a distinct crosses each replicated once, where
a is the smallest integer for which a design is listed. For example, Singh and
Hinkelmann’s design for p = 8 lines, ps/2 = 12 distinct crosses replicated r = 11
times each (132 observations), in b = 33 blocks of size k = 4, was compared
with a = 3 replications of our series A design with n = 44 distinct crosses each
replicated once (132 observations) with the same block structure. Such designs
do not satisfy Theorem 3.1 and are not MS-optimal. However, the series A
designs have more distinct crosses than the E-M designs and, not surprisingly,
over the range of matching parameter values, the listed E-M designs have lower
efficiencies than replications of the listed series A and B designs.
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