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Abstract

Logistic model has long history regarding it’s usefulness in popula-
tion predictions. But the model has some limitations when applying for
the sparse census data sets, typically available for developing countries.
In such situation the relative growth rates (RGR) exhibit some un-
usual trend (increasing, primary increasing and then decreasing) which
is different from the common decreasing trend of logistic law. To tackle
those complicated demographic situations we have successfully explored
a simplified version of Tsoularis and Wallace model (TWM) which can
explain all of these feasible monotonic structures of RGR. In addition
to this we have also proposed another model (PM) by assuming RGR
as a direct function of time covariate but not the size. The model has
some key advantages than the simplified TWM (STWM). It can detect
the demographic phase change point at which the developing country
switches over towards developed one. We performed RGR modelling
(as a function of time) but not the size as neither TWM nor STWM
is analytically solvable and the underlying population model is better
identifiable in the former case but not in the later. The less number of
parameters involve in both the STWM and PM ensure a better chance
of convergence under non-linear least square estimation than the orig-
inal TWM with more parameters.
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1 Introduction

The problem of population prediction is concerned with the prediction
of the size and composition of the future population on the basis of the
size and composition of current population. Usually elaborate predic-
tions are made of the population size at each age group and separately
for male and female. Gradually different methods have been developed
by the population scientists for this purpose. Among these, cohort com-
ponent method is a very familiar one where predictions are first made
separately for the three components viz. survivorship, migration and
birth and then these three components are combined to predict the net
size and composition of the future population.

In projecting population for small areas such as a city, state etc. the
available techniques are very few in numbers. The cohort component
method often fails due to the difficulties of prediction of the flow of
migrants in and out of these areas. The estimates are often found to
be unrealistic .

In the case of estimating Indian population or population of it’s
sub-regions, it is revealed that logistic model grossly underestimates
true population. Additionally the logistic model has some limitations
when applying for the scanty sparse census data set, typically available
for developing countries. In such situations the relative growth rates
(RGR) exhibit some unusual trend (increasing, primary increasing and
then decreasing) which is different from the common decreasing trend
of logistic law.

In population prediction problem, rate modeling may often be more
powerful than the usual size modeling where rate is define as the rel-
ative change of size with respect to time. Sometime it is not easy or
rather misleading for the experimenter to identify the proper underly-
ing model by studying the shape of the growth profile curves among the
plenty available growth curves. But in comparison if we plot the em-
pirical estimate of RGR against time or size we can at least guess and
identify the proper family of growth curves which is appropriate for the
given data based on the monotonic structure of RGR. So elimination
of improper model is comparatively easy from RGR profile than the
size profile curves. This is particularly important when growth profile
curves similar to common and existing growth curves though the RGR
is not monotonically decreasing with time (Gompertz) / size (logistic,
Richards, von-Bertallanfy etc.) or constant (exponential) - which is
the basic property of the standard population growth curves. Corre-
sponding to different census figures we observed different growth rates
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though growth profiles look alike (see Figure 1). The simulated Figure
2 (bell shaped) also illustrates the same property by showing the size
profile, S-shaped Sigmoidal, whereas the RGR profile is not decreasing
but primarily increasing then decreasing with size. So the underlying
population model is better identifiable in the former case but not in the
later. Finally, the most important point in favouring RGR modelling is
that sometimes it is really impossible to solve the growth law analyti-
cally, by just integrating the rate differential equation. Basically these
two shortcomings motivates us to introduce RGR modelling but not the
size. We try to explore this by introducing Tsoullaris-Wallace model
(2002) (TWM) which has the property to exhibit various uncommon
structures of RGR. Tosoularis-Wallace model (2002) altogether consists
of five unknown parameters to be estimated from the population census
figures. Although for developed countries population figures are ade-
quate to estimate all the parameters but it is not true for developing
countries where population census figures are available only for 8-10
periods. The presence of less number of parameters in any standard
model ensure a better chance of convergence in the non-linear least
square estimates. So for the later case reduction of number of para-
meters is needed for using TWM without sacrificing it’s advantages in
representing all feasible monotonic structures of RGR. In the Section
3.2 we have discussed this model (STWM) elaborately.

In the spirit of TWM we also proposed a similar model, based on
RGR as a function of time. This proposed model (PM) is simple and
flexible enough to represent all type of feasible monotonic structures of
RGR. The proposed model is more tractable than the TWM although
both shares the property of having different monotonic structures of
RGR (see Figure 2 and 3). In addition to this PM has some key ad-
vantages over the TWM and STWM which may be listed as: a) it can
be solved analytically, b) it can detect the demographic phase change
point at which the developing country switches over towards developed
one. This phase change occurs at the time point at which RGR is
maximized. The PM is discussed in Section 3.3.

The “Dynamic Logistic Model” (DLM) (Bhat (1999)) (described
in Section 3.4) suffers from a serious drawback that it can not cover
the situation when the population size ultimately explodes but not
stabilizes after a specified time period. In comparison the STWM and
the PM stabilizes ultimately which is one of the desired and expected
property of the population growth curve model. The upper ceiling
point of DLM is not constant but varies with time. So selection of the
proper form of ceiling point is really difficult and arbitrary. The fitting
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of parameters of the model and ultimately the prediction of population
size is largely dependent on the proper choice of this model although
there does not exist any standard procedures so that we can choose a
correct one. We prefer such a model which provides the fitting, at least
as good as the DLM, but does not suffer from the above drawbacks.
With a view to meet these purposes we have tried to explore STWM
and PM.

The stochastic formulation of the STWM and PM is done by adding
delta correlated and auto correlated errors with the deterministic counter
part of the models. The estimates of different parameters are obtained
by minimizing errors sum of squares and using non-linear least square
theory. The empirical estimates of RGR (Fisher (1921)) is used as
response variable which is basically a discretised version of the rate
equation. The solution of the formulated stochastic differential equa-
tion (SDE) is also obtained using Statonovich calculus.

2 The Data

Census data

We have used the census data of West Bengal (from 1901 to 1981;9 time
points), India (from 1901 to 1991;10 time points) and China (from 1949
to 1999; 50 time points). The nature of data are illustrated in figure 1.
From Figure 1 corresponding to China (size is measured per billion) it
may be observed that there is an increasing trend at the initial stage
but a decreasing trend after reaching a maximum . At the initial stage
a sharp decline is reflected at a particular time point(probably due
to Government policy regarding family welfare). So an approximate
bell shaped trend is expected if the sudden decline case is treated as
an exceptional situation of the entire data frame. On the other hand
for India (size is measured per billion) and one of it’s province (state)
West Bengal (size is measured per million) an overall increasing trend
is observed although a slight decreasing tendency is reflected towards
the end of the studied census time points.

Simulated data

Along with the census data we have also used the simulated data. To
construct simulated data from Tsoularis and Wallace (2002)model we
adopted the following algorithm.
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We can choose any real number sequence for x values. But from the
demographic population the RGR is generally bounded and in rare sit-
uation it may exceed 1. So from practical point of view we have started
with a sequence of feasible length (0.14 to 1.0). One may construct any
other sequence based on the particular problem under consideration.
Assuming this sequence as x values we evaluated the functional values
of

Γ(m + n)

(Γ(m)Γ(n))
xm−1

(
1−

(
x

k

))n−1

(1)

for different values of x. Considering these functional values as
RGR, population size P (t) are generated through either of the fol-
lowing recursive relationships of RGR and “ Average Relative Growth
Rate”(ARGR) (Fisher(1921)).

P (t + 1) = P (t) exp (R(t)) (2)

P (t + 1) = P (t)(1 + R(t)). (3)

Equations 2 and 3 are derived from discrete and continuous approxi-
mation of the term 1

P (t)
dP (t)

dt
. For discrete approximation 1

P (t)
dP (t)

dt
=

R(t) = P (t+1)−P (t)
P (t)

(RGR) leads to equation 3 and for continuous ap-

proximation R(t) =
∫ t+1
t

(
1

P (s)
dP (s)

ds

)
ds(ARGR) leads to equation 2.

Then using these P (t) values different sets of RGR values with dif-
ferent monotonic structures are generated by choosing different sets of
parameter values of the Tsoularis and Wallace (2002)model given by

R(t) = rP (t)a(1− (P (t)/k))c

The choices of different sets of parameters considered are (r = 0.12, a =
0.6, k = 14, c = 0.01) , (r = 0.12, a = 0.01, k = 328, c = 1) and (r =
0.2, a = 0.8, k = 600, c = 20) and initial values are chosen to be (3.4,
2.4 and 3.4) for increasing, decreasing and bell shaped trend of RGR
respectively. The trends are exhibited in Figure 2. The size profiles
look alike in bare eye for increasing and decreasing trend whereas the
ARGR profiles showing completely reverse trend. It may also be noted
from the last figure that although the size profile is similar to common
growth law, ARGR profile is bell shaped.

3 The Model

To understand the taxonomy of the proposed model let us start with
the exponential growth law. The exponential growth of multiplying
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lated data under reduced TWM
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ulated data under proposed model
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organism is represented by a simple and widely used model that in-
creases without bounds or limits as Figure 4(a) - illustrates. So, in
mathematical terminology growth rate is proportional to population
size (i.e. RGR is constant through out the whole growth process) and
that leads to the exponential growth law represented by the following
differential equation

dP (t)

dt
= r P (t). (4)

The familiar solution to (4) is

P (t) = m er t, (5)

where r is the growth rate and m is the initial population P (0).
Although many population grow exponentially for a limited time pe-
riod,no bounded system sustain exponential growth indefinitely, unless
the parameters or boundaries of the system are changed. Because only
a few, if any, systems are permanently unbounded and sustain expo-
nential growth, equation (5) must be modified to have a limit or a
carrying capacity that makes it more realistic sigmoidal shaped as il-
lustrated in Figure 4(b). The most widely used modification of the
exponential growth rate is the logistic growth rate. It was introduced
by Verhulst(1838) but popularized by Lotka(1925), as Kingsland (1985)
wrote in her comprehensive history of such models in Population ecol-
ogy.

The logistic equation begins with P (t) and r of the exponential

curve but adds a “negative feedback” term
(
1− P (t)

k

)
that reduces the

growth rate of a population as the limit k is approached :

dP (t)

dt
= rP (t)

[
1− P (t)

k

]
. (6)

Note that the “negative feedback” term is closed to 1 when P (t) ¿ k
and approaches to 0 as P (t) → k. Thus, the growth rate begins ex-
ponentially then decreases to 0 as the population P (t) approaches to
the limit k, and producing an S-shaped (sigmoidal) growth trajectory.
The term r P (t) can be treated as a “positive feedback” term. So, in
logistic law both the “positive and negative feedback” terms are linear
in nature. In some of the practical scenario due to various environmen-
tal and demographical fluctuations these feedback terms might not be
linear but a polynomial of suitable degree. That modifies the “positive

and negative feedback” terms as r P (t)a and
(
1−

(
P (t)

k

)b
)c

and leads to
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the TWM which is described elaborately in the next sub section. Since
Tsoularis and Wallace (2002) derived the model only from mathemati-
cal tractability view point they have not well-described interpretations
of different parameters.

3.1 Tsoularis-Wallace Model

Tsoularis-Wallace modified Neldar (1961) and Richards’ (1969) equa-
tions to generalize logistic law.

Their proposed model generalized the logistic equation which can
incorporate most of the previously reported laws as special cases.

The Tsoularis-Wallace model with full set of parameters is charac-
terized by the equation
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1

P (t)

dP (t)

dt
= rP (t)a


1−

(
P (t)

k

)b



c

(7)

where r, a, b, c and k are positive real numbers.

3.2 Simplified TWM

From the TWM it is difficult to estimate the five parameters as the
chance of convergence of the nonlinear least square estimates is very
low due the singularity problem in the gradient matrix.

It will be best if we can reduce the number of parameters of the
TWM without loosing the representations of different shapes of RGR
functions. In this paper we have introduced more simple form of TWM
with reduced set of parameters which can still exhibit the different
trends of RGR. STWM is more powerful in avoiding singularity problem
which ensures the better chance of convergence than the original TWM.

We can propose the reduced form (b = 1) of the TWM defined as
STWM as described below

1

P (t)

dP (t)

dt
= rP (t)a

[
1− P (t)

k

]c

(8)

The other form of STWM we use in this paper are respectively given
by the following two equations where we have assumed a = 1 and c = 1
respectively

1

P (t)

dP (t)

dt
= rP (t)

[
1− P (t)

k

]c

(9)

1

P (t)

dP (t)

dt
= rP (t)a

[
1− P (t)

k

]
. (10)

3.3 Proposed Model

As P (t) is not analytically solvable for STWM as defined in (8), it
is very difficult to find the time point (tmax) at which RGR attains
its maximum value. In some particular demographic situations RGR
decreases with time after reaching its maximum value which clearly in-
dicates that with limited source of environmental resources population
is going to change it’s phase from less developed to better one. So, it
is quite reasonable to identify this change point as to explain that par-
ticular demographic phenomenon. This motivates us to develop such a
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model by which we can analytically find the time point (tmax) at which
the RGR is maximized. To achieve this we proposed PM where RGR is
explained through time covariate but not size. The PM is represented
by

1

P (t)

dP (t)

dt
= r ta

[
1− t

d

]c

, 0 ≤ t ≤ d (11)

= 0, t > d

It is to be noted that for both STWM and PM a and c are the
key parameters which can efficiently tune the monotonicity of RGR.
Different uncommon structures (increasing, primarily increasing then
decreasing etc.) of the RGR are visible for small sparse data set avail-
able from census and that needs to tune the usual monotonicity of
RGR. The unusual shape of RGR indicates serious environmental and
demographic fluctuations. The key or in other words the tunning para-
meters a and c for both the STWM and PM play a vital role to explain
these unusual shapes. So, these parameters can be interpreted as the
environmental and demographic surrogates.

For reasonably large value of d population approaches to the upper
ceiling point (say, P (d)) when t → d. So basically d is the upper
ceiling point of time but not the population. It is to be noted that
RGR (see equation (11)) is zero at both t = 0 & d. So P (t) stabilizes
at t = d and this obviously implies that P (t) can be represented as a
S-Shaped sigmoidal carve. In other words we try to transform the time
frame within which P (t) stabilizes, from (0,∞) to (0, d) which is more
realistic from practical point of view. Also, the PM can also shares
all feasible monotonic structures of RGR similar to STWM(see Figure
2-3). Moreover it has one additional key advantage in expressing P (t)
analytically as a function of t.

In the following section we are going to discuss some main features
of the proposed model.

The analytic solution of the proposed model (11) is given by

P (t) = P (0)exp

(
r t(1+a)Hypergeometric2F1[1 + a,−c, 2 + a, t

d
]

(1 + a)

)

(12)

where, Hypergeometric2F1[m,n, p, q] =
∞∑

r=0

(m)r(n)r

(p)r

qr

r!
and P (0) is the

population size at first census.
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The three main features of the PM are

1. The RGR of the PM attains maximum at t = a d
a+c

2. The point of inflections of the curve (12) can be obtained as a
solution of the equation (13) given by

a (t− d) + t
(
c− r (d− t) ta

(
1− t

d

)c)
= 0 (13)

3. The points of inflections of the RGR curve given by the equation
(11)are

a2 d+a d (c−1)−√a d
√

c
√

a+c−1
a2+(c−1) c+a (2 c−1)

and a2 d+a d (c−1)+
√

a d
√

c
√

a+c−1
a2+(c−1) c+a (2 c−1)

4. At tmax the magnitude of RGR is

r

(
a d

a + c

)a (
d c

a + c

)c

(14)

If any one of the parameters of (14) tends to 0, the RGR ap-
proaches 0.

For simulated data trends are exhibited in Figure 3 . It is to be noted
that in the first figure the size profile is similar to existing growth law
but ARGR profile is showing increasing trend which is not very com-
mon. For the last two figures both the size profiles are exhibiting the
common S-shaped curve but ARGR profiles are not same. One shows
decreasing but another shows bell shaped trend which is an exceptional
phenomenon.

3.4 Dynamic Logistic Model

The traditional logistic curve provides a poor fit to past population
trends mainely because of the underlying assumptions that the ceiling
of the population size is time invariant. Owing to various reasons, the
capacity of the same land to accommodate people may rise with time
and thus explain the reason behind increasing or stationary growth
rates seen in the population. The DLM (Bhat, 1999) based on the time
dependent ceiling point, is characterized by the equation

1

P (t)

dP (t)

dt
= b[k(t)− P (t)] (15)
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For estimating population size we can assume different functional
forms of k(t). In this paper we have assumed the simplest form of
k(t) that is linear. The further complicated form requires a relatively
straightforward extension of this theory, although actual computation
of the population size is much messier.

Then we can predict the population sizes at different censuses by
using the nonlinear least square estimates in the following recursive
relation.

̂P (t + 1) = exp[ln P̂ (t) + b̂ ˆk(0) + b̂k̂t− b̂P̂ (t)] (16)

The initial condition figure is obtained from the first census.

4 Parameter Estimation

In population dynamics the parameters are usually estimated from de-
terministic solution of the population differential equation. It is quite
reasonable to insert the random component in the deterministic model
due to the various demographic fluctuations . The correlated structure
of ARGR / RGR between different time points are completely unknown
in population dynamics. Even if sometimes the existence of this depen-
dency is a big question. For some of the earlier problems Rao (1952,
1987) assumed independent structure but without any proper expla-
nation. Hence for the parameter estimation it is better to assume a
more general structure of errors so that the response variable ARGR
/ RGR are either correlated or uncorrelated when the errors are auto
correlated or uncorrelated accordingly.

Consider the model described by the stochastic differential equation
as follows

1

P (t)

dP (t)

dt
=

d lnP (t)

dt
= R(t) = h(P (t); θ) + σ(t; η)ε(t) (17)

and
1

P (t)

dP (t)

dt
=

d lnP (t)

dt
= R(t) = h(t; θ) + σ(t; η)ε(t), (18)

where, ε(t) is a stationary “Gaussian Random Process” with
V ar(ε(t)) = 1 and σ(t; η) is included to allow the variance of the errors
to change over time (heteroscedastic). Note that the model (17) is of
the form (7) and (8) but the model (11) is the special case of the general
model (18). Now let us consider two following cases.
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(a) Delta Correlated Process : The error process ε(t) is called
delta correlated if Cov(ε(ti), ε(tj)) = 0 for all ti 6= tj. That is ε(t)

follows iid N(0, σ2) if σ(t; η) = σ2 (homoscedastic). Then 1
P (t)

dP (t)
dt

follows independently N(h(P (t); θ), σ2).
(b) Auto Correlated Process : The process is called auto corre-

lated if ε(t) has stationary auto correlation function i.e., Corr(ε(ti), ε(tj) =
ρ(|ti− tj|). Then the problem is not a simple nonlinear regression prob-
lem even if we don’t allow the heteroscedasticity in the process.

Now, the RGR for any size variable at a time point t is defined as
the relative rate of change of size; this is mathematically defined as

1
P (t)

dP (t)
dt

where P (t) is the size at time point t. If we consider a time

interval (t1, t2), t1 < t2, rather than a specific time point, then the RGR
can be approximated by

ln(P (t2))− ln(P (t1))

t2 − t1

(Fisher, 1921), where ∆t = t2 − t1 is the length of the time interval.
This is basically the ARGR over the interval ∆t. Levenbach and Reuter
(1976), Sandland and Gilchrist (1979), Seber and Wild (1984), among
others, used the same empirical estimate of RGR in their studies of
growth curve analysis.

In our case population data are discrete and available for equispaced
time points so without loss of generality we can replace t2 by (t + 1)
and t1 by t and that leads ∆t = 1.

If P (t) is the population size at time point t then we can use ARGR
as the estimate of RGR and is given by

ln(P (t + 1))− ln(P (t)) (19)

In this paper we replace the left hand side of (17) and (18) by this
empirical estimate of RGR.

The estimated value of θ can be obtained through “nonlinear least
square” due to Marquardt (1963) principle by minimizing the error sum
of squares.

Under auto-correlated error structure the parameters are estimated
through “iterated non-linear least square” technique (Seber and Wild
(1989)). Correlation structure is estimated by Prais-Winsten(1954)
method.

It may be noted that this nonlinear least square estimates are also
MLE estimates under the Guassian errors.
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It is really difficult to estimate the parameters of STWM or PM
from scanty and sparse census data. Singularity of the gradient matrix
creates the problem in estimating the parameters of the model through
nonlinear least square for this scanty census data set. So it is reasonable
to study the existence and the consistency properties of the nonlinear
least square estimates although it follows from the general results of the
theory of estimating equations. For PM the existence and consistency
property of least square estimates hold. These asymptotic properties
are studied elaborately in the appendix (Section 10.1 - 10.2).

5 Solution of stochastic differential equa-

tion

Comparing the equation (18) and it’s deterministic counter part (11)
we have h(t, θ) = r ta (1−t/d)c. Then the solution of (18) is a Gaussian
process

ln(P (t)) = ln(P (0)) +
∫ t

t0
r ua

(
1− u

d

)c

du +
∫ t

t0
σ(u, η)ε(u)du (20)

for which

E[ln(P (t))|P (0)] = ln(P (0)) +
∫ t

t0
r ua

(
1− u

d

)c

du. (21)

The solution (20) is obtained using “Stratonovich’s stochastic calculus”,
also discussed in Sandland and McGilchrist (1979); Seber and Wild
(1988) (see the Section 10.3 in the appendix). We have evaluated the
conditional varience-covarience structures of the responses P (t) given
the initial value P (0) under uncorrelated homoscedastic structure of
errors are given by

V ar[ln(Pti)|ln(Pt0)] = V ar[ln(Pti)−ln(Pt0)|ln(Pt0)] = (ti−t0) σ2 = σ2
i ,

(22)
and

Cov[ln(Pti), ln(Ptj)|ln(Pt0)] = V ar[ln(Pti)|ln(Pt0)] = σ2
i . (23)

For autocorrelated structure of errors, when ε(t) has autocorrelation
function represented by corr[ε(u), ε(v)] = ρ(|u − v|), we have (Seber
and wild (1988)),

V ar[ln(P (ti))− ln(P (tj))] =
∫ tj

ti

∫ tj

ti
σ(u, η) σ(v, η) ρ(|u− v|)dudv.

(24)
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Also, for any two non overlapping time intervals [t2, t1] and [t4, t3],

Cov[ln(P (t2))− ln(P (t1)), ln(P (t4))− ln(P (t3))]

=
∫ t2

t1

∫ t4

t3
σ(u, η) σ(v, η) ρ(|u− v|)du dv. (25)

For special case, when ρ has some specific structure, the derived expres-
sions for (22,23) are available in the appendix. As the census figures
are available for equispaced time points, without loss of generality the
time frame can be transformed in such a way so that the increment is
unity. It converts the weighted least square estimation procedure to
a more simple ordinary least square to estimate the model parameters
(see the Section 10.3 in the appendix)

6 Advantage of PM over STWM in de-

tecting demographic phase change

With a limited source of environmental resource a population going to
change it’s phase from developing to developed one when RGR switches
over it’s patteren from increasing to decreasing trend. It will happen
when RGR is bell shaped. The two distinct phases are separated at
the key time point where the RGR is maximized. So RGR is one of
the vital tools in reflecting this phase change although there are also
other responsible demographic parameters which can distinguish those
phases in different ways.

This key time point varies from one population to another which
clearly indicates that the occurrence of demographic phase change de-
layed in one of the two populations. The identification of demographic
cause for this delay might be one of the very promising social problems
of interest. So it is quite reasonable to frame and test the hypothesis
whether the time points where RGR attains its’ maximum value are
same for the two populations against one is greater than other. The
test can be constructed only when the census data are available at the
same time periods for two populations.

The two point of inflexions of the RGR curve also have some de-
mographic interpretations. When RGR is increasing with time initially
the slope is flat but suddenly it grows up and the slope become steeper.
But when RGR is decreasing the nature of the curve behaves reversely
that is primarily the slope is steeper but then it is gradually decreasing
in a slow rate. So the time points indicating a sharp change in terms of
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the slope of the RGR might have immense practical values for both the
cases. More specifically these time points provide some caution to the
developing countries in terms of the demographic change. In the first
case when the slope of the RGR grows up, it indicates that the devel-
oping country gradually loosing it’s status and is approaching towards
an worse condition which would lead the population ultimately towards
explosion. So some caution should be taken. Similarly for the second
case when the decreasing rate of RGR slows down it would provide a
negative feedback in the shifting process forcing a developing country
towards a developed one. Under this scenario it is also important to
identify some social and demographic factors so that some preventive
measures can be taken. These changes might not be occurred at the
same time and so one can think to construct a hypothesis whether the
time points where the point of inflexions occurs for RGR curve are same
for the two populations or not.

As STWM (or TWM) is not analytically solvable, it is not possible
to evaluate the time points where the RGR is maximized or the point
of inflexions of the RGR curve in terms of model parameters. So this is
one of the major shortcomings of the STWM model. But in comparison
we can easily evaluate a closed and simple analytical form of these time
points from PM. So the related tests can also be constructed for the
PM and which is the key advantage of the model.

Test for phase change and point of inflexions

Let us denote the theoretical solutions of the time points at which the
RGR is maximized respectively by t1 and t2 for the two populations.
Similarly, the theoretical points of inflexions of the RGR curves for
both the two populations are respectively denoted by(t1inf , t

∗
1inf ) and

(t2inf , t
∗
2inf ). From the feature (1) of the proposed model as described in

Section 3.3, the magnitude of t1 and t2 are respectively a1d1

a1+c1
and a2d2

a2+c2
.

Where, the model parameters for the first and second populations are
respectively (a1, d1, c1) and (a2, d2, c2). Similarly the evaluated expres-
sion (see feature 3) for (t1inf , t

∗
1inf ) and (t2inf , t

∗
2inf ) are

(
a2
1 d1+a1 d1 (c1−1)−√a1 d1

√
c1
√

a1+c1−1

a2
1+(c1−1) c1+a1 (2 c1−1)

,
a2
1 d1+a1 d1 (c1−1)+

√
a1 d1

√
c1
√

a1+c1−1

a2
1+(c1−1) c1+a1 (2 c1−1)

)

and
(

a2
2 d2+a2 d2 (c2−1)−√a2 d2

√
c2
√

a2+c2−1

a2
2+(c2−1) c2+a2 (2 c2−1)

,
a2
2 d2+a2 d2 (c2−1)+

√
a2 d2

√
c2
√

a2+c2−1

a2
2+(c2−1) c2+a2 (2 c2−1)

)

respectively.
In mathematical notation, the hypotheses based on the time point

where RGR is maximized and points of inflexion of the RGR curve are
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stated as follows.

H10 : a1d1

a1+c1
= a2d2

a2+c2
ag H11 : not H10,

H20 :
a2
1 d1+a1 d1 (c1−1)−√a1 d1

√
c1
√

a1+c1−1

a2
1+(c1−1) c1+a1 (2 c1−1)

=
a2
2 d2+a2 d2 (c2−1)−√a2 d2

√
c2
√

a2+c2−1

a2
2+(c2−1) c2+a2 (2 c2−1)

ag H21 : not H20,

H30 :
a2
1 d1+a1 d1 (c1−1)+

√
a1 d1

√
c1
√

a1+c1−1

a2
1+(c1−1) c1+a1 (2 c1−1)

=
a2
2 d2+a2 d2 (c2−1)+

√
a2 d2

√
c2
√

a2+c2−1

a2
2+(c2−1) c2+a2 (2 c2−1)

ag H31 : not H30.

If we assume errors distribution to be N(0, σ2) then the nonlinear
least square estimates (NLSE) and MLE are equivalent (Seber & Wild,
1989).

Simulation for the verification of the asymptotic
normality of NLSE

It is really questionable whether the asymptotic normality of the non-
linear least square estimates really holds good for the scanty, sparse
census data set. Extensive simulation is needed to verify it in a more
precise way. In this context we can also think for the profile likelihood
which is not symmetric but strongly skewed. Although the estima-
tion through profile-likelihood may be an alternative approach but it is
typically applicable in the situation where the number of nuisance para-
meters is significant. But in our situation the only nuisance parameter
is r and this approach may not improve the estimation procedure. So
we stick to asymptotic normality. For illustration we use the sparse
and scanty census data of India and West Bengal which are available
for the same time periods. Now let us denote the MLE (NLSE) of
(a1, d1, c1, a2, d2, c2) by (â1, d̂1, ĉ1, â2, d̂2, ĉ2). Since t1 and t2 are one to
one function of the parameters (a1, d1, c1, a2, d2, c2) the ML estimates

of t1 and t2 are t̂1, t̂2 respectively with t̂1 = â1d̂1

â1+ĉ1
and t̂2 = â2d̂2

â2+ĉ2
. For

simplicity we have taken the parameter a to be known with magnitude
1.

At first using the census data the model parameters are estimated
through non-linear least square (Marquandt, 1963). The response vari-
able ARGR is normally distributed which holds from the normality as-
sumption of the error terms. We can approximate the mean of ARGR
by putting the estimated values of the parameters of non-linear func-
tion. Since the raw census data set of West Bengal consists of only eight
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observations, to identify the asymptotic behavior of the estimated pa-
rameters, we have drawn 1000 random samples each of size eight. As
the parameters are very sensitive and some of them are very small in
magnitude, the variance of errors or ARGR is to be chosen suitably
small. For each of the 1000 sets of random samples two parameters d
and c are estimated 1000 times. The histograms are shown in Figure
5 for the parameters d and c respectively. The simulated histograms
are quite close to normal density. The p-values for goodness of fit test
are 0.80941,0.93898 for the parameters d and c respectively. So, the
assumption of normality for NLSE is quite reasonable.
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Figure5: Histograms of the distribution of parameters "c" and "d"

Test Statistics

From the simulation results asymptotically we have,
θ̂i ∼ N(θi, var(θ̂i)), i = 1(1)3, where (θ̂1, θ̂2, θ̂3) = (â, ĉ, d̂) ⇒ t̂k ∼
N(tk, var(t̂k)), k = 1, 2, and (tk,t̂k)are the one to one function of the
(θi, θ̂i) .

The test statistics and critical regions for H10, H20 and H30 are
respectively

T1 =
(t̂1 − t̂2)− (t1 − t2)√

ˆV ar(t̂1) + ˆV ar(t̂2)
(26)

T2 =
( ̂t1inf − ̂t2inf )− (t1inf − t2inf )√

ˆV ar( ̂t1inf ) + ˆV ar( ̂t2inf )
(27)
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T3 =
( ̂t∗1inf − ̂t∗2inf )− (t∗1inf − t∗2inf )√

ˆV ar( ̂t∗1inf ) + ˆV ar( ̂t∗2inf )
(28)

Under H01, H02 and H03 all T1, T2 and T3 ∼ N(0, 1). So H01, H02

and H03 are rejected at α% level of significance if

|T1| > τα/2, |T2| > τα/2 and |T3| > τα/2

where the variances can be estimated from the general results of
asymptotic theory (Rao (1987)).

7 Data Analysis

Here the pattern of change of population trend as well as ARGR do not
match with any standard growth curve models for our scanty and sparse
census data sets. The famous logistic and other sigmoidal growth curve
models often used in demographic problems are not applicable for this
situation as the ARGR is not decreasing with time or size but rather
increasing at some time points. Basically that motivates us to explore
STWM and PM for our data.

On the hand we expect that the DLM will give a better prediction
for any data set if we can choose the proper function for the upper
ceiling point which is no doubt a hard job as it is purely arbitrary.
The estimates of upper ceiling points for different census figures are
completely impossible for DLM where as STWM and PM do not suffer
from those drawbacks. Assuming linearity of the upper ceiling point in
the DLM we have fitted DLM, STWM and PM for China (Figure 6),
India (Figure 7) and West Bengal (Figure 8)data. Although STWM
and PM smooth out the trend in comparison with the DLM but in
terms of “ Residual Sum of Squares” (RSS) of over all fitting, the
differences are negligible in magnitude. For example if we consider
the China data the RSS values of ARGR fittings are (0.002572744,
0.002631723) and (0.00180148, 0.00181418) for STWM and PM under
uncorrelated and auto correlated error structures respectively. On the
other hand the RSS value for DLM is 0.002528938. It has been observed
that the RSS values of STWM and PM are pretty closed with that of
DLM even if with auto correlated error structure it is less than DLM.
The estimated upper ceiling point under STWM with uncorrelated and
autocorrelated errors are approximately 30 and 21 (measured in billion)
respectively where as for proposed model the upper ceiling point of
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population are observed at time points 54 (year 2003) and 55 (year
2004) under uncorrelated and autocorrelated errors respectively. The
estimated population figures for these time points are respectively 32
and 28 (approximately)(measured in billion) as obtained from equation
14.

The asymptotic test for detecting the demographic phase change
where the RGR is maximized, is carried out for the scanty census
data set of India and West Bengal. The estimated values of the phase
change for West Bengal and India occurred approximately at the 6th
(year 1951) and 9th (year 1981)time point of the census data set. The
asymptotic normality for the NLSE is verified through extensive sim-
ulations. The observed value of the test statistic (26) is 6.45 and the
test is rejected at 1 % level of significance. It indicates that the phase
changes occurred for West Bengal and India are not at the same time
point for the census data. So this implies the initiation of development
of one province does not necessarily mean the development process of
the whole country has been started.

8 Concluding Remarks

In the present work we have tried to explain the phenomenon of pop-
ulation change through different types of growth curves. The previous
models suffered from the difficulties that they could not explain and
predict properly some special situations where the population changes
occurred in some exceptional ways. In addition it is also an attempt
to represent the relative growth rate as a function of time only which
enabled us to estimate the parameters of the models in closed forms
which is not possible in STWM model.

We hope that the present study will help the population scientists
to rediscover different critical nature of population growth in several
developed and developing countries which will emerge due to different
family welfare programmes and changing nature of the conjugal life
throughout the world.

Another important contribution of the present work is the identifi-
cation of demographic phase change point for a particular region. This
feature will help us to take proper actions beforehand so that ultimately
the present world with severe inequalities will be a homogeneous one.

When the shape of the RGR curve is bimodal or multimodal, the
prediction problem can be extended in a straight forward way, repre-
senting RGR as a weighted mixture of the proposed model. The weights
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are determined by treating it as the additional parameters for the non-
linear least square.
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10 Appendix

10.1 Existence of the nonlinear least square
estimator

TWM and proposed model ((4) and (6)) under SDE set up (equa-
tions (12) and (13)) with uncorrelated and homoscedastic error
process can be written as

R(t) = rP (t)a

[
1− P (t)

k

]c

+ ε(t) (29)

or

R(t) = b ta
[
1− t

d

]c

+ ε(t) (30)

Here both the equations (24) and (25) can be written as

y = f(θ, x) + ε (31)

where, f(θ, x) = rxa
[
1− x

d

]c
.

Now θ̂ is chosen to be the nonlinear -least-square estimator of the
parameter θ if it minimizes the following function.

Sn(θ) =
∑

i

(y(i)− f(θ, x(i))2 =
∑

(y − f(θ, x))2 (32)

where θ = (r, a, d, c)′.

In case of equation (27) we have the following restrictions

(1) ε’s are iid with mean zero and variance σ2 (σ2 > 0).

(2) Now for each nonzero x, f(θ, x) is definitely a continuous
function of θ defined in Θ. WLG we can take x as nonzero because
if it is zero then the axis can be transformed in such a way so that
it is nonzero.

(3) Θ is closed, bounded (i.e. compact) subset of <4.

With the above restrictions which are obviously true for the model
(24) and (25) and by following the same technique of Jennrich(1969)
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it can be proved that the nonlinear-least-square estimators exist
for both the two regression models.

The boundedness of Θ as described above is not a serious restric-
tion, as most parameters are bounded by the physical constraints
of the system being modelled.

10.2 Consistency of the nonlinear least square
estimate for the PM

To sketch the the proof we have considered heavily the works
of Jennrich (1969), Malinvaud (1970a, b) and Wu (1981), and
the helpful review papers of Gallant (1975) and Amemiya (1983).
Henceforth we will consider only the equation (25) written in the
form (26).

Let θ∗∗ is the true value of the 4 dimensional vector θ. Then to
proof the consistency of the nonlinear least square estimator θ
the first step is to prove that θ∗∗ uniquely minimizes plimSn(θ).
In that case, if n is sufficiently large so that n−1Sn(θ) is close to
plimSn(θ), then θ̂ which minimizes the former, will be close to
θ∗∗, which minimizes the latter. This gives the weak consistency.
Now let us consider the equation (27), then

n−1Sn(θ) = n−1
∑

(y − f(θ, x)2

= n−1
∑

(y − f(θ∗∗, x) + f(θ∗∗, x)− f(θ, x))2

= n−1
∑

(ε + f(θ∗∗, x)− f(θ, x))2

= n−1
∑

ε2+2n−1
∑

ε(f(θ∗∗, x)−f(θ, x))+n−1
∑

(f(θ∗∗, x)−f(θ, x))2

= C1 + C2 + C3

By law of large numbers, plimC1 = σ2. Secondly, for fixed θ∗∗

and θ, plimC2 follows from the convergence of

n−1
∑

(f(θ∗∗, x)− f(θ, x))2

by Chebyshev’s inequality :

P (n−1
∑

(f(θ∗∗, x)− f(θ, x))ε > η2) <
σ2

η2n2

∑
(f(θ∗∗, x)−f(θ, x))2

(33)
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Since the uniform convergence of C2 follows from the uniform
convergence of the right-hand side of (28), it suffices to assume

1

n

∑
f(θ1, x)f(θ2, x) converges uniformly in θ1, θ2 ∈ Θ.

Hence plimSn(θ) will have a unique minimum at θ∗∗ if limC3

has a unique minimum at θ∗∗. Weak consistency would then be
proved.

With this idea in mind, we have defined

Bn(θ1, θ2) =
∑

f(θ1, x)f(θ2, x),

Dn(θ1, θ2) =
∑

(f(θ1, x)− f(θ2, x))2, (34)

and made the following assumption with the three restrictions
already defined above :

(4).(a) n−1Bn(θ1, θ2) converges uniformly for all θ1, θ2 in Θ to
function B(θ1, θ2).

This implies, by expanding (29), that n−1Dn(θ1, θ2) converges
uniformly to D(θ1, θ2) = B(θ1, θ1) + B(θ2, θ2)− 2B(θ1, θ2).

(4).(b) It is now further assume that D(θ, θ∗∗) = 0 if and only if
θ = θ∗∗ (i.e. D(θ, θ∗∗) is “positive definite”.

Now for the model (26)

Bn(θ1, θ2) =
∑

r1r2x
a1

(
1− x

d1

)c1

xa2

(
1− x

d2

)c2

(35)

The function f(θ, x) in the model (26) is uniquely maximized at
x = a d

a+c
for all positive values of the parameters.

So, Bn(θ1, θ2) <
∑ (

a1 d1

a1 + c1

) (
a2 d2

a2 + c2

)
.

⇒ n−1Bn(θ1, θ2) <
(

a1 d1

a1+c1

) (
a2 d2

a2+c2

)
= B(θ1, θ2). ⇒ Bn(θ1, θ2)

converges uniformly to B(θ1, θ2). Hence the consistent estimator
of θ exists.
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10.3 Detail solution and estimation procedure of
the SDE

The detail derivation of the solution of SDE (already described in Sec-
tion 5) under two headings uncorrelated and autocorrelated errors are
given below

Uncorrelated Error Process

If ε(t) is “ white noise” (technically, the “ derivative” of a Wiener
process), then ln(P(t)) has independent increments. In particular, set-
ting zti = ln(Pti+i

)− ln(Pti) [where ln(Pti) = ln(P (ti)] for i=1,2,...,(n-
1), the zti ’s are mutually independent. From (20) with ti+1 and ti
instead of t and t0, and E[ε(t)]=0, we have

E[zti ] =
∫ ti+1

ti
r ua

(
1− u

d

)c

du, (36)

Since V ar[ε(t)] = 1, we also have

V ar[zti ] =
∫ ti+1

ti
σ2(u, η)du (37)

= (ti+1 − ti)σ
2 if σ2(u, η) = σ2.

Hence, from (20),

zti =
∫ ti+1

ti
r ua

(
1− u

d

)c

du + ε(ti) (i = 1, 2, . . . , (n− 1)), (38)

where the ε(ti) are independently distributed [ since ε(t) has indepen-
dently increments], and (32) can be fitted by weighted least squares
using weights from (31).

It is also useful to have varience-covarience matrix of the original
responses ln(P (ti)). Conditional on ln(P (tt0)), the size at some chosen
time origin, we have from Seber and Wild (1989)

V ar[ln(Pti)|ln(Pt0)] = V ar[ln(Pti)−ln(Pt0)|ln(Pt0)] =
∫ ti

t0
σ2(u, η)du = σ2

i ,

(39)
say. Since

ln(Ptr)− ln(Pt0) = z0 + z1 + z2 + . . . + zr−1,

it follows that for ti ≤ tj,
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Cov[ln(Pti), ln(Ptj)|ln(Pt0)] = Cov[ln(Pti)−ln(Pt0), ln(Ptj)−ln(Pt0)|ln(Pt0)]

= V ar[ln(Pti)− ln(Pt0)|ln(Pt0)]

= V ar[ln(Pti)|ln(Pt0)]. (40)

The error structure considered in (18) introduces variation in the size of
the growth increment due to stochastic variations in the environment.
Garcia[1983] considered an additional source of error, namely errors in
the measurement of ln(Pti). We measure ln(Pti)

∗ given by

ln(Pti)
∗ = ln(Pti) + τi, (41)

where, τ1,τ2,. . . ,τn are i.i.d. N(0, σ2
τ ) independently of the ln(P (ti)).

Thus E[ln(P (ti))]
∗ = E[ln(P (ti))] and,

for ln(P (ti))
∗ = (ln(P (t1))

∗, ln(P (t2))
∗, . . . , ln(P (tn))∗)′

D[ln(P )∗] = D[ln(P )] + σ2
τIn (42)

The model can then be fitted using maximum likelihood or gener-
alized least squares.

Autocorrelated Error Processes

When ε(t) has autocorrelation function Corr[ε(u), ε(v)] = ρ(|u − v|),
we have from Seber and wild (1988),

V ar[ln(P (ti))− ln(P (tj))] =
∫ tj

ti

∫ tj

ti
σ(u, η) σ(v, η) ρ(|u− v|)dudv.

(43)
Also, for any two non overlapping time intervals [t1, t2] and [t4, t3],

Cov[ln(P (t2))− ln(P (t1)), ln(P (t4))− ln(P (t3))]

=
∫ t2

t1

∫ t4

t3
σ(u, η) σ(v, η) ρ(|u− v|)dudv. (44)

Consider our case in which σ(u, η) = σ and ρ(|u − v|) = exp−λ |u−v|

with λ > 0. Evaluating (38) when t1 < t2 < t3 < t4, we have

Cov[ln(P (t2))− ln(P (t1)), ln(P (t4))− ln(P (t3))]

=
∫ t2

t1

(∫ t4

t3
σ2 exp−λ (u−v) du

)
dv. =

σ2

λ2

(
eλ t2 − eλ t1

) (
eλ t3 − eλ t4

)

(45)

29



From (37) and symmetry considerations,

V ar[ln(P (t2))− ln(P (t1))] = 2
∫ t2

t1

∫ t2

t1
σ2 ρv−ududv

= 2
σ2

λ2

[
λ(t2 − t1) + eλ(t1−t2) − 1

]
= σ2

∗, (46)

say. Suppose ti+1−ti = ∆(i = 0, 1, 2, . . . , n−1), and let zti = ln(Pti+i
)−

ln(Pti) as before. Then provided ∆ is not too large, we would expect
from (22) and (23) that Corr[zti , ztj ] ≈ e−λ∆|i−j| which is of the form

ρ|i−j|. Hence we would expect the error structure of the Zti to be
approximately AR(1).

If we devide (38) by ∆t then R(ti) =
zti

∆t
is the ARGR and empirical

fitted model is represented by

R(ti) =
1

∆t

∫ ti+1

ti
rua

(
1− u

d

)d

du + ε(ti) (47)

where ε(ti) are possibly autocorrelated errors. The trend relationship
for R(ti) may be transformed to remove the heteroscedasticity before
fitting a model with additive errors. As

∫ ti+1

ti
rua

(
1− u

d

)d

du = rtai

(
1− ti

d

)d

∆t (48)

implies R(ti) ≈ h(ti; θ). Different parameters are estimated through
(48) which we already discussed in Section 4.
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